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Abstract

The paper presents a new variant of a nonsmooth continuation algorithm by
means of which one can follow branches of solutions to 2D contact problems
with Coulomb friction which are parameterized by the coefficient of friction.
The algorithm is based on the predictor-corrector technique and uses the
active set strategy implementation of the semismooth Newton method.
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1. Introduction

Static contact problems with Coulomb friction represent a very hard the-
oretical problem. Their mathematical model leads to the so-called implicit
variational inequality. The existence of at least one solution for any load
vector has been shown provided that the coefficient of friction F is small
enough and some additional smoothness assumptions on data are satisfied.
The detailed mathematical analysis involving also quasistatic and dynamic
contact problems can be found in [6]. On the other hand almost nothing
is known on the structure of the solution set. Partial results concerning
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Preprint submitted to Mathematics and Computers in Simulation November 5, 2014



uniqueness/non-uniqueness are available if the solution exhibits specific prop-
erties (see [13, 21]). On the other hand, for discrete contact problems ob-
tained by a suitable finite element approximation certain information on the
structure of solutions exists. For example it is known that such problems have
a solution for any F and this solution is unique provided that the coefficient
of friction is below a critical value Fcrit. Unfortunately this critical value
is mesh dependent, more precisely if the discretization parameter h tends to
zero then Fcrit tends to zero as well. The explicit dependence of Fcrit on h has
been studied for instance in [8, 12]. To analyze qualitative properties of the
solution set, we use a continuation approach. We suppose that the coefficient
of friction F is a function of a real parameter β, F : β 7→ F(β) which serves
as the continuation parameter in the discrete problem. Let Ψ : β 7→ x(β) be
the respective (generally set valued) solution map, where x(β) is a solution
to the contact problem for the coefficient of friction F(β) and x(β0) be a
reference solution at β0. It is known that except specific points, the solu-
tion map Ψ defines a curve in a neighborhood of β0, i.e. the problem has a
locally unique solution there (see [14] for F(β) = const. along the contact
part and [10] for F(β) depending also on the spatial variable). With this
result at hand, tracking the solution branch would be principally possible.
Unfortunately standard continuation techniques may fail since the branches
are only piecewise smooth, in general, due to a nonsmooth character of the
problem. In addition to nonsmoothness, there are yet another two specific
features of the solution map: (i) resulting branches are not generally piece-
wise linear unlike the continuation by the load vector (for the continuation
of piecewise linear maps we refer to [17, 2]), (ii) the solution path may be
a disconnected set with several disjoint branches so that a technique how
to ”jump” from one branch to another has to be developed. The method
presented in this paper is not a general method for nonsmooth optimization.
It was designed just for the continuation in 2D contact problems for elastic
bodies with Coulomb friction.

An algorithm for a numerical continuation of a piecevise smooth solution
curve has been proposed in [10], Algorithm 5.1 (Piecewise smooth variant of
the Moore-Penrose continuation, see e.g. [2] for this notion). It was designed
to solve parameter dependent contact problems with Coulomb friction and
tested on problems with just one or two contact nodes, see also [16]. In order
to apply this algorithm to large scale problems one has to provide a reliable
computation of the positively oriented tangent, see e.g. [10], in a generic
point (i.e a point, where the problem is differentiable).
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In [9] we used an algorithm based on tangent continuation, see [4], Al-
gorithm 4.25. Note that the tangent continuation fails at a (differentiable)
turning point (for this notion, see e.g. [5]). We assume that such smooth
turning points are not present in our case. This assumption was satisfied
in all examples we computed. The proposed algorithm was able to continue
piecewise affine solution branches parametrized by the load vector due to its
linear dependence on a continuation parameter. The new version of the con-
tinuation algorithm presented in this paper is able to follow general piecewise
smooth branches, in particular solutions parametrized by the friction coeffi-
cient. The advantage of this variant is that branches (namely, their smooth
pieces, see Section 5) are parametrized naturally by a chosen continuation
parameter and not by quantities like an arclength, e.g.. The notion of an ori-
entation is changed in our approach. The orientation (1 or −1) is assigned to
each smooth piece in the process of continuation. A change of the orientation
is linked to turning transition points where solutions change qualitatively, see
Subsection 5.2. We also discuss the case when the problem depends on more
than just one parameter, see Subsection 5.3.

An alternative continuation algorithm was recently proposed in [19]. It
is based on the above mentioned Moore-Penrose continuation. Finding a
positively oriented tangent at a nonsmooth point is a crucial step. This is
done by the procedure called the Tangent Switch that is actually a heuristic
rule. It is fair to say that also our new continuation procedure is based
on generic assumptions, Subsection 5.2, Algorithm NSM (New Smooth
Piece). The algorithm in [19] follows a path with a given orientation (in
the classical sense), but it is not able to localize (in our notation) turning
transition points.

The paper is organized as follows. In Section 2 we present the weak for-
mulation of contact problems with Coulomb friction based on a fixed point
approach. In order to release the unilateral constraints and to regularize
the frictional term we introduce Lagrange multipliers. This leads to a new
formulation of the problem in terms of displacements, normal and tangential
contact stress which is next used in discretizations by finite elements. Two
equivalent formulations of the discrete contact problem are presented: (j) as
a generalized equation (GE), (jj) as a nonsmooth equation (NE). In Section 3
results on the existence of locally Lipschitz continuous branches of solutions
parametrized by the coefficient of friction and the load vector are mentioned.
Section 4 is devoted to the semismooth Newton method which uses the ac-
tive set strategy for solving the problem expressed as (NE). The main part
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of the paper is Section 5, where a new variant of the nonsmooth continua-
tion algorithm is proposed. It consists of three parts: (k) predictor-corrector
algorithm for the continuation along a smooth piece, (kk) the algorithm en-
abling us to detect a new smooth piece, (kkk) the algorithm used for finding
another branches when the solution path is disconnected. Finally, Section 6
presents results of a model example computed by the proposed algorithm.

Throughout the paper we use the following notation. By Hk(G), k ≥ 0
integer we denote the classical Sobolev space of functions which are to-
gether with their generalized derivatives up to order k square integrable in
G (L2(G) := H0(G)). Vectors, vector functions and spaces of vector func-
tions will be denoted by bold characters: x, f , V , etc.. Rs, s integer stands
for the euclidean space of dimension s (R := R1) with the scalar product
( ·, ·)s and the norm ‖ · ‖s =

√
( ·, ·)s. The max-norm of x ∈ Rs will be

denoted by ‖ · ‖s,∞. If x = (x1, . . . , xs)
⊤, y = (y1, . . . , ys)

⊤ are two vec-
tors then x ≥ y, x > y means that xi ≥ yi, and xi > yi, respectively
∀i = 1, . . . , s and |x| := (|x1|, . . . , |xs|). Further R

s
+ = {x ∈ Rs| x ≥ 0} and

Rs
++ = {x ∈ Rs| x > 0}. If A = (aij), B = (bij) are two matrices of the same

order then A : B =
∑

i,j aijbij.

2. Continuous and discrete settings of contact problems with Coulomb
friction

This section starts with the presentation of the mechanical and math-
ematical model of contact problems with Coulomb friction. A mechani-
cal system consists of two deformable bodies in mutual contact which are
made of elastic materials. The bodies are represented by bounded domains
Ω1,Ω2 ⊂ R2, the Lipschitz boundaries of which are split into three disjoint,

non-empty parts: ∂Ωj = Γ
j

u ∪ Γ
j

f ∪ Γ
j

c, j = 1, 2. Denote Ω = Ω1 ∪ Ω2,
Γu = Γ1

u ∪ Γ2
u, Γc = Γ1

c ∪ Γ2
c , and Γf = Γ1

f ∪ Γ2
f . If a quantity q is defined in

Ω, then its restriction to Ωj, or ∂Ωj will be denoted by qj, j = 1, 2 in what
follows. On different parts of ∂Ω different boundary conditions will be given.
On Γu the zero displacements will be prescribed while surface tractions of
density f act on Γf . Γj

c is a part of Ωj along which both bodies may come
into a contact. Next we shall suppose that Γ1

c = Γ2
c , i.e. there is no gap

between Ω1 and Ω2 in the undeformed state. On the contact zone Γc the in-
fluence of friction obeying Coulomb law will be taken into account. Finally,
Ω is subject to body forces of density F . Our aim is to find an equilibrium
state of Ω.
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Before we give the mathematical model, we introduce several notation.
By ν, t we denote the unite outward normal and tangential vector to ∂Ω,
respectively. According by to our convention, the symbols νj, tj stand for the
ones to ∂Ωj, j = 1, 2. In particular, ν1 = −ν2 on Γc. Further F := F(x) is
the coefficient of Coulomb friction which may depend on the spatial variable
x ∈ Γc.

By a classical solution of contact problems with Coulomb friction we
mean any displacement vector u : Ω 7→ R2 solving the following system of
equations and boundary conditions:
- (equilibrium equation)

div σ(u) + F = 0 in Ω, (1)

- (linear Hook’s law)

σ(u) = Cε(u), ε(u) = 1/2(∇u+ (∇u)⊤) in Ω, (2)

- (kinematical boundary condition)

u = 0 on Γu, (3)

- (static boundary condition)

T (u) := σ(u)ν = f on Γf , (4)

- (transmission of contact stresses)

Tν(u) := σ(u1)ν1 · ν1 = σ(u2)ν2 · ν2

Tt(u) := σ(u1)ν1 · t1 = σ(u2)ν2 · t2

}
on Γc, (5)

- (contact conditions)

uν := (u1 − u2) · ν1 ≤ 0, Tν(u) ≤ 0, uνTν(u) = 0 on Γc, (6)

- (Coulomb law of friction)

|Tt(u)| ≤ −FTν(u)
ut := (u1 − u2) · t1 6= 0⇒ Tt(u) = FTν(u) sign ut

}
on Γc. (7)

The symbol C in (2) stands for the fourth order symmetric and elliptic elastic-
ity tensor. Finally, σ(u), ε(u) is the stress and the strain tensor, respectively,
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corresponding to u and Tν(u), Tt(u) in (5) is the normal and tangential com-
ponent of the stress vector T (u) on Γc, respectively.

For theoretical and computational purposes we shall use a weak formula-
tion of (1)-(7). To this end we introduce several notation. If S(Ω) is a space
of functions defined in Ω, then writing v ∈ S(Ω) we mean that vj ∈ S(Ωj),
j = 1, 2 (and analogously for spaces of functions on ∂Ω).

Let

V = {v ∈ H1(Ω)| v = 0 on Γu},

V = V × V,

K = {v ∈ V | vν ≤ 0 on Γc}.

Denote by γν , γt : V 7→ L2(Γc) the trace mappings γν : v 7→ vν , and γt : v 7→
vt, respectively, on Γc, v ∈ V . Next we shall suppose that the boundaries
∂Ωj, j = 1, 2 are smooth so that γν(V ) = γt(V ) ≡ X. The dual space to X
will be denoted by X ′, the cone of nonnegative functionals by X ′

+ and the
duality pairing on X ′ ×X by 〈·,·〉. Finally,

a(u,v) =

∫

Ω

Cε(u) : ε(v) dx,

L(v) =

∫

Ω

F · v dx+

∫

Γf

f · v ds, F ∈ L2(Ω), f ∈ L2(Γf ),

j(g,v) = 〈Fg, |vt|〉 ∀u,v ∈ V , g ∈ X ′
+.

The coefficient of friction is represented by a positive function F ∈ C(Γc)
which is bounded from above: there exists Fmax > 0 such that

0 < F(x) ≤ Fmax ∀x ∈ Γc. (8)

To get a weak formulation of (1)-(7) we use a fixed-point approach. To this
end we consider the following auxiliary problem: given g ∈ X ′

+

Find u := u(g) ∈K such that

a(u,v − u) + j(g,v)− j(g,u) ≥ L(v − u) ∀v ∈K.

}
(P(g))

(P(g)) is the weak formulation of contact problems with Tresca friction whose
mathematical model is given by (1)-(7) with the following minor change in
(7): the unknown normal stress −Tν(u) is replaced by g ∈ X ′

+. Problem
(P(g)) has a unique solution for any g ∈ X ′

+ ([7, 11]).
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Define a mapping Φ : X ′
+ 7→ X ′

+ by

Φ(g) = −Tν(u(g)) ∈ X ′
+. (9)

By a weak solution to contact problems with Coulomb friction we call any
displacement vector u(g∗) ∈ K which solves (P(g∗)) with g∗ ∈ X ′

+ being a
fixed point of Φ in X ′

+: Φ(g
∗) = g∗ = −Tν(u(g

∗)) on Γc.

Remark 1. It has been shown in [6] that if Fmax in (8) is sufficiently small
and data of the problem are smooth enough then there exists at least one
weak solution for any right hand side L.

To release the unilateral constraint vν ≤ 0 on Γc and to regularize the
functional j in (P(g)) we use a duality approach. Let

Λν = X ′
+,

Λt(g) = {µ ∈ X ′| 〈µ, vt〉+ 〈Fg, |vt|〉 ≥ 0 ∀v ∈K}, g ∈ Λν

and define the problem:

Find (u, λν , λt) := (u(g), λν(g), λt(g)) ∈ V × Λν × Λt(g) s.t.

a(u,v) = L(v)− 〈λν , vν〉 − 〈λt, vt〉 ∀v ∈ V ,
〈µν − λν , µν〉+ 〈µt − λt, µt〉 ≤ 0 ∀(µν , µt) ∈ Λν × Λt(g).





(M(g))

It is well known that also (M(g)) has a unique solution for any g ∈ X ′
+ and

(u, λν , λt) solves (M(g)) if and only if u solves (P(g)) and λν := −Tν(u),
λt := −Tt(u) on Γc [11].

From the fixed-point formulation and using that λν = −Tν(u) we obtain
from (M(g)) the following primal-dual formulation of contact problems with
Coulomb friction:

Find (u, λν , λt) ∈ V × Λν × Λt(λν) such that

a(u,v) = L(v)− 〈λν , vν〉 − 〈λt, vt〉 ∀v ∈ V ,
〈µν − λν , µν〉+ 〈µt − λt, µt〉 ≤ 0 ∀(µν , µt) ∈ Λν × Λt(λν).





(P)

Discretization of the problem will be based on the primal-dual formula-
tion (P). Next we describe the construction of Vh, Λhν , Λht(gh), gh ∈ Λhν

being finite element discretizations of V , Λν , and Λt(g), respectively. To
this end we shall suppose that Ωj are polygonal domains with triangulations
T j
h , j = 1, 2. Besides the standard assumptions on the mutual positions of
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triangles ∆ ∈ Th = T 1
h ∪ T

2
h we shall suppose that T 1

h|Γc
= T 2

h|Γc
, i.e. the

nodes of T 1
h and T 2

h on Γc coincide. With any Th we associate the space

Vh = {vh ∈ C(Ω)| vh|∆ ∈ P1(∆) ∀∆ ∈ Th, vh = 0}, dimVh = n

and its convex subset

Kh = {vh ∈ Vh| vhν(ai) ≤ 0, ∀i = 1, . . . ,m},

where P1(∆) denotes the space of linear functions on ∆ and {ai}
m
i=1 is the

set of all contact nodes, i.e. the nodes of Th lying on Γc \ Γu. The sets
Λhν , Λht(gh) will be generated by a finite collection {δi}

m
i=1 of the Dirac

distributions concentrated in the contact nodes, i.e. 〈δi, ϕ〉 = ϕ(ai), ϕ ∈
C(Γc), ∀i = 1, . . . ,m:

Λhν = {µhν | µhν =
m∑

i=1

µνiδi, µνi ≥ 0 ∀i = 1, . . . ,m},

Λht(gh) = {µht| µht =
m∑

i=1

µtiδi, |µti| ≤ (Fg)(ai) ∀i = 1, . . . ,m}

assuming that g ∈ C(Γc). Any element µhν ∈ Λhν , µht ∈ Λht(gh) will be
identified with the vectors µν ∈ Λν , and µt ∈ Λt(g), respectively, formed by
the coefficients of linear combination µνi, µti, i = 1, . . . ,m.

It is readily seen that

Λν = R
m
+ and Λt(g) = {µt ∈ R

m| |µt| ≤ F ⊙ g},

where F = (F1, . . . ,Fm)
⊤, g = (g1, . . . , gm)

⊤, Fi := F(ai), gi := g(ai),
i = 1, . . . ,m, and F ⊙ g := (F1g1, . . . ,Fmgm)

⊤ ∈ Rm.
The discretization of (P) reads as follows:

Find (uh, λhν , λht) ∈ Vh × Λhν × Λht(λhν) such that

a(uh,vh) = L(vh)− 〈λhν , vhν〉 − 〈λht, vht〉 ∀vh ∈ Vh,
〈µhν − λhν , µhν〉+ 〈µht − λht, µht〉 ≤ 0 ∀(µhν , µht) ∈ Λhν × Λht(λhν)




(P)h

or in the algebraic form:

Find (u,λν ,λt) ∈ Rn ×Λν ×Λt(λν) such that

Ku = L− N⊤λν − T⊤λt,
(Nu,µν − λν)m + (Tu,µt − λt)m ≤ 0 ∀(µν ,µt) ∈ Λν ×Λt(λν),





(P)
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where K is the (n× n) stiffness matrix, L ∈ Rn is the load vector, N, T are
(m× n) matrices representing the linear trace mappings γν and γt in Vh.

Problem (P) can be also written in the form of a generalized equa-
tion (GE). Indeed, let NQ(y) denote the standard normal cone to a non-
empty convex set Q at y ∈ Q. Then (P) is equivalent to

Ku = L− N⊤λν − T⊤λt,
Nu ∈ NΛν

(λν), Tu ∈ NΛt(λν)(λt).

}
(P)GE

This formulation enables us to prove the existence of local Lipschitz contin-
uous branches of solutions to (P) which are parametrized by the coefficient
of friction F .

There is yet another equivalent formulation of (P) leading to a system of
nonsmooth equations (NE) in Rn+2m. The inequality in (P) can be expressed
by means of projections of Rm ontoΛν andΛt(g). Since the constraints inΛν

and Λt(g) are separated, the respective projections split into m projections
in R. Thus the projection PRm

+
of Rm onto Rm

+ is given by

PRm
+
(x) = (PR+

(x1), . . . , PR+
(xm))

⊤, x = (x1, . . . , xm)
⊤ ∈ R

m,

where PR+
(z) = max{0, z}, z ∈ R. Analogously, the projection P[−g,g] of R

m

onto K = [−g1, g1]× · · · × [−gm, gm], g = (g1, . . . , gm) ≥ 0 is given by

P[−g,g](x) = (P[−g1,g1](x1), . . . , P[−gm,gm](xm))
⊤, x = (x1, . . . , xm)

⊤ ∈ R
m,

where P[−y,y] : R 7→ [−y, y], P[−y,y](z) = max{0, z + y} −max{0, z − y} − y,
∀y ≥ 0 and z ∈ R. It is easy to verify that the inequality in (P) can be
equivalently written as

λν − PRm
+
(λν + ρNu) = 0 and λt − P[−F⊙λν ,F⊙λν ](λt + ρTu) = 0,

where ρ > 0 is arbitrary but fixed. The resulting system of nonsmooth
equations reads as follows:

Find y∗ := (u,λν ,λt) ∈ Rn × Rm × Rm such that

G(y∗) :=




Ku−L+ N⊤λν + T⊤λt

λν − PRm
+
(λν + ρNu)

λt − P[−F⊙λν ,F⊙λν ](λt + ρTu)


 = 0





(P)NE

The mappingG : Rn+2m 7→ Rn+2m is continuous and piecewise affine (see [22,
1]). Problem (P)NE is a basis for the application of the semismooth Newton
method which is the main tool in the nonsmooth path-following algorithm
presented in Section 5.
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3. Existence of locally unique solutions to (P)

The aim of this section is to give an overview of results on the existence
and possible uniqueness of solutions to (P) and the existence of local Lips-
chitz continuous branches of solutions with respect to the coefficientF ∈ Rm

++

and the load vector L [10, 18].
It is easy to show that the matrices K, N, T in (P) have the following

properties:

K is symmetric and positive definite, (10)

N
⊤µν + T

⊤µt = 0⇐⇒ (µν ,µt) = 0, (11)

or equivalently

∃β > 0 : sup
v∈Rm

v 6=0

(µν ,Nv)m + (µt,Tv)m
‖v‖n

≥ β‖(µν ,µt)‖2m ∀(µν ,µt) ∈ R
m×Rm.

(12)
To emphasize the fact that F ∈ Rm

++ and L ∈ Rn will be used as parameters
in (P), we shall write (P(F ,L)) in what follows.

Denote by SF ,L ⊂ Rn+2m the solution set of (P(F ,L)), (F ,L) ∈ Rm
++×

Rn, i.e.
y ∈ SF ,L ⇐⇒ y = (u,λν ,λt) solves (P(F ,L)).

From (10) and (11) it follows that

(i) SF ,L 6= ∅ ∀(F ,L) ∈ Rm
++× ∈ Rn;

(ii) for any R > 0 the set
⋃

L∈BR(0) SF ,L is bounded uniformly with respect
to F ∈ Rm

++:

∀R > 0 ∃cR > 0 : ‖y‖n+2m ≤ cR ∀y ∈ SF ,L ∀L ∈ BR(0) ∀F ∈ R
m
++,

where ‖y‖n+2m := ‖u‖n+‖(λν ,λt)‖2m and BR(0) is the ball of radius R and
center at 0. In addition, cR →∞ if R→∞;

(iii) there exists a critical value Fcrit > 0 such that (P(F ,L)) has a unique
solution for any F ∈ A and L ∈ Rn, where

A = {F ∈ R
m
++| ‖F‖m,∞ ≤ Fcrit}.
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Remark 2. Point out that (iii) is only sufficient but not necessary condi-
tion guaranteeing the uniqueness of the solution to (P(F ,L)). The crit-
ical value Fcrit > 0 depends on β from (12) and the condition number
κ(K) = λmax(K)/λmin(K), where λmin(K), λmax(K) is the minimal and max-
imal eigenvalue of K, respectively. Consequently, Fcrit depends on the size
of the problem, i.e. on n and m. It is known that Fcrit → 0+ if n,m → ∞.
This means that the unicity of a solution may be lost when passing to finer
meshes. Upper bounds for Fcrit in terms of the mesh norms have been derived
in [8] and for 3D problems with orthotropic friction in [12].

Let (F0,L0) ∈ Rm
++ × Rn be an arbitrary but fixed reference point. We

denote by SF0
: Rn 7→ Rn+2m, SL0

: Rm
++ 7→ Rn+2m generally multivalued

mappings defined by

SF0
: L 7→ SF0

(L) ∈ SF0,L, L ∈ R
n

and
SL0

: F 7→ SL0
(F) ∈ SF ,L0

, F ∈ R
m
++,

respectively.
From (iii) it follows that SF0

is single valued on Rn for any F0 ∈ A and
the restriction SL0|A is single valued on A for any L0 ∈ Rn. Moreover, one
can directly show ([12]) that SF0

, F0 ∈ A is Lipschitz continuous in Rn and
SL0|A is locally Lipschitz continuous in A.

The situation for F 6∈ A is more involved since the uniqueness of a so-
lution to (P) is not guaranteed. However, one can ask if there exist locally
unique solutions in a vicinity of a reference point which are Lipschitz con-
tinuous functions of F and L. Conditions ensuring the existence of local
Lipschitz continuous branches of SL0

are formulated in the following gener-
alization of the classical implicit function theorem [20].

Theorem 1. Let (F0,L0) ∈ Rm
++×R

n be given and let y0 ∈ SF0,L0
. Suppose

that SF0
has a local Lipschitz continuous branch containing y0, i.e. there

exist open sets U ⊂ Rn, Y ⊂ Rn+2m such that (L0,y0) ∈ U×Y and a single
valued Lipschitz continuous function σF0

: U 7→ Y satisfying:

σF0
(L0) = y0 and σF0

(L) = SF0
(L) ∩ Y ∀L ∈ U .

Then there exist: open sets Û ⊂ Rm
++ and Ŷ ⊂ Rn+2m such that (F0,y0) ∈

Û × Ŷ and a single valued Lipschitz continuous function σL0
: Û 7→ Ŷ

satisfying:

σL0
(F0) = y0 and σL0

(F) = SL0
(F) ∩ Ŷ ∀F ∈ Û .
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From this theorem it follows that to prove the existence of local Lipschitz
continuous branches of SL one has to establish the existence of local Lipschitz
continuous branches of SF in a vicinity y ∈ SF(L) keeping F fixed. But
the later problem is considerably easier since SF is piecewise affine in Rn. It
has been shown in [18] that the existence of such branches is not guaranteed
in a vicinity of y only for load vectors L ∈ Rn which belong to the union of
subspaces of dimension strictly less than n.

4. Active set strategy algorithm for solving (P)NE

This section deals with the active set strategy implementation of the
semismooth Newton method for solving (P)NE. If G was smooth enough,
the k-th step of the classical Newton method would read as follows:

J(y(k−1))y(k) = J(y(k−1))y(k−1) −G(y(k−1)), k = 1, 2, . . . , (13)

where J : Rn+2m 7→ R(n+2m)×(n+2m) and J(y), y ∈ Rn+2m, is the Jacobian
of G at y. If J is non-differentiable at some points, we use the active set
strategy described in what follows.

LetM = {1, 2, . . . ,m}, where m is the number of contact nodes. The in-
active sets Iν := Iν(y), I

+
t := I+t (y), and I

−
t := I−t (y) at y = (v,µν ,µt) ∈

Rn+2m are defined by

Iν = {i ∈M : (µν + ρNv)i < 0},

I+t = {i ∈M : (µt + ρTv)i −FiPR+
((µν + ρNv)i) > 0},

I−t = {i ∈M : (µt + ρTv)i + FiPR+
((µν + ρNv)i) < 0},

while the active sets are their complements: Aν := Aν(y) =M\ Iν , At :=
At(y) = M \ (I+t ∪ I

−
t ). Denote I := I(y) = {Iν , I

+
t , I

−
t }, which gives

the complete information on the active and inactive sets at y. For a subset
S ⊆ M we introduce the indicator matrix DS = diag(s1, . . . , sm) ∈ Rm×m

with si = 1, if i ∈ S, and si = 0, if i 6∈ S. Taking into account this
decomposition ofM, the function G in (P)NE can be written as follows:

G(y) =




Kv −L+ N⊤µν + T⊤µt

µν − DAν
(µν + ρNv)

µt − DAt
(µt + ρTv) + (DI−

t
− DI+

t
)DAν

F ⊙ (µν + ρNv)




(14)
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for every y ∈ Rn+2m. This expression of G and its Jacobian lead to the
following form of the k-th iterative step (13):




K N⊤ T⊤

−ρDAν
N DIν O

−ρDAt
T (DI−

t
− DI+

t
)DAν

F DI+
t ∪I−

t


y(k) =




L

0
0


 , (15)

where F = diag(F) and I := I(y(k−1)). It is easily seen that the solution

y(k) = (u(k),λ
(k)
ν ,λ

(k)
t ) to (15) satisfies at the contact nodes:

(Nu(k))i = 0, i ∈ Aν , (16)

(λ(k)
ν )i = 0, i ∈ Iν , (17)

(Tu(k))i = 0, i ∈ At, (18)

(λ
(k)
t )i + Fi(λ

(k)
ν )i(DAν

)ii = 0, i ∈ I−t , (19)

(λ
(k)
t )i −Fi(λ

(k)
ν )i(DAν

)ii = 0, i ∈ I+t . (20)

As the active and inactive sets are disjoint, the contact nodes can be split
into the nodes with the prescribed Dirichlet ((16), (18)) and the Neumann
((17), (19), (20)) conditions. Solutions to (15) with I := I(y), y ∈ Rn+2m

will be denoted in a symbolic way as DirNeu (I) in what it follows. We arrive
at the following active set strategy implementation of (13).

Algorithm SSNM (SemiSmooth Newton Method) Given y(0) ∈ Rn+2m,
ε > 0, and kmax ≥ 2. Set k := 1;

(i) Define the active and inactive sets: I := I(y(k−1));

(ii) Solve the linear system (15): y(k) = DirNeu (I);

(iii) Stop, if ‖y(k) − y(k−1)‖/‖y(k)‖ ≤ ε or k = kmax, else set k := k + 1 and
go to step (i).

The numerical solution to (P)NE computed by this algorithm will be denoted
by

y(k̄) = SSNM (y(0)),

where k̄ stands for the last iteration, for which the stopping criterion in (iii)
is achieved. In our computations we use ε = 10−6 and kmax = 15. These
values however are not important from the point of view of the continuation
algorithm.

Next, we will always assume that the following assumption is satisfied.
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Assumption 1. The Jacobian J(y∗), where y∗ is a solution to (P)NE is
non-singular for any decomposition of M into the active and inactive sets
at y∗.

The following result is well-known (see [3, 15]).

Theorem 2. Let Assumption 1 be satisfied. If the initial iteration y(0) ∈
Rn+2m is sufficiently close to the solution y∗ of (P)NE, the sequence {y(k)}
generated by Algorithm SSNM converges superlinearly to y∗.

The following two lemmas play the key role in the predictor-corrector
approach used in the continuation algorithm which is presented in the next
section.

Lemma 1. Let Assumption 1 be satisfied, y∗ be the solution to (P)NE and
set I∗ := I(y∗). Then y∗ = DirNeu (I∗).

Proof Denote ȳ = DirNeu (I∗). From (13) for y(k−1) = y∗ we have

J(y∗)ȳ = J(y∗)y∗ −G(y∗).

As G(y∗) = 0 and J(y∗) is non-singular, we get ȳ = y∗. �

Lemma 2. Let Assumption 1 be satisfied, y∗ be the solution to (P)NE and
y(0) = y∗. Then y(1) = y∗, where y(1) = SSNM (y(0)).

Proof It is analogous to the one of Lemma 1. Now for y(0) = y∗ we get
from (13):

J(y∗)y(1) = J(y∗)y∗ −G(y∗).

Thus y(1) = y∗. �

From these lemmas, one can decide whether the active and inactive sets
given by some Ī define a solution to (P)NE. We proceed as follows. First,
we predict ȳ by solving the linear system (15):

Predictor: ȳ = DirNeu (Ī).

To confirm whether ȳ is the solution to (P)NE, we use the corrector step:

Corrector: y(k̄) = SSNM (ȳ).

If k̄ = 1, then y∗ = ȳ = y(1), as follows from Lemma 1 and 2, and Ī = I(y∗).
Otherwise ȳ does not solve (P)NE and Ī 6= I(y∗).

14



5. Nonsmooth continuation algorithm

Next we shall assume that problem (P)NE is parametrized by means of
a scalar α ∈ R. To emphasize this fact, we will use the following nota-
tion: y∗(α) for a solution to (P(α))NE, y(α) = DirNeu (I, α), and y(k̄) =
SSNM (y(0), α), respectively.

We seek the solution path that is a curve C in R× Rn+2m defined by

C = {(α,y∗(α)) ∈ R× R
n+2m}

We assume that either the load vector L or the coefficient of friction F

depend on α and that the mappings α 7→ L(α),F(α) are affine. Although the
definition of C is the same for both cases, the typical character of C is different,
see Figure 1. If the load vector L depends on α then C is piecewise affine.
On the other hand, if the coefficient of friction F is parameter dependent
then C is piecewise smooth (not necessarily piecewise affine). Further, the
solution path C may consist of non-connected continuous branches. This
fact follows from Theorem 1 (also see [10, 16], where simple models with
parameter dependent coefficient of friction and one or two finite element
nodes were analyzed). Any branch of C may contain nonsmooth points Q :=
(α,y∗(α)) ∈ C of two types:

(a) Q is the transversal transition point, if

∀R > 0 ∃γ > 0 ∀ᾱ ∈ (α− γ, α + γ) ∃Q̄ := (ᾱ,y∗(ᾱ)) : Q̄ ∈ C ∩BR(Q);

(b) Q is the right turning transition point, if

∀R > 0 ∃γ > 0 ∀ᾱ ∈ (α, α + γ) ∃Q̄1 := (ᾱ,y∗
1(ᾱ))&Q̄2 := (ᾱ,y∗

2(ᾱ)) :

Q̄1 6= Q̄2 & Q̄1, Q̄2 ∈ C ∩ BR(Q);

where BR(Q) is the ball of radius R and center at Q. The left turning
transition point is defined analogously; see Figure 1. Nonsmooth points on
C correspond to those ᾱ such that at least one inactive constraint defining
I(y∗(ᾱ)) changes to the active one. The segment of C between two transition
points is called a piece. Each piece is smooth (or even affine). Assumption 1
excludes other types of nonsmooth points arising, e.g., when the problem
(P(α))NE has a continuum of solutions for some α [22], i.e., the branch
contains a vertical segment.
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Rn+2mRn+2m

a) b)
αmin αmax

α
αmin αmax

α

�
�

�

�

�

�

�

Figure 1: a) L := L(α), four turning transition points (�), five pieces; b) F := F(α), one
transversal transition point (�), two turning transition points (�), three branches each of
them with two pieces.

The continuation algorithm along one branch generates a sequence of
points lying on this branch. The algorithm consists of two parts: (i) an
adaptive continuation along a piece. It enables to approach a nonsmooth
point on C with a high accuracy; (ii) a detection of a new smooth piece from
a point sufficiently close to a nonsmooth one. To find further branches for
the model with parameter dependent F , we use the auxiliary model with
parameter dependent L starting from an appropriate point. This makes
it possible to find multiple solutions. Then starting from these multiple
solutions, one can perform the continuation by F to detect another branch
of C. In the rest of this section we show how to apply the predictor-corrector
strategy to realize the these steps.

5.1. Continuation along a smooth piece

Let Cpiece ⊂ C be a smooth piece of C. The continuation along Cpiece is
based on a one-step recurrence:

(αi−1,y
∗(αi−1)) ∈ Cpiece → (αi,y

∗(αi)) ∈ Cpiece,

where αi−1 and y∗(αi−1) are known. The continuation uses the fact that
the active and inactive sets remain the same along Cpiece. First, we predict
ᾱ = αi−1 + sδ, where s is the orientation (1 or −1) of Cpiece and δ is the
step-length, 0 < δmin ≤ δ ≤ δmax. The orientations are determined by

s =
ᾱ− αi−1

|ᾱ− αi−1|
.
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Then we apply the predictor-corrector technique to decide whether ᾱ and
the respective solution to (P(ᾱ))NE determine a new point on Cpiece or not.
To be able to approach a nonsmooth point of Cpiece with a high accuracy,
we use the adaptive step-length strategy controled by the shortening rate cs,
0 < cs < 1 and the prolongation rate cp, 1 < cp. The algorithm reads as
follows:

Algorithm PC (Predictor-Corrector)

(i) Define: ᾱ = αi−1 + sδ, Ī := I(y∗(αi−1));

(ii) Predictor-corrector: y(0) = DirNeu(Ī, ᾱ), y(k̄) = SSNM(y(0), ᾱ);

(iii) Decision:

if k̄ = 1, αi := ᾱ, y∗(αi) := y(1), δ := min{cpδ, δmax}, return

elseif δ = δmin, fail

else δ := max{csδ, δmin}, go to step (i).

If k̄ = 1, the algorithm returns the new point (αi,y
∗(αi)) ∈ Cpiece with

I(y∗(αi)) = I(y
∗(αi−1)); see Figure 2 a). Note that the orientation s of Cpiece

is not changed. Then we apply Algorithm PC repeatedly with i := i+ 1.
In the case of the failure, the last accepted point is (αi−1,y

∗(αi−1)) ∈ Cpiece;
see Figure 2 b). Moreover, if δmin is sufficiently small, this point is close to a
nonsmooth point of C.

αi−1 αi−1ᾱ = αi ᾱ
δ δmin

y∗(αi−1)
y∗(αi−1)

y(1) = y∗(αi) unaccepted point

Rn+2m Rn+2m

a) b)

Figure 2: The result from the corrector is either accepted (a) or not (b).

Algorithm PC can be characterized as a tangent continuation (see [4],
Algorithm 4.25). The step-size control is inspired by [5].
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5.2. Detection of a new smooth piece

Let (αi−1,y
∗(αi−1)) ∈ Cpiece be the last point computed by Algorithm

PC ended by the failure with δ = δmin; see Figure 2 b) and Figure 3 a) and b).
Let ᾱ = αi−1 + sδmin. It follows from Algorithm PC that the active and

αi−1 αi−1ᾱ ᾱ

y∗(αi−1)
y∗(αi−1)Ī

Ī
unaccepted point

unaccepted point

αi−1 αi−1 = αiᾱ = αi ᾱ

y∗(αi−1)
y∗(αi−1)

y∗(αi)

y∗(αi)

a) b)

c) d)

Rn+2m Rn+2m

Rn+2m Rn+2m

Figure 3: a) and b): Ī is the prediction of the active and inactive sets for Cnewpiece. c) and
d): the identification of Cnewpiece after using the predictor-corrector technique; the transversal
transition point with s := s (c); the left turning transition point with s := −s (d).

inactive sets at the solution y∗(ᾱ) to (P(ᾱ))NE are not given by I(y∗(αi−1)).
One can use ᾱ to detect a new smooth piece Cnewpiece belonging to the same
branch of C, but with different active and inactive sets. This is represented
by the following one-step recurrence:

(αi−1,y
∗(αi−1)) ∈ Cpiece → (αi,y

∗(αi)) ∈ C
new
piece.

To predict the new active sets Ī, we proceed as follows. Let y∗(αi−1) =
(u∗,λ∗

ν ,λ
∗
t ) ∈ Rn+2m be a solution to (P(ᾱi−1))NE and

M = min
i∈M
{|λ∗

ν + ρNu∗|i, |λ
∗
t + ρTu∗ −F ⊙ λ∗

ν |i, |λ
∗
t + ρTu∗ +F ⊙ λ∗

ν |i} .

One can expect that there is only one argument in { } at which the minimum
is attained for some j ∈ M. This is realistic if δmin is small enough. The
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index j ∈M is moved (“
j
←→”) from the active, inactive set to the inactive,

and active set, respectively:

if M = |λ∗
ν + ρNu∗|j, Aν

j
←→ Iν

elseif M = |λ∗
t + ρTu∗ −F ⊙ λ∗

ν |j, At

j
←→ I+t

elseif M = |λ∗
t + ρTu∗ +F ⊙ λ∗

ν |j, At

j
←→ I−t





Ī := I (21)

This procedure results in an update of I denoted as Ī. Then we apply the
predictor-corrector technique in order to find a point (αi,y

∗(αi)) belonging
to Cnewpiece. The algorithm reads as follows:

Algorithm NSM (New Smooth Piece)

(i) Define: ᾱ = αi−1 + sδmin and Ī by (21);

(ii) Predictor-corrector: y(0) = DirNeu(Ī, ᾱ), y(k̄) = SSNM(y(0), ᾱ);

(iii) Decision:

if k̄ = 1, αi := ᾱ, y∗(αi) := y(1), return

else αi := αi−1, y∗(αi) := DirNeu(Ī, αi), s := −s, return.

If k̄ = 1, then the orientation s remains the same and the algorithm identifies
the transversal transition point; see Figure 3 c). If k̄ 6= 1 then s := −s and
the algorithm identifies the turning transition point; see Figure 3 d). The
latter enables us to find multiple solutions. In this case it is sufficient to
perform only the predictor step to get the solution y∗(αi) to (P(αi))NE,
since Assumption 1 excludes ”vertical” pieces of any branch.

5.3. Finding of further branches

Our aim is to detect the solution path C parametrized by the coefficient
of friction when

C =
⋃
Cp, Cp ∩ Cq = ∅, p 6= q, p ≥ 2

i.e., C consists of several branches Cp that are not connected. The algorithm
described in the previous parts enables us to perform the continuation along
one branch. To find other branches we use the continuation by the load
vector L as the auxiliary continuation process (see Figure 4 and compare
with Figure 1).

19



We introduce two continuation parameters α, β and assume that the
respective quantities are parametrized as follows:

L(α) := αL1 + (1− α)L2, α ∈ [αmin, αmax], (22)

F(β) := βF0, β ∈ [βmin, βmax], (23)

where L1, L2, and F0 are appropriate vectors. Since we combine the con-
tinuation with respect to α and β we shall denote by y∗(α, β) any solution
to (P)NE with the load vector L ≡ L(α) and the coefficient of friction
F ≡ F(β). Our aim is to continue the solution to (P)NE by β ∈ [βmin, βmax]
for a fixed load L(ᾱ), ᾱ ∈ [αmin, αmax]. Let βmin be sufficiently small so that
(P)NE has a unique solution y∗(α, βmin) for any α ∈ [αmin, αmax] (even for
any α ∈ R as follows from Remark 2). The continuation procedure consists
of the following steps:

(i) Compute the initial point Q0 = (βmin,y
∗(ᾱ, βmin)) ∈ C1;

(ii) Perform the continuation along C1 by β ∈ [βmin, βmax] starting from Q0

with the orientation s = 1;

(iii) Chose sufficiently large β̄ ∈ [βmin, βmax] for which one can expect multi-
ple solutions and compute Q1 = (β̄,y∗

1(ᾱ, β̄)) ∈ C1. Perform the continuation
along the solution path Cload (tiny line) starting from Q′

1 = (ᾱ,y∗
1(ᾱ, β̄)) ∈

Cload with s = 1 as well as s = −1, i.e. for α ∈ [ᾱ, αmax] and α ∈ [αmin, ᾱ].
Find as much points Q′

p = (ᾱ,y∗
p(ᾱ, β̄)) ∈ Cload, p = 2, 3, . . . as possible

(denoted by ⊙ in Figure 4). Since pieces of Cload are affine, one can interpo-
late multiple solutions exactly at ᾱ from the sequence of continuation points
along Cload;

(iv) Perform the continuation along the branch Cp (p = 2, 3, . . . ) by β ∈
[βmin, βmax] starting from Qp = (β̄,y∗

p(ᾱ, β̄)) ∈ Cp with s = 1 as well as
s = −1, i.e. for β ∈ [β̄, βmax] and β ∈ [βmin, β̄];

(v) Identify Cp and Cq, p 6= q representing the same branch of C. Consider
one of them.

Note that steps (iii) and (v) require an interactive treatment. The other
steps are automatically implemented by the continuation algorithm described
in the previous subsections and by the semismooth Newton method.
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Rn+2m

βmin βmaxβ

αmin αmaxα

Q0

Q1

Qp

ᾱ

β̄

Figure 4: Combination of continuations by F and L.

6. Computational experiments

6.1. Model problem

Let us consider the problem (1)-(7) with the following data. Two plane
elastic bodies Ω1 = (0, 3) × (1, 2), Ω2 = (0, 3) × (0, 1) are characterized by
the Young modulus E1 = 2.1 · 109, E2 = 2.1 · 1011 and the Poisson ratio
σ1 = σ2 = 0.28. The boundaries of ∂Ω1 and ∂Ω2 are decomposed follows:
Γ1
u = {0}×(1, 2), Γ1

c = (0, 3)×{1}, Γ1
f = ∂Ω1\Γ1

u ∪ Γ1
c and Γ2

u = {0}×(0, 1),

Γ2
c = Γ1

c , Γ2
f = ∂Ω2 \ Γ2

u ∪ Γ2
c , respectively (see Figure 5). The surface

tractions of density f1|Γ1
f
= (f1x, f1y), f2|Γ1

f
= (f2x, f2y) which act on Γ1

f

define the load vectors L1 and L2 in (22), respectively, are given by:

f1x(x, 2) = 0, x ∈ (0, 3),

f1y(x, 2) = f1y,L + f1y,R x, x ∈ (0, 3),

f1x(3, y) = f1x,B(2− y) + f1x,U (y − 1), y ∈ (1, 2),

f1y(3, y) = f1y,B(2− y) + f1y,U (y − 1), y ∈ (1, 2)
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with f1y,L = −6 · 107, f1y,R = −1 · 107, f1x,B = f1x,U = f1y,U = 2 · 107,
f1y,B = 4 · 107 and

f1x(x, 2) = 0, x ∈ (0, 3),

f2y(x, 2) = f2y,L + f2y,R x, x ∈ (0, 3),

f2x(3, y) = f2x,B(2− y) + f2x,U (y − 1), y ∈ (1, 2),

f2y(3, y) = f2y,B(2− y) + f2y,U (y − 1), y ∈ (1, 2),

where f2y,L = −5 · 107, f2y,R = −2 · 107, f2x,B = f2x,U = f2y,U = 2 · 107, and
f2y,B = 4 · 107, respectively. All entries of the vector F0 in (23) are equal
to one. Further α ∈ 〈1.2, 2〉 and β ∈ 〈0.3, 35〉. Finally, in most of cases
is β̄ = 15, exceptions will be quoted explicitly. The problem is discretized

by the triangulations of Ω
1
and Ω

2
as seen in Figure 5 for which n = 1320

(the total number of the nodal displacements) and m = 30 (the number of
the contact nodes). Algorithm PC and NSM use the following stepsize
parameters: δmin = 10−5, δmax = 5, cp = 1.3, and cs = 0.5.

a) b)

Figure 5: a) two elastic bodies Ω1 (the upper body) and Ω2 in contact along Γc; b) de-
formed configuration.

6.2. Results of the continuation algorithm

The aim of this part is to find a structure of solutions to (P(β))NE

parametrized by F(β) with the fixed load L(ᾱ), ᾱ = 1.6. Since we want
to find possible disconnected solution branches, we also use a continuation
with respect to α as described in Subsection 5.3. The resulting branches will
be visualized as plots of the continuation parameters α, β versus the normal,
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tangential stresses λν(i), λt(i) and the normal displacement (Nu)(i) at the
i-th contact node, respectively.

Figure 6 shows the behavior of λt(1) as a function of α for the fixed
coefficient of friction F(β̄), β̄ = 6 (a) and β̄ = 15 (b). A zoom of the branch
for β̄ = 15 is presented in Figure 7. The vertical line at ᾱ = 1.6 has five
intersections with the piecewise affine curve. These points determine five
different solutions y∗

p(ᾱ), p = 1, . . . , 5 for ᾱ = 1.6. Any solution y∗
p(ᾱ) has to

be understood as a point in Rn+2m, in our case n = 1320 and m = 30, and it
will be identified through the respective λt(1).

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−7.1

−7

−6.9

−6.8

−6.7

−6.6

−6.5

−6.4
x 10

5

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−7.2

−7.1

−7

−6.9

−6.8

−6.7

−6.6

−6.5

−6.4
x 10

5λt(1) λt(1)

α α

a) b)

Figure 6: λt(1) as a function of α for β̄ = 6 (a) and β̄ = 15 (b).

Since we want to find different branches of the problem parametrized
by the coefficient of friction, i.e. by β (if they exist), the solutions y∗

p(ᾱ),
p = 1, . . . , 5 are used as the starting points in the continuation algorithm for
β. We found three branches representing the evolution of the normal stress
λν(19), see Figure 8. Branch 1 is initiated at y∗

1(ᾱ). Branch 2 starts from
y∗
2(ᾱ) and contains also y∗

5(ᾱ). Finally Branch 3 is initiated at y∗
3(ᾱ) and

contains also y∗
4(ᾱ). The respective normal contact stress λν(19) correspond-

ing to y∗
p(ᾱ), p = 1, . . . , 5 is denoted by ⊙. The branches are continued in

both, the negative (s = −1) and positive (s = 1) directions. These figures
also illustrate the step-size control. We see that the continuation algorithm
needs tiny steps in the vicinity of the starting and the transition points. The
collection of all three branches represents the solution path, or at least its
part.
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ᾱ = 1.6

λt(1)

Figure 7: A zoom of Figure 6 (b); five different solutions y∗

p(ᾱ) determined by λt(1),

p = 1, . . . , 5 for ᾱ = 1.6 and β̄ = 15 (with close values λt(1) at the upper pieces).

Figure 9 depicts the solution path represented by the evolution (with re-
spect to β) of the normal stress at the contact nodes No.19, 20, 21, and
the normal displacement at the node 22. A contact node (i) is termed
no-contact, contact-stick, contact-slip point, if (Nu)(i) < 0, λν(i) < 0 &
|λt(i)| < −Fλν(i), and λν(i) < 0 & (Tu)(i) 6= 0, respectively. To distinguish
the individual pieces consisting of no-contact, contact-stick and contact-slip
points we use solid, dashed and dash-dotted lines, respectively. Note the
presence of the transversal and turning transition points in Figure 9. The
existence of such points entails qualitative changes of the solution. Finally,
the path at the contact node 22 consists only of no-contact points. The cor-
responding branches at the different contact nodes are labeled by the same
number, i.e., if k denotes a branch at the (reference) contact node No.19,
then the corresponding branches at the remaining nodes are denoted by k,
as well.
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Figure 8: Three branches of λν(19): Branch 1 (a), Branch 2 (b), Branch 3 (c), the solution
path (d) (all three branches).

7. Conclusions

We proposed a new continuation technique for numerical analysis of
parameter-dependent contact problems with Coulomb friction. In partic-
ular, the method was applied to continue solution branches parametrized by
the coefficient of friction.

The branches are naturally parametrized by a chosen continuation param-
eter. The branch consists of smooth pieces which are connected by transition
points. To each piece an orientation (either 1, or −1) is assigned. We distin-
guish transversal and turning transition points. At the former, the branch
does not change its orientation while at the latter does. At turning transition
points solutions undergo a qualitative change.
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Figure 9: The evolution of the normal stress at the contact node No. 19-21 and the normal
displacement at the contact node No.22 (solid line: no contact, dashed line: contact stick,
dash-dotted line: contact-slip).

From the algorithmic point of view, the smooth pieces are continued ac-
cording to Algorithm PC (Predictor-Corrector), with an adaptive stepsize
control. The transition points are processed by Algorithm NSM (New
Smooth Piece). The active/inactive set strategy of the semismooth New-
ton method is used. Numerical experiments confirmed the reliability of the
proposed continuation algorithm.
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