
PATH-FOLLOWING THE STATIC CONTACT PROBLEM

WITH COULOMB FRICTION

J. Haslinger2, V. Janovský1, R. Kučera2
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Abstract

Consider contact problem with Coulomb friction on two planar domains. In order to
find non-unique solutions we propose a new path following algorithm: Given a linear loading
path we approximate the corresponding solution path. It consists of oriented piecewise linear
branches connected by transition points. We developed a) predictor-corrector algorithm to
follow oriented linear branches, b) branching and orientation indicators to detect transition
points. The techniques incorporate semi-smooth Newton iterations and inactive/active set
strategy on the contact zone.

1. Introduction

Consider deformable bodies in mutual contact. The relevant mathematical description
consists in modeling both the non-penetration conditions and a friction law. The widely
accepted Coulomb friction law represents a serious mathematical and numerical problem.

In particular, we consider 2D static contact problem with Coulomb friction. The prob-
lem is uniquely solvable, provided that the friction coefficient F > 0 is sufficiently small,
see [14, 6]. Since the seminal paper [14], no essential contribution was made concerning
solvability of this problem for general data.

Obviously, engineers had always solved this important problem numerically, regard-
less unresolved theoretical issues. In a natural finite element (FEM) approximation, the
discrete problem has always a solution, disregarding the size of F , see [9, 8, 13]. Since
the (discrete) problem is locally solvable, the idea was to apply the Implicit Function
Theorem to follow the solution path, which was parameterized either by F or by a load
increment. Nevertheless, lumped element models [11, 9, 13] indicate, that the particular
solution points of interest should be those in which the Implicit Function Theorem fails
to hold. They are turning points of the solution path. Actually, they are responsible for
non-unique solvability of the problem.
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The solution path is continuous, piecewise smooth, [8]. The classical numerical path
following techniques, see e.g. [1], have to fail in principle. In [8], a special continuation
algorithm was proposed to trace piecewise smooth solution curves. The algorithm was
tested on lumped element models with just one or two points on the contact boundary,
[12, 8].

In this paper, we present an improved continuation strategy and test it on a real
FEM model. The outline is as follows: In Section 2, we define the state problem and its
discretization. We recall the semi-smooth Newton method and apply it to the discrete
state problem, see Section 3. The actual contribution is in Section 4, where a modified
path following algorithm is presented. The substantial innovations consist in

1. application of tangent continuation, see [3], Algorithm 4.25,

2. introducing a robust branching and orientation indicator.

Note that due to material properties, the solution components are very uneven: The contact
forces are within a range 106 N kg−1 while displacements are tiny. No scaling helps.

2. State problem, FEM approximation

Ω1

Ω2

Γ1
u

Γ2
u

Γ1
p

Γ2
p

Γ1
c = Γc

Γ2
c = Γc

Figure 2.1: Geometry of the problem.

Let us consider two bodies Ω1, Ω2 in R
2 with boundaries ∂Ωk = Γ

k

u ∪ Γ
k

p ∪ Γ
k

c , k = 1, 2,

see Figure 2.1. First, denote uk the displacement field, σ(uk) the stress tensor, fk the
volume force, pk the surface traction, nk the outer normal vector to ∂Ωk, and λk, µk > 0
material parameters. The state problem is defined by the Lame equations in Ωk, k = 1, 2,

−div σ(uk) = fk,

σ(uk) = λktr(ǫ(uk))I + 2µkǫ(uk),

ǫ(uk) = 1
2
(∇uk +∇⊤uk),
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the Dirichlet and Neumann boundary conditions for k = 1, 2,

uk = 0 on Γk
u,

σ(uk)nk = pk on Γk
p ,

and by contact conditions on Γc:

• unilateral contact law, Signorini problem:

uν ≤ 0, σν ≤ 0, σνuν = 0 on Γc ,

where uν = (u1 − u2)⊤n, σν = n⊤σ(u1)n, and n = n1 ,

• transmission of contact stresses:

σ(u1)n = σ(u2)n on Γc ,

• the Coulomb friction law:

|σt| ≤ −Fσν ,
|σt| < −Fσν ⇒ ut = 0 ,
|σt| = −Fσν ⇒ ∃ct ≥ 0 : ut = −ctσt ,

where ut = (u1 − u2)⊤t, σt = t⊤σ(u1)n, t is orthogonal to n, and F > 0 is the
coefficient of friction.

After FEM approximation we get the following primal-dual discrete state problem:

Ku + N⊤λν + T⊤λt = f , (2.1)

Nu ≤ 0, λν ≥ 0, λ⊤

ν Nu = 0, (2.2)

|λt,i| ≤ Fλn,i,

|λt,i| < Fλn,i ⇒ (Tu)i = 0,

|λt,i| = Fλn,i ⇒ ∃ ct,i ≥ 0 : (Tu)i = ct,iλt,i,











i = 1, . . . ,m, (2.3)

where (u,λν ,λt) ∈ R
n×R

m×R
m. Here u approximates the displacement field. λν and λt

approximate normal and tangential stress components along the contact boundary Γc, m
is the number of contact nodes. Data of the model: K ∈ R

n×n is positive definite stiffness
matrix, N ,T ∈ R

m×n are full rank matrices (the actions of distributed contact forces along
normal and tangential directions), f ∈ R

n are nodal forces.
Next, we formulate inequalities (2.2)-(2.3) as a set of nonlinear equations using suitable

projectors, see e.g. [7]. Let PR+
: R 7→ R+, PR+

(x) = max{0, x}, x ∈ R, be the projection
onto R+. Let us define PR

m

+
: R

m 7→ R
m
+ for x = (x1, . . . , xm)⊤ by

PR
m

+
(x) = (PR+

(x1), . . . , PR+
(xm))⊤.

3



Let P[−g,g] : R 7→ [−g, g], P[−g,g](x) = max{0, x + g} − max{0, x − g} − g, x ∈ R, be the
projection onto the interval [−g, g], g ≥ 0. Let us define P[−g,g] : R

m 7→ [−g, g], where
[−g, g] = [−g1, g1]× · · · × [−gm, gm], g = (g1, . . . , gm)⊤, gi ≥ 0, for x = (x1, . . . , xm)⊤ by

P[−g,g](x) = (P[−g1,g1](x1), . . . , P[−gm,gm](xm))⊤.

The inequalities (2.2) and (2.3) can be equivalently written as

λν − PR
m

+
(λν + ρNu) = 0 and λt − P[−Fλν ,Fλν ](λt + ρTu) = 0,

respectively, where ρ > 0 is arbitrary but fixed (e.g., ρ = 1). Therefore, solving (2.1)-(2.3)
is equivalent to finding roots y = (u,λν ,λt) ∈ R

n × R
m × R

m of the equation

G(y) ≡







Ku + N⊤λν + T⊤λt

λν − PR
m

+
(λν + ρNu)

λt − P[−Fλν ,Fλν ](λt + ρTu)






=







f

0

0






(2.4)

where y = (u,λν ,λt) ∈ R
n × R

m × R
m.

The mapping G : R
n+2m 7→ R

n+2m is continuous and piecewise smooth. In particular,
it is piecewise affine, see e.g. [16] for the notion.

3. The semi-smooth Newton method

To solve (2.4), we apply the Newton iterations. Due to the nature of the mapping G,
semi-smooth methods are applicable, [2]. Let us also refer to [10], where this technique
was used for solving the Signorini problem.

LetM = {1, 2, . . . ,m} be the set of all indices of contact points. Given y = (u,λν ,λt) ∈
R

n × R
m × R

m, we define the inactive sets Iν = Iν(y), I+
t = I+

t (y), I−t = I−t (y) by

Iν = {i ∈M : λν,i + ρ(Nu)i < 0},

I+
t = {i ∈M : λt,i + ρ(Tu)i −Fλν,i > 0},

I−t = {i ∈M : λt,i + ρ(Tu)i + Fλν,i > 0},

and the active sets Aν = Aν(y), At = At(y) as their complements:

Aν =M\ Iν , At =M\ (I+
t ∪ I

−

t ).

Let us introduce the indicator matrix DS ∈ R
m×m of S ⊂M as follows:

DS = diag(s1, . . . , sm), si =

{

1, i ∈ S,
0, i ∈M \ S.

We observe that

G(y) =









Ku + N⊤λν + T⊤λt

λν −DAν
(λν + ρNu)

λt −DAt
(λt + ρTu)−D

I
+
t

Fλν + D
I
−

t

Fλν









= J(y) y ,
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where

J(y) ≡









K N⊤ T⊤

−ρDAν
N DIν

0

−ρDAt
T F(D

I
−

t

−D
I

+
t

) D
I

+
t
∪I

−

t









. (3.1)

Note that the matrix J(y) can be interpreted as a generalized Jacobi matrix namely, the
differential of a slanting function related to the mapping G at the point y, see [2]. We
apply the semi-smooth Newton method for finding roots of (2.4).

Algorithm SSNM : Denote F ∈ R
n+2m, F ≡ (f , 0, 0) ∈ R

n × R
m × R

m, the right-hand
side of (2.4). Set the tolerance ε > 0. Let y(0) ∈ R

n+2m, ρ > 0, k := 1.

(i) Define the inactive/active sets related to y(k−1). Assembly the relevant J(y(k−1)).

(ii) Compute y(k) by solving the linear system

J(y(k−1)) y(k) = F . (3.2)

(iii) If ||y(k) − y(k−1)||/||y(k)|| ≤ ε, return y := y(k).

(iv) Set k := k + 1 and go to step (i).

In the case of convergence, we define

y = SSNM(y(0),f)

as a numerical solution of problem (2.4). We usually set the tolerance ε = 10−6, referring
to the observation at the end of Section 1.

It is readily seen that if y = SSNM(y(0),f), y = (u,λν ,λt) ∈ R
n × R

m × R
m, then

(Nu)i = 0, i ∈ Aν , (Tu)i = 0, i ∈ At, (3.3)

λν,i = 0, i ∈ Iν , λt,i + Fλν,i = 0, i ∈ I−t , λt,i −Fλν,i = 0, i ∈ I+
t . (3.4)

As the active sets are complementary to the inactive sets, they define decoupling of contact
nodes into two groups, i.e. the nodes with the Dirichlet conditions (3.3) and the nodes
with the Neumann conditions (3.4).

Take another view: We may try to guess the inactive sets I = {Iν ; I
+
t ; I−t } on the

contact. Due to the dichotomy, it would imply the information concerning A = {Aν ;At}.
Hence, given I = {Iν ; I

+
t ; I−t } on the contact, and given a load f , find (u,λν ,λt) ∈

R
n × R

m × R
m such that









K N⊤ T⊤

−ρDAν
N DIν

0

−ρDAt
T F(D

I
−

t

−D
I

+
t

) D
I

+
t
∪I

−

t

















u

λν

λt









=









f

0

0









. (3.5)
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System (3.5) can be interpreted as the discrete form of the Lame equations (2.1) with the
Dirichlet and Neumann boundary conditions (3.3) and (3.4), respectively. It motivates to
define the linear operator

y = DirNeu(I,f) , y = (u,λν ,λt) . (3.6)

Note that due to the clamping along Γ1
u and Γ2

u, see Figure 2.1, the system (3.5) is uniquely
solvable. The matrix J(y) of this system is regular. This justifies, by the way, that
iterations (3.2) are well defined.

Remark 3.1 Let y(0) = DirNeu(I,f). Then y(1) = SSNM(y(0),f) and y(1) = y(0) i.e.,
Algorithm SSNM converges in the first iteration. In other words, y(0) = SSNM(y(0),f) is a
fixed point of the iterations (3.2). Conversely, if y(0) ∈ R

n+2m, y(0) = SSNM(y(0),f), then
defining I = {Iν ; I

+
t ; I−t } to be the inactive sets of y(0), we have y(0) = DirNeu(I,f). In

that case, the solutions of the Dirichlet-Neumann problem (3.5) and the Coulomb friction
problem (2.4) are identical.

Remark 3.2 In principle, we could find all roots y of (2.4) i.e., all fixed points y of the
iterations (3.2). Given f , make a trial choice of the inactive sets I = {Iν ; I

+
t ; I−t } on

the contact. Apply Remark 3.1: Let y(0) = DirNeu(I,f). The trial choice is successful,
provided that y(0) = SSNM(y(0),f). The trouble is that we would have to check all
3

∑m

j=0

(

m

j

)

= 3.2m variants of the inactive sets I = {Iν ; I
+
t ; I−t }, which is not reasonable.

Remark 3.3 Let y = DirNeu(I,f). The mapping G, see (2.4), is not differentiable at
y provided that the active sets Aν and At have a special property: there exists a contact
point i ∈M such that

either λν,i + ρ(Nu)i = 0 (3.7)

or λt,i + ρ(Tu)i −Fλν,i = 0 (3.8)

or λt,i + ρ(Tu)i + Fλν,i = 0 . (3.9)

4. Continuation

Consider the Coulomb friction model (2.1)-(2.3), i.e. (2.4), assuming that f = f(α)
depends on a scalar parameter α. We impose a continuous loading regime and seek for
continuous response of the model. In particular, we consider a linear loading path

f(α) = (1− α)f 1 + αf 2, α ∈ R, (4.1)

where f 1 ∈ R
n and f 2 ∈ R

n are given. The resulting solution path is a curve in R×R
n+2m,

see a qualitative sketch in Figure 4.1. It consists of oriented linear branches, connected by
transition points.

Each oriented linear branch connecting transition points (αk−1,yk−1) ∈ R×R
n+2m and

(αk,yk) ∈ R× R
n+2m is parameterized by α, and defined as

α 7−→ (α,y(α)) ∈ R× R
n+2m , y(α) = DirNeu(I,f(α)) . (4.2)

Note that the same branch (4.2) can have two different orientations. In particular,
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• if αk−1 < αk, we consider the positive orientation i.e., αk−1 < α < αk, as α is
increasing

• if αk−1 > αk, we consider the negative orientation i.e., αk−1 > α > αk, as α is
decreasing.

Let us emphasize that the inactive set I does not depend on the position of α in the above
intervals. In Subsection 4.1, we give a predictor/corrector algorithm to follow such branch
numerically. We can define the orientation of a particular branch by setting

s ≡
αk − αk−1

|αk − αk−1|
.

Hence, orientation s attains the value s = 1 (positive orientation) and s = −1 (negative
orientation). The mentioned predictor/corrector algorithm follows a branch with the same
orientation s.

α

 y
 ∈

 R
n+

2m

(αk−1
, y

k−1)

(αk
, y

k)

(αk+1
, y

k+1)

α
start

α
end

Figure 4.1: Solution path. For a fixed α, we may encounter up to five crossing points of the
paths. They are related to five different solutions of equation (2.4) for the same right-hand
side.

Oriented linear branch terminates in a transition point (αk,yk) ∈ R× R
n+2m. It is re-

lated to a fixed point yk = SSNM(yk,f(αk)). Due to Remark 3.1, yk = DirNeu(I,f(αk)),
where I = {Iν ; I

+
t ; I−t } are the inactive sets of yk. It can be shown that in a transition

point (αk,yk) ∈ R × R
n+2m, the mapping G, see (2.4), is not differentiable. We refer to

Remark 3.3 for the analysis. Note that our objective is not to localize transition points
exactly. In fact, due to rounding errors it is not possible. Instead, we develop computa-
tionally stable branching and orientation indicators which are formally related to each of
the transition points, see Subsection 4.2.
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4.1. Continuation of an oriented linear branch

Data of a linear branch: The orientation s and the fixed inactive set I. The continuation
algorithm is defined as a one-step recurrence

(αi−1,y(αi−1)) ∈ R× R
n+2m → (αi,y(αi)) ∈ R× R

n+2m .

Parameters of the algorithm: The step-length h, in a range 0 < hmin ≤ h ≤ hmax. The
adaptive step-length strategy: Define cs and cp, 0 < cs < 1 < cp, the shortening and the
prolongation rates.

Let (αi−1,y(αi−1)) ∈ R× R
n+2m be given. Consider the following

Predictor-Corrector algorithm:

(i) Predictor : αnew = αi−1 + sh , y(0) = DirNeu(I,f(αnew)).

(ii) Corrector :

if y(1) = SSNM(y(0),f(αnew)) & y(1) = y(0)

return αi := αnew , y(αi) := y(1) , i := i + 1 , h := min(cph, hmax)

elseif h < hmin

return continuation failed, the last computed point of the branch:

(αi−1,y(αi−1)) with orientation s and the inactive set I

else h := max(csh, hmin) , go to step (i) .

The algorithm returns either the new continuation point (αi,y(αi)) ∈ R×R
n+2m with the

same orientation s and the inactive set I, or fails - the case which will be discussed in
Subsection 4.2.

αi−1 αi−1αnew = αi αnew

y(αi−1)
y(αi−1)

y(0) = y(1) ≡ y(αi) y(0) 6= y(1)

Figure 4.2: Oriented linear branch, predictor-corrector step. The corrector step is either
accepted (on the left) or not accepted (on the right), and step-size h has to be shortened
accordingly.

Note that the above algorithm can be characterized as a tangent continuation, see [3],
Algorithm 4.25. The step-size control is inspired by [4].
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4.2. The branching and orientation indicators

Let (αi−1,y(αi−1)) ∈ R×R
n+2m be the last point of a linear branch with an orientation

s and inactive set I, see the failure of path following the linear branch in Subsection 4.1.
Define a trial point (αfail,yfail) ∈ R× R

n+2m setting

αfail = αi−1 + shfail , yfail = DirNeu(I,f(αfail)) , (4.3)

where hfail is the step-length related to the failure of continuation. Note that yfail 6=
SSNM(yfail,f(αfail)). Figure 4.3, the upper panel, suggests that (αi−1,y(αi−1)) and (αfail,yfail)
are close to a transition point. We may envisage two qualitatively different cases of the
transition.

According to the generic scenario, we should indicate a change of I: Let u, λν and λt

denote the solution components y(αi−1) = (u,λν ,λt) ∈ R
n × R

m × R
m. Let

M = min {|λν + ρNu|, |λt + ρTu−Fλν |, |λt + ρTu + Fλν |} . (4.4)

The idea is that the minimizer of the above expression should indicate a transition point.
We expect that just one component of the minimizer is significant. The transition is
related to a transition between inactive and active sets. In this respect, the minimizer is
interpreted as follows:

If M = |λν + ρNu|i, then Aν
i
←→ Iν ,

else if M = |λt + ρTu−Fλν |i, then At
i
←→ I+

t ,

else if M = |λt + ρTu + Fλν |i, then At
i
←→ I−t ,











Inew := I. (4.5)

The symbol ”
i
←→” indicates a particular transition of the index i between the active and

the inactive set. The procedure above results in an update of I denoted as Inew.
We propose the following

Branching Algorithm

Let (αi−1,y(αi−1)) ∈ R×R
n+2m be the last point of a linear branch with an orientation s

and inactive set I. Update Inew via (4.5).

Define αtrial 1 = αi−1 + shfail and ytrial 1 = DirNeu(Inew,f(αtrial 1)).

If

ytrial 1 = SSNM(ytrial 1,f(αtrial 1), set (αtrial 1,ytrial 1) ∈ R × R
n+2m to be the first

point on a linear branch with the orientation s := s and the inactive set I := Inew.

Comment: transversal transition.

else

Define αtrial 2 = αi−1 and ytrial 2 = DirNeu(Inew,f(αtrial 2)).

Set (αtrial 2,ytrial 2) ∈ R× R
n+2m to be the first point of a linear branch with

orientation s := −s and inactive set I := Inew.

Comment: fold, turning point.
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αi−1 αi−1αfail αfail

y(αi−1) y(αi−1)

yfail yfail

αi−1 αi−1 = αtrial 2αfail = αtrial 1 αfail

y(αi−1) y(αi−1)

yfail yfail

ytrial 1

ytrial 2

Figure 4.3: Let (αi−1,y(αi−1)) ∈ R × R
n+2m be the last point on a linear branch, con-

tinuation failure indicated on (αfail,y(αfail)) ∈ R × R
n+2m. The upper panel, qualitative

scenario envisaged: a) transversal transition on the left, b) fold (turning point) transition
on the right. The lower panel: Branching due to the algorithm.

Set i := i + 1, and apply continuation of the oriented linear branch with orientation s and
the inactive set I.

The idea of the algorithm is indicated in the lower panel of Figure 4.3. The algorithm
works provided that hmin is sufficiently small.

The ambition of the present paper is not to justify the branching scenario theoretically.
Note only, that the transversal transition may be described using a proper version of the
Implicit Function Theorem, see e.g. [15, 5] and [8] in the context of Coulomb friction. In
case of the fold transition, we can not quote (to our knowledge) a relevant analytical result
immediately.

5. Numerical experiments

We consider a particular geometry, see Figure 5.1. The actual computations are de-
picted in Figure 5.2. If F is sufficiently small then the solution path should contain
transversal transition points only, see e.g. [8]. It pertains to Figure 5.2, upper left.

10



Figure 5.1: Contact of two elastic bodies Ω1 (the upper body) and Ω2, along the con-
tact boundary Γc. The loading is due to the surface traction. On the right: Resulting
deformation.

Acknowledgements

This work was supported by the grant GA CR P201/12/0671.

References

[1] Allgower, E.L. and Georg, K.: Numerical path following. Handbook of numerical
analysis vol. V, Elsevier Science, New York, 1997.

[2] Chen, X., Nashed, Z., and Qi, L.: Smoothing methods and semismooth methods for
nondifferential operator equations. SIAM J. Numer. Anal. 5 (2000), 1200–1216.

[3] Deuflhart, P. and Hohmann, A.: Numerical analysis in modern scientific computing.
Texts in applied mathematics, Springer Verlag, New York, 2003.

[4] Dhooge, A., Govaerts, W., and Kuzetsov, Y.A.: MATCONT: A Matlab package for
numerical bifurcation analysis of ODEs. ACM Transactions on Mathematical Software
31 (2003), 141–164.

[5] Dontchev, A.L. and Rockafellar, R.T.: Robinson ’s implicit function theorem and its
extensions. Mathematical Programming 117 (2009), 129–147.
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