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The paper deals with a variant of the interior-point method for the minimization of strictly
quadratic objective function subject to simple bounds and separable quadratic inequality con-
straints. Such minimizations arise from the finite element approximation of contact problems
of linear elasticity with friction in three space dimensions. The main goal of the paper is the
convergence analysis of the algorithm and its implementation. The optimal preconditioners
for solving ill-conditioned inner linear systems are proposed. Numerical experiments illustrate
the computational efficiency for large scale problems.
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1. Introduction

We consider the problem

min
x∈Ω

q(x) (1)

with q(x) = 1
2 x

⊤Ax− x⊤b and Ω = {x ∈ R
3m : xi ≥ li, x2i+m + x2i+2m ≤ g2i , i =

1, . . . ,m}, where n = 3m, A ∈ R
n×n is symmetric, positive definite, b ∈ R

n, and
li ∈ R, gi ∈ R+, i = 1, . . . ,m. Such minimizations arise, e.g., from the finite element
approximation of contact problems of linear elasticity with friction in three space
dimensions (3D) [15, 17]. If the Coulomb friction law is considered, then the fixed-
point approach leads to iterations given as a sequence of problems (1). There are
at least three important reasons why to solve in this case also (1) by an iterative
method. (i) The requirements on the accuracy of the computed solutions to (1)
are different, they increase successively. (ii) The initial guess of the solution to (1)
is known from the previous fixed-point step. (iii) The matrix A is not assembled
explicitly, it is given as a product of other matrices so that only matrix-vector
products with A may be performed. Moreover, one can combine both iterative
processes in one (inexact) loop so that the resulting algorithm may be an efficient
tool for solving large scale problems.
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The problem (1) can be solved by a general method, e.g. [2, 5, 6, 28]. Nevertheless,
one can expect that a specialized algorithm taking into account the particular struc-
ture of (1) will be more efficient. The first author proposed such algorithm called
KPRGP (KKT-Proportioning with Reduced Gradient Projections [10, 20, 21]), in
which conjugate gradient method is combined with gradient projections in an ac-
tive set strategy. It extends the algorithm of Dostál and Schöberl [9, 11] originally
developed for simple bound problems. The common feature of these algorithms is
the theory comprising the same convergence rate that enables us to prove the scal-
ability of methods for solving 3D contact problems without [8, 9] and with [7, 10]
friction. However, the practical behavior may be different due to the difference in
the finite termination property. After finding indices of simple bounds active in the
solution, the simple bound problem reduces to a linear one, for which the conjugate
gradient method completes the iterative process. Unfortunately, this property does
not hold for the quadratic inequalities x2i+m + x2i+2m ≤ g2i . Here, the algorithm
seeks also positions of the pairs (xi+m, xi+2m) lying on the curved boundaries of
the active circles. Therefore, ”zig-zag iterations” may be generated so that short
conjugate gradient sequences alternate with projection steps changing the active
set. In order to overcome this drawback, one can recommend using a strictly feasi-
ble algorithm that does not work with any active set. Its typical representative is
an interior-point method. We will deal with its primal-dual variant that is usually
faster and more reliable than the pure primal or pure dual methods [29] and it is
also efficient when the high accuracy of the solution is needed [5].
In the paper, we develop the path-following algorithm that was proposed

in [13, 27] for solving linear programming problems. The main idea consists in
applying the Newton iterations to solve equations in the system of the Karush-
Kuhn-Tucker (KKT) conditions to (1). Since some unknowns in the KKT system
are constrained by simple bounds, the Newton steps are damped. Another key in-
gredient is the centering that keeps iterations deeper in the feasible region so that
longer steps may be performed. The most expensive part of each iteration is the
solution of an indefinite linear system. To this end, we apply methods based on
the Schur complement reduction so that reduced linear systems are solved by the
conjugate gradient method. As the reduced matrices are typically ill-conditioned,
preconditioners are needed. Our preconditioners are optimal in the sense that con-
dition numbers of the preconditioned matrices are bounded by a constant multiple
of the condition number of A. The total efficiency is increased by a precision control
terminating adaptively the inner conjugate gradient iterations.
The rest of the paper is organized as follows. In Section 2 we introduce pre-

liminary results comprising a suitable reformulation of the KKT conditions. In
Section 3, we propose the algorithm. Its convergence is proved in Section 4. The
implementation of the algorithm and the spectral analysis of the precondition-
ers are discussed in Section 5. Finally, Section 6 summarizes results of numerical
experiments and Section 7 gives comments and concluding remarks.
Let us introduce some conventions that we use through the whole paper. The

symbols M1 and M2 stand for the following sets of indices: M1 = {1, 2, . . . ,m}
and M2 = {1, 2, . . . , 2m}. The Euclidean norm of x ∈ R

p is denoted by ‖x‖ =
(x21 + · · · + x2p)

1/2. The condition number of a symmetric, positive definite matrix

M ∈ R
p×p is given by κ(M) = λmax/λmin, where λmax and λmin are the smallest

and the largest eigenvalue of M , respectively. The symbol diag defines a diagonal
matrix as follows: if x ∈ R

p or X ∈ R
p×p, the diagonal entries of diag(x) ∈ R

p×p

or diag(X) ∈ R
p×p are given by x or by the diagonal entries of X, respectively. By

I and 0 we denote the identity and the zero matrix, respectively. Let L : Rp 7→ R,
L = L(x), x ∈ R

p, be a differentiable function and let y be a subset of its variables x.
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The symbol ∇yL stands for the partial gradient of L whose components are given
by y.

2. Notation and preliminaries

As (1) is the minimization of the strictly quadratic objective function q on the
convex set Ω, the solution exists and it is necessarily unique [5]. We denote it
by x∗. Let us introduce the Lagrangian L : Rn × R

2m 7→ R associated with (1) by

L(x, ν) = q(x) +
∑

i∈M1

νi(li − xi) +
∑

i∈M1

νi+m(x2i+m + x2i+2m − g2i ),

where ν = (ν1, . . . , ν2m)⊤ ∈ R
2m is the Lagrange multiplier vector to the constraints

in Ω. The solution x∗ is the first component of the saddle-point (x∗, ν∗) ∈ R
n×R

2m

to L that is fully determined by the KKT conditions [5]:

∇xL(x, ν) = 0, ∇νL(x, ν) ≤ 0, ν ≥ 0, ν⊤∇νL(x, ν) = 0. (2)

Introducing the new variable z = −∇νL(x, ν), z ∈ R
2m, (2) is equivalent to:

∇xL(x, ν) = 0, ∇νL(x, ν) + z = 0, ν⊤z = 0, ν ≥ 0, z ≥ 0. (3)

Let us define the function F : Rn+4m 7→ R
n+4m by

F (v) = (∇xL(x, ν)
⊤, (∇νL(x, ν) + z)⊤, e⊤NZ)⊤,

where v = (x⊤, ν⊤, z⊤)⊤ ∈ R
n+4m, N = diag(ν), Z = diag(z), and e ∈ R

2m is the
vector of all ones.

Lemma 2.1 The solution x∗ to (1) is the first component of the solution v∗ =
(x∗⊤, ν∗⊤, z∗⊤)⊤ to

F (v) = 0, ν ≥ 0, z ≥ 0. (4)

Proof (4) is equivalent to (3). �

The Jacobi matrix J = J(v) to F at v reads as follows:

J =





J11 J12 0
J21 0 I
0 Z N



 , (5)

where

J11 = A+





0 0 0
0 2N2 0
0 0 2N2



 , J12 = J⊤
21 =





−I 0
0 2X2

0 2X3





with N2 = diag(νm+1, . . . , ν2m) and Xk = diag(x(k−1)m+1, . . . , xkm), k = 2, 3.

Lemma 2.2 If z > 0, then J = J(v) is non-singular for any x and ν ≥ 0.
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Proof The non-singularity of a matrix is guaranteed by the non-singularity of its

diagonal block and the respective Schur complement [3]. The block

(

0 I
Z N

)

in

J is non-singular due to z > 0. The Schur complement to this block reads as
J11+J12Z

−1NJ21. It is the positive definite matrix, since A is positive definite and
ν ≥ 0, z > 0. �

Remark 1 The Jacobi matrix may be singular at the solution v∗. This situation
arises, e.g., when ν∗i = 0 and z∗i = 0 for at least one i ∈ M2, since the corresponding
row in J(v∗) vanishes.

Let v(k) = (x(k)
⊤
, ν(k)

⊤
, z(k)

⊤
)⊤ with ν(k) > 0, z(k) > 0 be a known approxima-

tion of v∗. The damped Newton method consists in computing the standard Newton
direction ∆v(k+1) from the linear system given by the Jacobi matrix and, then, in
defining the new iteration v(k+1) in this direction using a steplength αk ∈ (0, 1]:

J(v(k))∆v(k+1) = −F (v(k)), v(k+1) = v(k) + αk∆v(k+1). (6)

By the choice of αk one can guarantee positiveness of the components ν(k+1), z(k+1)

of v(k+1). Unfortunately, the computations based directly on (6) can take short
steps before violating conditions ν(k+1) > 0, z(k+1) > 0 so that the convergence
rate may be slow. In the next section we modify these iterations.

3. Algorithm

Let us replace (4) by

F (v) = (0⊤, 0⊤, τe⊤)⊤, ν > 0, z > 0, (7)

where τ > 0. Solutions vτ to (7) define in R
n+4m a curve C(τ) called the central

path. This curve leads to v∗, when τ tends to zero. In the algorithm, we combine
the Newton method applied to the equation in (7) with changes of τ so that the
iterations follow C(τ). To this end, we define the neighborhood of the central path
by

N (γ, β) = {v = (x⊤, ν⊤, z⊤)⊤ ∈ R
n+4m : ‖∇xL(x, ν)‖ ≤ βϑ,

‖∇νL(x, ν) + z‖ ≤ βϑ, ν ≥ 0, z ≥ 0, νizi ≥ γϑ, i ∈ M2}, (8)

where β ≥ 0, γ ∈ (0, 1], and

ϑ = ϑ(v) =
ν⊤z

2m
.

It is readily seen that N (γ, β) ⊇ C(τ) and N (1, 0) = C(τ).

Lemma 3.1 Let v ∈ N (γ, β) and let either νj = 0 or zj = 0 for at least one
j ∈ M2. Then v is the solution to (4).

Proof As ν ≥ 0 and z ≥ 0, the inequality 0 = νjzj ≥ γϑ ≥ 0 yields ϑ = 0.
The remaining inequalities in the definition of N (γ, β) imply ∇xL(x, ν) = 0 and
∇νL(x, ν) + z = 0. Therefore, (3) holds that proves the lemma. �
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In the kth iteration of the path-following (PF) algorithm, we modify τ by the
product of ϑk = ϑ(v(k)) with the centering parameter σk ∈ [σmin, σmax], 0 ≤ σmin ≤
σmax ≤ 1. The value σk = 0 leads to the standard Newton direction, while σk = 1
gives the fully centered direction. The algorithm uses also the Armijo-type condition
(10) ensuring that the sequence {ϑk} is decreasing (see [29]). In the initialization
section of the algorithm, we introduce restrictions on the values of β and σ that
are required by the convergence analysis.

Algorithm PF: Given γ ∈ (0, 1], β ≥ 1, 0 < σmin ≤ σmax ≤ 1/2, ω ∈ (0, 1), and
ǫ ≥ 0. Let v(0) ∈ N (γ, β) and set k := 0.

(1◦) Choose σk ∈ [σmin, σmax].

(2◦) If ν(k) > 0 and z(k) > 0, solve

J(v(k))∆v(k+1) = −F (v(k)) + (0⊤, 0⊤, σkϑke
⊤)⊤, (9)

else set ∆v(k+1) = 0.

(3◦) Set

v(k+1) = v(k) + αk∆v(k+1)

using the largest αk ∈ (0, 1] satisfying v(k+1) ∈ N (γ, β) and

ϑk+1 ≤ (1− αkω(1− σk))ϑk. (10)

(4◦) Return v̄ = v(k+1), when

err(k) := ‖v(k+1) − v(k)‖/‖v(k+1)‖ ≤ ǫ, (11)

else set k := k + 1 and go to step (1◦).

Let us note that the algorithm is well-defined. Since z(k) > 0, Lemma 2.2 guaran-
tees the non-singularity of the Jacobi matrix in (9). The existence of αk satisfying
all requirements of step (3◦) will be proved in Lemma 4.2. The typical values of the
parameters and the choice of the initial iteration will be discussed in Section 5. The
algorithm extends, in some sense, ideas used in [29] for solving linear programming
problems. The main change of our implementation consists in the necessity to solve
inner linear systems (9) whose spectral properties depend on the matrix A. More-
over, the convergence analysis requires to add the norm terms in the definition of
N (γ, β) and to use the Armijo-type condition (10).

4. Convergence analysis

To prove the convergence of Algorithm PF we modify the ideas of [26, 30], where
analogous path-following algorithms are analyzed for the solution of discrete varia-
tional inequality or nonlinear complementarity problems, respectively. Our modifi-
cation leads to different restrictions on the parameters of the algorithm. Moreover,
we remove the lack of the analysis by adding the assumption in Theorem 4.3 on
the boundedness of the sequence generated by Algorithm PF.
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Lemma 4.1 Let v(k) ∈ N (γ, β) with z(k) > 0 and let ∆v(k+1) satisfy (9). It holds:

z
(k)
i ∆ν

(k+1)
i + ν

(k)
i ∆z

(k+1)
i = −ν

(k)
i z

(k)
i + σkϑk, i ∈ M2.

Proof Using notation introduced in (5), the third block equation in (9) reads as
Z(k)∆ν(k+1) +N (k)∆z(k+1) = −N (k)Z(k)e+ σkϑke that proves the lemma. �

In the next lemma, we denote by B(v̂, δ̂) the closed ball in R
n+4m with the center

at v̂ and the radius δ̂ > 0.

Lemma 4.2 Let γ ∈ (0, 1], β ≥ 1, 0 < σmin ≤ σmax ≤ 1/2, ω ∈ (0, 1), and

v̂ ∈ N (γ, β), v̂ 6= v∗. There are δ̂ > 0 and α̂ ∈ (0, 1] such that the steplength αk in

step (3◦) of Algorithm PF satisfies αk ≥ α̂ for any v(k) ∈ N (γ, β) ∩ B(v̂, δ̂).

Proof Let us define

δ̂ =
1

2
min
i∈M2

{min{ν̂i, ẑi}}. (12)

Note that δ̂ > 0 by Lemma 2.2. For the sake of simplicity, we omit the iterative
index k in the proof and we denote v(α) = v + α∆v that induces also notation
x(α), ν(α), z(α), and ϑ(α) = ϑ(v(α)). The value of α̂ will be defined successively
so that we will examine lower bounds for α = αk given by the requirements of step
(3◦), i.e.:

ν(α), z(α) ≥ 0, (13)

νi(α)zi(α) ≥ γϑ(α), i ∈ M2, (14)

ϑ(α) ≤ (1− αω(1− σ))ϑ, (15)

‖∇xL(x(α), ν(α))‖ ≤ βϑ(α), (16)

‖∇νL(x(α), ν(α)) + z(α)‖ ≤ βϑ(α). (17)

First of all we introduce some auxiliary results. The definition (12) implies ν̂i−δ̂ ≥

δ̂ and ẑi− δ̂ ≥ δ̂ and, since v ∈ B(v̂, δ̂), we get also ν̂i−νi ≤ δ̂, ẑi−zi ≤ δ̂. Therefore,

νizi ≥ (ν̂i − δ̂)(ẑi − δ̂) ≥ δ̂2, i ∈ M2, (18)

and, consequently,

ϑ ≥ δ̂2. (19)

As z > 0 by (18), the Jacobi matrix J(v) is non-singular by Lemma 2.2 and its
inversion as well as the right-hand side in (9) are the continuous functions on

B(v̂, δ̂). Thus, there is a constant C > 0 such that

‖∆v‖ ≤ C (20)

for all v ∈ B(v̂, δ̂) and σ ∈ [σmin, σmax]. Recall that due to definition (8), it holds

νizi ≥ γϑ, i ∈ M2. (21)



An interior-point algorithm for 3D contact problems with friction 7

Using Lemma 4.1, we obtain

νi(α)zi(α) = νizi + α(zi∆νi + νi∆zi) + α2∆νi∆zi

= (1− α)νizi + ασϑ+ α2∆νi∆zi (22)

that gives ν(α)⊤z(α) = (1−α)ν⊤z+ασν⊤z+α2∆ν⊤∆z. By the Cauchy–Schwarz
inequality and (20), we arrive at

(1− α)ν⊤z + ασν⊤z − α2C2 ≤ ν(α)⊤z(α) ≤ (1− α)ν⊤z + ασν⊤z + α2C2 (23)

and

(1− α)ϑ + ασϑ− α2 C
2

2m
≤ ϑ(α) ≤ (1− α)ϑ + ασϑ + α2 C

2

2m
. (24)

Note that (20) yields also −C ≤ ∆νi ≤ C and −C ≤ ∆zi ≤ C. Therefore, (22) and
(21) imply

νi(α)zi(α) ≥ (1− α)γϑ+ ασϑ − α2C2. (25)

Let us define α̂1 = min{1, δ̂/(2C)} and let α ∈ (0, α̂1]. Using νi ≥ ν̂i − δ̂ ≥ δ̂ and
(20), we get

νi(α) = νi + α∆νi ≥ δ̂ −
δ̂

2C
|∆νi| ≥

δ̂

2
> 0, i ∈ M2.

Since the same bound holds for zi(α), the inequalities (13) are satisfied.

Further, let us define α̂2 = min{α̂1, σmin(1 − γ)δ̂2/(2C2)} and let α ∈ (0, α̂2].
Then α2 ≤ ασ(1 − γ)ϑ/(2C2) due to (19) so that

ασϑ− α2C2 ≥ ασγϑ + α2C2 ≥ ασγϑ + α2γ
C2

2m
.

Using this result and the right inequality (24) in (25), we get

νi(α)zi(α) ≥ (1− α)γϑ+ ασγϑ + α2γ
C2

2m
≥ γϑ(α), i ∈ M2.

We have proved (14).

Let us consider α ∈ (0, α̂3] with α̂3 = min{α̂2,m(1 − ω)δ̂2/C2}. Then α2C2 =

α(αC2) ≤ αm(1 − ω)δ̂2 together with (19) and σ ≤ 1/2 give

α2C2 ≤ αm(1− ω)ϑ = α(1− ω)
ν⊤z

2
≤ α(1− ω)(1− σ)ν⊤z.

Applying this result in (23), we arrive at

ν(α)⊤z(α) ≤ ν⊤z − α(1 − σ)ν⊤z + α2C2 ≤ [1− αω(1− σ)]ν⊤z (26)

that proves (15).
It remains to show when the conditions (16) and (17) are satisfied. For conve-

nience, we denote rx(x, ν) = ∇xL(x, ν) and rν(x, z) = ∇νL(x, ν) + z.
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Let us consider α ∈ (0, α̂4] with α̂4 = min{α̂3, σminδ̂
2/(3C2)}. Using (19), we get

σϑ− α
C2

2m
− 2αC2 ≥ σϑ− 3αC2 ≥ σϑ− σminδ̂

2 ≥ 0. (27)

We split rx on three components of the same length m, i.e., rx = (r⊤x1
, r⊤x2

, r⊤x3
, )⊤.

It is easily seen from the definition of L that rx1
is the linear function while rx2

and rx3
are the non-linear functions. Therefore, the Taylor expansion of rx reads

as follows:

rx(x(α), ν(α)) = rx(x, ν)+α(∇xrx(x, ν)∆x+∇νrx(x, ν)∆ν)+
α2

2
sx(∆x,∆ν) (28)

with sx = (s⊤x1
, s⊤x2

, s⊤x3
)⊤, where sx1

= 0 and sxk,j(∆x,∆ν) = 4∆xj+(k−1)m∆νj+m,
k = 2, 3, j ∈ M1. Since (20) implies the boundness of ∆x and the components of
∆ν by C, it holds:

‖sx(∆x,∆ν)‖2 =
∑

j∈M1

(

(4∆xj+m∆νj+m)2 + (4∆xj+2m∆νj+m)2
)

≤ 16 max
i∈M1

{

(∆νi+m)2
}

∑

j∈M1

(

(∆xj+m)2 + (∆xj+2m)2
)

≤ 16C2‖∆x‖2 ≤ 16C4. (29)

From the linear system (9), one can see that ∇xrx(x, ν)∆x + ∇νrx(x, ν)∆ν =
−rx(x, ν). Substituting in (28) and using the norm, we get

‖rx(x(α), ν(α))‖ ≤ (1− α)‖rx(x, ν)‖+
α2

2
‖sx(∆x,∆ν)‖.

The definition (8) and (29) yield

‖rx(x(α), ν(α))‖ ≤ (1− α)βϑ + 2α2C2. (30)

The left inequality (24) implies

(1− α)ϑ ≤ ϑ(α)− ασϑ+ α2 C
2

2m
. (31)

Using this result and the assumption β ≥ 1 in (30), we arrive at

‖rx(x(α), ν(α))‖ ≤ βϑ(α)− βα(σϑ − α
C2

2m
− 2αC2).

Finally, (27) implies ‖rx(x(α), ν(α))‖ ≤ βϑ(α) that proves (16).
The proof of (17) is analogous. We split rν on two components of the same length

m, i.e., rν = (r⊤ν1
, r⊤ν2

)⊤. As for rx(x, ν), we derive

‖rν(x(α), z(α))‖ ≤ (1− α)βϑ +
α2

2
‖sν(∆x,∆z)‖, (32)
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where sν = (s⊤ν1
, s⊤ν2

)⊤ is the quadratic term from the Taylor expansion of rν with
the components sν1

= 0 and sν2,j(∆x,∆z) = 2(∆xj+m)2 + 2(∆xj+2m)2, j ∈ M1.
Using (20), we get

‖sν(∆x,∆z)‖2 =
∑

j∈M1

(

2(∆xj+m)2 + 2(∆xj+2m)2
)2

≤ 4 max
i∈M1

{

(∆xi+1)
2, (∆xi+2m)2

}

∑

j∈M1

(|∆xj+m|+ |∆xj+2m|)2

≤ 4C2
(

∑

j∈M1

(∆xj+m)2 + 2
∑

j∈M1

|∆xj+m||∆xj+2m|+
∑

j∈M1

(∆xj+2m)2
)

≤ 4C2
(

‖∆x‖2 + 2‖∆x‖‖∆x‖ + ‖∆x‖2
)

≤ 16C4. (33)

The rest of the proof uses (31), (32), and (33) analogously as in the case (16). We
obtain that (17) holds for α ∈ (0, α̂4].
We have shown that all requirements (13)–(17) are satisfied for any α ∈ (0, α̂4],

v ∈ B(v̂, δ̂), and σ ∈ [σmin, σmax]. The steplength αk = α determined in step (3◦)
of Algorithm PF satisfies αk ≥ α̂, where α̂ = α̂4. The proof is complete. �

Theorem 4.3 Let γ ∈ (0, 1], β ≥ 1, 0 < σmin ≤ σmax ≤ 1/2, ω ∈ (0, 1), and
ǫ = 0. Let the sequence {v(k)} generated by Algorithm PF be bounded. Then,
either {v(k)} is finite and its last element v̄ is the solution to (4), or the limit point
of {v(k)} is the solution to (4).

Proof The algorithm terminates finitely, if at least one entry of z(k) vanishes for
any k ≥ 0. Then, Lemma 3.1 implies v̄ = v∗.
Let us assume that the sequence {v(k)} is infinite and consider its accumulation

point v̂ ∈ N (γ, β). Let us suppose for contradiction that v̂ 6= v∗. Then Lemma 3.1

yields ν̂ > 0, ẑ > 0 so that ϑ̂ = ν̂⊤ẑ/(2m) > 0. Recall that the (k + 1)th iteration
satisfies

ϑk+1 ≤ ϑk − αkω(1− σk)ϑk. (34)

Since {ϑk} is monotonically decreasing, we obtain

ϑk ≥ ϑ̂ > 0, k ∈ N. (35)

Denote by I an infinite subsequence of N such that v(k) → v̂ for k → +∞ and k ∈ I.
By Lemma 4.2, there is α̂ ∈ (0, 1] such that αk ≥ α̂ for k ∈ I sufficiently large. Using

this bound in (34) together with σk ≤ 1/2 and (35), we get ϑk+1 ≤ ϑk − α̂ωϑ̂/2.

Here, α̂ωϑ̂/2 is the positive constant independent of k. Since I is infinite and {ϑk}
is monotonically decreasing, we arrive at ϑk ց −∞. This result contradicts (35)
that completes the proof. �

5. Implementation

In this section we describe the implementation of Algorithm PF for solving large
scale problems.
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5.1. Inner solvers

The computational efficiency consists in the way how the inner linear systems (9)
are solved. Here, we omit the iterative index k for simplicity. Then, (9) reads as
follows:





J11 J12 0
J21 0 I
0 Z N









∆x
∆ν
∆z



 =





r1
r2
r3



 , (36)

where r1 ∈ R
n, r2, r3 ∈ R

2m stand for the components of the right-hand side vector
in (9). We present two solution methods both based on the Schur complement
reduction [3]. The first one uses the symmetric, positive definite normal matrix
JSC = JSC(v) given by

JSC = J11 + J12D
−1
22 J21,

where D22 = N−1Z. It arises from (36) when the unknowns ∆ν and ∆z are elimi-
nated by

(

∆ν
∆z

)

=

(

−D−1
22 Z−1

I 0

)((

r2
r3

)

−

(

J21
0

)

∆x

)

. (37)

The reduced system for the unknown ∆x reads as follows:

JSC∆x = r1 − J12
(

Z−1r3 −D−1
22 r2

)

. (38)

The second solution method is based on the augmented matrix JAM = JAM (v)
given by

JAM =

(

J11 J12
J21 −D22

)

.

It arises from (36) by eliminating the unknown ∆z using

∆z = N−1r3 −D22∆ν. (39)

The reduced system in terms of ∆x and ∆ν reads as follows:

JAM

(

∆x
∆ν

)

=

(

r1
r2 −N−1r3

)

. (40)

Note that JAM is symmetric but indefinite and that JSC is the Schur complement
to the (2,2)-block in JAM .
To get the solution to (36), we proceed in two steps: first we solve (38) or (40)

after that we compute remaining components of the solution using (37) or (39),
respectively. For solving (38) and (40), we apply the conjugate gradient method. It
is known that this method requires a symmetric, positive definite matrix and that
its convergence rate depends on its condition number [12]. In order to guarantee
convergence for the augmented matrix, we will use the indefinite preconditioner

PAM =

(

D11 J12
J21 −D22

)

,
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where D11 = diag(J11). The Schur complement PSC to the (2,2)-block in PAM , i.e.,

PSC = D11 + J12D
−1
22 J21,

will be used as the preconditioner for JSC . Actions of P
−1
AM and P−1

SC on vectors are
easily computable, since the preconditioners are defined by diagonal blocks.

Theorem 5.1 The eigenvalues λ of P−1
AMJAM are positive. The eigenvalue λ = 1

is of the multiplicity 2m and the remaining n eigenvalues are the same as the
eigenvalues of P−1

SCJSC .

Proof The eigenvalues of P−1
AMJAM can be found trough the generalized eigenvalue

problem:

(

J11 J12
J21 −D22

)(

x
ν

)

= λ

(

D11 J12
J21 −D22

)(

x
ν

)

. (41)

The second block equation in (41) is satisfied, when either λ = 1 or J21x−D22ν = 0.
(i) If λ = 1, then the first block equation in (41) reduces to J11x = D11x that holds
for x = 0 so that (0⊤, ν⊤)⊤ is the eigenvector for any ν 6= 0. Let ei denote the ith
column of the identity matrix I ∈ R

2m×2m. Then (0⊤, e⊤i )
⊤, i ∈ M2, are linearly

independent eigenvectors associated with λ = 1. (ii) Substituting ν = D−1
22 J21x in

the first block equation in (41), we get

JSCx = λPSCx (42)

so that λ is the eigenvalue of P−1
SCJSC . Since PSC is symmetric, positive definite

as well as JSC , the eigenvalue λ = (x⊤JSCx)/(x
⊤PSCx), x 6= 0, is positive. The

theorem is proved. �

Corollary 5.2 It follows immediately from the last theorem that

κ(P−1
SCJSC) ≤ κ(P−1

AMJAM ).

Note that JSC(v) and JAM (v) are typically ill-conditioned, when v = v(k) is suf-
ficiently close to v∗. The reason is that the diagonal entry of D22 or D−1

22 tends to
infinity, when the corresponding ν∗i = 0, z∗i 6= 0 or ν∗i 6= 0, z∗i = 0, respectively.
Moreover, if ν∗i = 0, z∗i = 0, then the matrices in (36) converge to the singu-
lar matrix J(v∗) due to Remark 1. We prove that the condition numbers of the
preconditioned matrices are bounded independently on v = v(k). To this end, we
denote B = J11 − A + J12D

−1
22 J21 and D = diag(A). The generalized eigenvalue

problem (42) reads as (A + B)x = λ(D + B)x and, therefore, λ is given by the
generalized Rayleigh quotient as

λ =
x⊤Ax+ x⊤Bx

x⊤Dx+ x⊤Bx
, ‖x‖ = 1. (43)

To get bounds on λ, we will analyze the right-hand side of λ in (43). Let
amin and amax, 0 < amin ≤ amax, be the smallest and the largest eigenvalues
of A, respectively, so that amin ≤ x⊤Ax ≤ amax. Further, let dmin = mini{aii}
and dmax = maxi{aii}, 0 < dmin ≤ dmax, be the smallest and the largest eigen-
values of D, respectively, so that dmin ≤ x⊤Dx ≤ dmax. Here, aii denote the
diagonal entries of A. Finally, note that B is symmetric, positive semidefinite so
that 0 ≤ x⊤Bx < +∞.
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Theorem 5.3 All eigenvalues λ of the preconditioned normal matrix P−1
SCJSC lay

in the interval [amind
−1
max, amaxd

−1
min].

Proof Denote in (43) a = x⊤Ax, b = x⊤Bx, and d = x⊤Dx so that λ = λ(b ; a, d),
where

λ(b ; a, d) =
a+ b

d+ b
= 1 +

a− d

d+ b
.

Here, λ(b ; a, d) can be considered as the hyperbola for the variable b ∈ R+ given
by the parameters a and d satisfying amin ≤ a ≤ amax and dmin ≤ d ≤ dmax,
respectively. If ad−1 > 1 or ad−1 < 1, then the hyperbola is decreasing or increasing
on R+, respectively, and, if ad

−1 = 1, then it reduces to the constant ”1”. There are
two extremal hyperbolas λmin(b) = λ(b ; amin, dmax) and λmax(b) = λ(b ; amax, dmin),
for which

inf
b∈R+

λmin(b) ≤ λ ≤ sup
b∈R+

λmax(b). (44)

Since amin ≤ dmin, we obtain 1 ≥ amind
−1
min ≥ amind

−1
max. Therefore, λmin(b) is

increasing or constant on R+ so that

inf
b∈R+

λmin(b) = λmin(0) = amind
−1
max.

Since amax ≥ dmax, we get 1 ≤ amaxd
−1
max ≤ amaxd

−1
min. Therefore, λmax(b) is de-

creasing or constant on R+ so that

sup
b∈R+

λmax(b) = λmax(0) = amaxd
−1
min.

The theorem is proved. �

Corollary 5.4 The theorem implies

κ(P−1
SCJSC) ≤

amaxdmax

amindmin
= κ(A)κ(D).

Using Theorem 5.1 and the fact that amind
−1
max ≤ 1 ≤ amaxd

−1
min, we get the same

result also for the preconditioned augmented matrix, i.e.,

κ(P−1
AMJAM ) ≤ κ(A)κ(D).

Note that κ(A)κ(D) ≤ κ(A)2 gives simpler but usually more pessimistic bounds.

For an alternative analysis of preconditioners in the interior-point methods we
refer to [4, 24].

5.2. Implementation details

In this section we discuss, among others, the choice of the parameters in Algo-

rithm PF. Their optimal values was found by large numerical tests that are not
included in the paper. For that, we used the benchmarks of Section 6 arising from
finite element approximations and, as we observed comparable behaviors of the
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computations for various meshes, it seems that the optimal values of the parame-
ters do not depend on the size of the problem.

5.2.1. Adaptive inner precision control

To increase the efficiency, we initialize the conjugate gradient method in the kth
iteration of Algorithm PF by the result obtained in the previous iteration and

we stop it by the adaptive precision control ǫcgm = ǫ
(k)
cgm×‖r(k)‖, where r(k) stands

for the right-hand side vector in (38) or (40). The value ǫ
(k)
cgm is proportional to the

current outer precision err (k−1) defined in (11) or, if the progress is not sufficient,

to the improved inner tolerance ǫ
(k−1)
cgm from the previous step:

ǫ(k)cgm = min{rtol × err (k−1), cfact × ǫ(k−1)
cgm }, (45)

where 0 < rtol < 1, 0 < cfact < 1, err (−1) = 1, and ǫ
(−1)
cgm = rtol/cfact. Note that the

computational experience showed that the initialization of the conjugate gradient
method from the zero vectors is less beneficial.

5.2.2. Adaptive centering

The value σk ∈ [σmin, σmax] is chosen by the following adaptive strategy:

σk = min
{

σmax,max
{

σmin, cσ × ((1− ξk)/ξk)
3
}}

, (46)

where ξk = mini∈M2
{ν

(k)
i z

(k)
i }/ϑk and cσ > 0. Notice that ξk ∈ [γ, 1], since

ν
(k)
i z

(k)
i ≥ γϑk. The value ξk = 1 implies ν

(k)
i z

(k)
i = ϑk for all i ∈ M2 indicat-

ing that the current iteration v(k) lies near to the central path. In this case, (46)
gives σk = σmin so that the computed direction is centered modestly. Oppositely, if
ξk = γ, then v(k) lies on the boundary of N (γ, β) and σk > σmin so that the center-
ing is more distinctive. The critical value of ξk, for which (46) gives σk = σmax, is

ξcritk = 1/(1 + 3
√

σmax/cσ). In our computations, we use σmin = 10−30, σmax = 0.5,
and cσ = 1.25× 10−5 (resulting in ξcritk

.
= 0.0284). See [25] for more details.

5.2.3. Steplength

The steplength α = αk in step (3◦) of Algorithm PF must satisfy five
inequalities (13)-(17) for v = v(k). To determine αk, we use the backtracking
procedure:

(a) Initialize ρ ∈ (0, 1), α0
k ∈ (0, 1], and j := 0.

(b) While ineq(αj
k) does not hold, set α

j+1
k = ραj

k, j := j + 1 and repeat.

(c) Return αk = αj
k.

The initial value α0
k is determined by

α0
k = min

∆ν(k+1)
i

,∆z(k+1)
i

<0
{1,−δν

(k)
i /∆ν

(k+1)
i ,−δz

(k)
i /∆z

(k+1)
i } (47)

with δ ∈ (0, 1). It guarantees ν(αj
k) > 0, z(αj

k) > 0 for j ≥ 0 so that (13) holds.
The satisfaction of (14)-(17) is achieved by inserting the respective inequality in

the backtracking loop (b) as ineq(αj
k). We consider different values of ρ: first we

check (14) with ρ1, then (15) with ρ2, and finally (16) and (17) with ρ3. The finite
termination of the backtracking loop follows from Lemma 4.2. In the numerical
experiments, we take δ = 0.999, ρ1 = ρ2 = 0.9, and ρ3 = 0.5.
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5.2.4. Parameter ω

The parameter ω ∈ (0, 1) in the Armijo-type condition (10) realizes certain
compromise between the steplength αk and the decrease in {ϑk}. The value of ω
close to one may result in short αk while ω close to zero may lead to slow decrease
between ϑk and ϑk+1. The numerical experiments showed that ω = 0.1 gives the
satisfactory behavior of Algorithm PF for our problems.

5.2.5. Initial iteration

We describe how to ensure that the initial iteration v(0) = (x(0)
⊤
, ν(0)

⊤
, z(0)

⊤
)⊤

belongs to N (γ, β). We choose x(0) ∈ R
n arbitrarily, e.g., x(0) = 0. The vectors

ν(0) ∈ R
2m and z(0) ∈ R

2m are defined by ν(0) = cνe and z(0) = cze, where cν and

cz are given positive constants, respectively. It is easily seen that ν
(0)
i z

(0)
i = cνcz ≥

γcνcz = γϑ0 for all i ∈ M2 and for any γ ∈ (0, 1]. Therefore, no restriction on γ is
necessary. The value of β is adapted with respect to the initial iteration. First we
compute

β̄ = β0 ×max{‖∇xL(x
(0), ν(0))‖/ϑ0, ‖∇νL(x

(0), ν(0)) + z(0)‖/ϑ0}

for given β0 ≥ 1. As Theorem 4.3 requires β ≥ 1, we take β = max{1, β̄}. Note that
large values of β lead to saving in computations, since the backtracking steps for
the time consuming conditions (16) and (17) may be avoided. We use cν = cz = 1,
γ = 0.001, and β0 = 109.

6. Numerical experiments

Numerical experiments will illustrate behavior of Algorithm PF for two model
problems. The first one was used in [21] for testing the active set KPRGP algo-
rithm. Its difficultness consists in the fact that the solution is almost degenerate.
The second one is the contact problem of linear elasticity with Tresca friction
whose finite element approximation leads to (1) [15, 17]. Moreover, we extend Al-

gorithm PF for solving contact problems with Coulomb friction. All computations
are performed in MATLAB on PC Core i7(2.8 GHz) with 4GB RAM.
In tables below we report the number iter of outer iterations, the number nA

of matrix-vector multiplications by A, and the solution time in seconds. As the
multiplication by A is usually the most expensive operation, the value nA deter-
mines the total complexity of computations. In labeling of columns PF(rtol, cfact),
we introduce the values of rtol and cfact. In order to compare the efficiency with
KPRGP, we report its solution characteristics in respective columns.

6.1. Chord problem

Let us consider the following problem:

min
1

2

∫ 1

0
‖u′(t)‖2 dt−

∫ 1

0
u(t)⊤f(t) dt s.t. u = (u1, u2)

⊤ ∈ K,

where K = {u ∈ (H1
0 (0, 1))

2 : u2(t) ≥ 0 on (0, 0.5), ‖u(t)‖ ≤ 1.4 on (0.5, 1)}
and f(t) = (36π2 sin 6πt,−4π2 sin 2πt)⊤. It describes the loaded chord fixed at the
endpoints that is partially above the plan, partially inside the cylindrical tube;
see Figure 1. The finite element approximation based on the continuous piecewise
linear functions over a regular grid with n = 4m degrees of freedom leads to
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the constrained minimization problem that, contrary to (1), contains the fourth
unconstrained component x4 ∈ R

m. Obviously, Algorithm PF may be easily
adapted for this new problem so that Theorem 4.3 remains valid.

0
0.5

1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

Figure 1. Deformation of the chord.

Tables 1 and 2 show how Algorithm PF behaves for the inner solvers based
on JSC and JAM , respectively. One can see that JAM leads usually to a higher
performance of the algorithm in terms of nA. However, the progress measured by
the computational time is not so big, since the actions of P−1

AM are costlier than of

P−1
SC . In order to obtain the same final precision of the solutions computed from

Algorithm PF and KPRGP, we adopt in Algorithm PF the stopping criterion
from KPRGP (instead of (11)), i.e., the iterations are stopped, when the relative
norm of the reduced gradient [10, 21] for the projection of x(k) on Ω is less or
equal to 10−4. The efficiency of Algorithm PF exceeds KPRGP, if n is large.
The automatic choice rtol = κ(A)−1/2 used in the first columns of the tables is
motivated by practical experience. When we replace the adaptive inner precision

control (45) by the non-adaptive one ǫ
(k)
cgm = rtol×ǫ, thenAlgorithm PF generates

the same number of outer iterations iter for JSC and JAM (with the same rtol).
The iteration history of the centering parameter σk and the steplength αk are

depicted in Figures 2 and 3 for n = 1024. One can see alternations of modestly
and strongly centered iterations so that the longer steps are generated after the
stronger centering. Figures 4 and 5 show the preconditioning effect. Although the
condition numbers κ(JSC) and κ(JAM ) increase without any stint, the condition
numbers of the preconditioned matrices κ(P−1

SCJSC) and κ(P−1
AMJAM ) are bounded

by the value κ(A)
.
= 1.07×105, as it is predicted by Corollary 5.4 (since κ(D) = 1).

Table 1. Chord problem, inner solver based on JSC .

PF(κ(A)−1/2, 0.99) PF(0.001, 0.99) PF(0.01, 0.9) KPRGP

n iter/nA time iter/nA time iter/nA time nA time

64 13/357 0.05 13/564 0.08 14/474 0.06 163 0.03
128 17/913 0.14 16/1247 0.20 16/941 0.14 522 0.12
256 19/2179 0.39 19/2869 0.53 19/2209 0.39 1209 0.33
512 24/5876 1.42 22/6434 1.61 24/5525 1.31 3163 1.08
1024 27/13721 4.80 28/16214 5.87 27/12396 4.32 8983 4.37
2048 31/33238 19.30 31/35187 20.34 30/28949 16.68 26061 18.61
4096 35/80841 83.30 35/77892 80.73 32/58091 60.08 91439 107.20
8192 33/160084 311.05 35/154755 300.02 35/130412 254.86 351528 744.19
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Table 2. Chord problem, inner solver based on JAM .

PF(κ(A)−1/2, 0.99) PF(0.001, 0.99) PF(0.01, 0.9) KPRGP

n iter/nA time iter/nA time iter/nA time nA time

64 16/292 0.06 13/415 0.08 15/340 0.06 163 0.03
128 16/472 0.11 15/807 0.19 17/632 0.16 522 0.12
256 24/1222 0.37 20/1617 0.50 22/1129 0.34 1209 0.33
512 26/2625 1.17 24/3297 1.45 27/2280 1.00 3163 1.08
1024 29/5867 4.10 27/6509 4.59 34/4416 3.07 8983 4.37
2048 35/10965 14.01 35/13850 17.78 42/8961 11.23 26061 18.61
4096 39/21778 53.73 44/23828 58.44 54/18875 46.02 91439 107.20
8192 51/47542 218.59 62/41673 191.82 69/51497 236.92 351528 744.19
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Figure 2. Chord problem, σk and αk for JSC .
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Figure 3. Chord problem, σk and αk for JAM .

6.2. Tresca friction

Let us consider a steel brick S in R
3 lying on a rigid obstacle. The brick occupies

the domain S = (0, 3) × (0, 1) × (0, 1) whose boundary ∂S split into three parts
Γu = {0} × (0, 1) × (0, 1), Γc = (0, 3) × (0, 1) × {0}, and Γp = ∂S \ (Γ̄u ∪ Γ̄c)
with different boundary conditions; see Figure 6. The zero displacements are pre-
scribed on Γu while the surface tractions act on Γp. On Γc we consider the contact
conditions, i.e., the non-penetration and the effect of Tresca friction. The elastic be-
havior of the brick is described by the Lamé equations that lead after finite element
approximation to the symmetric, positive definite stiffness matrix K ∈ R

3nn×3nn

and to a load vector f ∈ R
3nn , where nn is the number of finite element nodes

in S̄ \ Γ̄u. By m we denote the number of contact nodes, i.e., the nodes lying on
Γ̄c \ Γ̄u. To describe the contact conditions, we introduce the full-rank matrices
N,T1, T2 ∈ R

m×3nn projecting displacements in the contact nodes to the normal
and tangential directions, respectively. Finally, d ∈ R

m
+ and g ∈ R

m
+ collect dis-

tances to the obstacle and à-priori given slip bound values at the contact nodes,
respectively.
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Figure 4. Chord problem, the preconditioning effect for JSC .
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Figure 5. Chord problem, the preconditioning effect for JAM .
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Figure 6. Steel brick.

The discrete contact problem with Tresca friction consists in seeking
(u∗, λ∗

ν , λ
∗
τ1 , λ

∗
τ2) ∈ R

nn × R
m × R

m × R
m satisfying the following conditions [17]:

Ku− f +N⊤λν + T⊤
1 λτ1 + T⊤

2 λτ2 = 0, (48)

Nu− d ≤ 0, λν ≥ 0, λ⊤
ν (Nu− d) = 0, (49)

‖λτ,i‖ ≤ gi,

‖λτ,i‖ < gi ⇒ uτ,i = 0,

‖λτ,i‖ = gi ⇒ ∃ci ≥ 0 : uτ,i = ciλτ,i,











i ∈ M1, (50)

where λτ,i = (λτ1,i, λτ2,i)
⊤ ∈ R

2, uτ,i = ((T1u)i, (T2u)i)
⊤ ∈ R

2, and gi are the
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entries of g. Let us denote

λ =
(

λ⊤
ν , λ

⊤
τ1 , λ

⊤
τ2

)⊤

, B =
(

N⊤, T⊤
1 , T⊤

2

)⊤

, h =
(

d⊤, 0⊤, 0⊤
)⊤

.

Since (48) gives u = K−1(f −B⊤λ), we can eliminate u from (48)-(50) that results
in problem (1) for x = λ with

A = BK−1B⊤, b = BK−1f − h, li = 0, i ∈ M1.

Recall that the preconditioners in Algorithm PF require the knowledge of the
diagonal of A. As its assemblage is now expensive, we use the following approxi-
mation:

diag(A) ≈ diag(B diag(K)−1B⊤).

In Tables 3, 4 and in Figures 7, 8, 9, 10 for n = 18252, we present analogous tests
as for the chord problem. We use in Algorithm PF the stopping criterion (11)
with ǫ = 10−2. The comparability of results computed by Algorithm PF and
KPRGP is checked by the accuracy in satisfying (48), (49), and (50). Note that
our choice of ǫ is adequate to the precision control 10−4 in the stopping criterion of
KPRGP that is sufficient for many engineering problems. One can see that only
few strongly centered iterations are generated. The comparisons with KPRGP

show higher efficiency of Algorithm PF. In the agreement with Corollary 5.4,
the condition numbers of the preconditioned matrices are bounded by κ(A)κ(D),
where κ(A)

.
= 6.7× 103 and κ(D)

.
= 4.

Table 3. Tresca friction, inner solver based on JSC .

PF(0.3, 0.99) PF(0.1, 0.9) PF(0.01, 0.99) KPRGP

n/m iter/nA time iter/nA time iter/nA time nA time

900/180 15/87 0.28 14/92 0.28 14/119 0.36 187 0.48
2646/378 13/85 1.61 13/96 1.78 12/105 1.89 181 2.70
5832/648 15/91 6.43 14/104 7.11 15/130 8.47 187 10.14
10890/990 17/120 23.20 15/116 22.17 17/166 29.72 203 30.64
18252/1404 16/106 48.22 15/116 51.51 15/147 62.04 230 78.13
28350/1890 17/121 111.18 16/125 113.40 16/151 131.90 254 177.31
41616/2448 18/130 226.19 17/130 224.11 17/175 285.51 259 344.97

Table 4. Tresca friction, inner solver based on JAM .

PF(0.3, 0.99) PF(0.1, 0.9) PF(0.01, 0.99) KPRGP

n/m iter/nA time iter/nA time iter/nA time nA time

900/180 24/155 0.47 18/110 0.34 14/91 0.28 187 0.48
2646/378 17/116 2.12 17/118 2.17 13/106 2.01 181 2.70
5832/648 15/88 6.30 16/108 7.47 15/125 8.24 187 10.14
10890/990 19/132 24.91 17/134 24.98 16/136 25.24 203 30.64
18252/1404 16/95 44.43 13/75 36.49 16/141 60.47 230 78.13
28350/1890 19/128 117.44 16/120 109.72 16/133 118.97 254 177.31
41616/2448 16/102 184.47 18/135 232.27 17/157 260.74 259 344.97
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Figure 7. Tresca friction, σk and αk for JSC .

0 5 10 15

0

0.1

0.2

0.3

0.4

0.5

 

 

PF(0.3,0.99)
PF(0.1,0.9)
PF(0.01,0.99)

k

σk

0 5 10 15

0

0.2

0.4

0.6

0.8

1

 

 

PF(0.3,0.99)
PF(0.1,0.9)
PF(0.01,0.99)

k

αk

Figure 8. Tresca friction, σk and αk for JAM .
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Figure 9. Tresca friction, the preconditioning effect for JSC .
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Figure 10. Tresca friction, the preconditioning effect for JAM .
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6.3. Coulomb friction

Let us replace (50) by:

‖λτ,i‖ ≤ Fλν,i,

‖λτ,i‖ < Fλν,i ⇒ uτ,i = 0,

‖λτ,i‖ = Fλν,i ⇒ ∃ci ≥ 0 : uτ,i = ciλτ,i,











i ∈ M1, (51)

where F ∈ R+ is the coefficient of Coulomb friction. The discrete contact problem
with Coulomb friction consists in seeking (u∗, λ∗

ν , λ
∗
τ1 , λ

∗
τ2) ∈ R

nn ×R
m ×R

m ×R
m

satisfying (48), (49), and (51). Although there is no (evident) equivalency with
any minimization problem, we will solve this problem by a simple modification of
Algorithm PF.
Let us define the mapping Ψ : Rm

+ 7→ R
m
+ , Ψ(g) = Fλν , g ∈ R

m
+ , where λν = λν(g)

is the second component of the solution to the contact problem with Tresca friction.
It is easily seen that a fixed point of Ψ, i.e., the point g∗ ∈ R

m
+ satisfying Ψ(g∗) = g∗,

determines a solution to the contact problem with Coulomb friction. The natural
way how to compute fixed points is the method of successive approximations:

Initialize: g(0), g(p) = Ψ(g(p−1)), p = 1, 2, . . . . (52)

These iterations converge when Ψ is contractive that is guaranteed by sufficiently
small F [14]. Note that each evaluation of the mapping Ψ in (52) requires to solve
the contact problem with Tresca friction for that Algorithm PF may be used. In
order to achieve high computational efficiency, we prefer an inexact implementation
of (52), in which one iteration of Algorithm PF is performed in each successive
approximation. As the first m components of x(k) approximates λν , we can equiva-
lently perform this idea by modifying Algorithm PF so that g is updated in the
beginning of each iteration, i.e., in step (1◦), by

g := g(k) = F((x
(k)
1 )+, . . . , (x(k)m )+)⊤,

where y+ = max{0, y} is the non-negative part of y ∈ R. Since the component

z(k) of v(k) depends also on g, we modify appropriately its value (z
(k)
i+m := z

(k)
i+m −

g
(k−1)
i + g

(k)
i , 1 ≤ i ≤ m, k > 0). We refer to this algorithm as Algorithm

PFC. The convergence analysis of Section 4 is not valid, but it is obvious that, if
the modified algorithm converges, then the limit point is a solution to the contact
problem with Coulomb friction [1].
We compare the efficiency ofAlgorithm PFC with the method of successive ap-

proximations (52), in whichKPRGP is used for solving inner problems with Tresca
friction. We refer to this algorithm as KPRGPC. As KPRGP in KPRGPC is the
inner iterative method, we apply the adaptive inner precision control analogous to
this one described in Section 5.1. Based on our experiences with algorithms of this
type [16, 23], we chose optimal values of the parameters defining the inner preci-
sions control so that also solution characteristics introduced below for KPRGPC

are near to optimal. The value iter for KPRGPC denotes the number of suc-
cessive iterations. In Algorithm PFC we use ǫ = 10−4. The comparability of
results computed by Algorithm PFC and KPRGPC is checked by the accuracy
in satisfying (48), (49), and (51).
In Tables 5, 6, 7, and 8, we test Algorithm PFC for different coefficients of

friction F = 0.1 and 0.4. Note that Algorithm PFC behaves reasonably in all
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cases. One can see that the computations based on JSC are more efficient than
these ones based on JAM . Moreover, the comparison with KPRGPC shows better
performance of Algorithm PFC in the most cases.

Table 5. Coulomb friction, F = 0.1, inner solver based on JSC , δ = 0.9.

PFC(0.3, 0.99) PFC(0.1, 0.9) PFC(0.01, 0.99) KPRGPC

n/m iter/nA time iter/nA time iter/nA time iter/nA time

900/180 32/206 0.62 31/214 0.66 30/251 0.72 15/483 1.06
2646/378 31/217 4.06 29/223 4.09 32/293 5.12 17/735 10.08
5832/648 38/330 21.62 42/456 28.47 50/746 44.15 14/434 22.23
10890/990 38/290 55.75 37/346 63.66 37/415 73.85 17/635 92.54
18252/1404 40/348 151.09 36/321 139.14 37/420 173.46 21/781 265.50
28350/1890 44/350 319.30 38/323 291.46 44/488 415.62 15/730 513.26
41616/2448 44/364 625.67 35/354 588.61 45/497 806.32 18/684 911.25

Table 6. Coulomb friction, F = 0.1, inner solver based on JAM , δ = 0.9.

PFC(0.3, 0.99) PFC(0.1, 0.9) PFC(0.01, 0.99) KPRGPC

n/m iter/nA time iter/nA time iter/nA time iter/nA time

900/180 30/236 0.70 30/256 0.73 29/292 0.83 15/483 1.06
2646/378 31/245 4.45 30/283 4.96 30/364 6.07 17/735 10.08
5832/648 37/426 26.43 41/582 34.84 37/589 34.91 14/434 22.23
10890/990 33/403 70.87 37/407 72.62 35/554 93.38 17/635 92.54
18252/1404 33/393 161.68 36/472 190.66 36/547 216.31 21/781 265.50
28350/1890 44/448 387.87 41/585 479.52 43/773 614.38 15/730 513.26
41616/2448 44/417 696.81 43/459 751.33 44/674 1041.88 18/684 911.25

Table 7. Coulomb friction, F = 0.4, inner solver based on JSC , δ = 0.9.

PFC(0.3, 0.99) PFC(0.1, 0.9) PFC(0.01, 0.99) KPRGPC

n/m iter/nA time iter/nA time iter/nA time iter/nA time

900/180 32/206 0.64 31/214 0.66 30/251 0.73 15/483 1.06
2646/378 31/217 4.07 29/223 4.10 32/293 5.24 17/735 10.12
5832/648 38/330 21.75 42/456 28.58 50/746 44.59 14/434 22.59
10890/990 38/290 56.22 37/346 64.01 37/415 74.13 17/635 93.18
18252/1404 40/348 152.30 36/321 140.46 37/420 174.89 21/781 267.48
28350/1890 44/350 321.44 38/323 293.80 44/488 418.57 15/730 516.36
41616/2448 44/364 630.07 35/354 592.82 45/497 810.63 18/684 918.69

Table 8. Coulomb friction, F = 0.4, inner solver based on JAM , δ = 0.9.

PFC(0.3, 0.99) PFC(0.1, 0.9) PFC(0.01, 0.99) KPRGPC

n/m iter/nA time iter/nA time iter/nA time iter/nA time

900/180 30/236 0.70 30/256 0.75 29/292 0.83 15/483 1.06
2646/378 31/245 4.45 30/283 4.95 30/364 6.07 17/735 10.12
5832/648 37/426 26.58 41/582 35.19 37/589 34.99 14/434 22.59
10890/990 33/403 71.31 37/407 72.99 35/554 94.22 17/635 93.18
18252/1404 33/393 163.44 36/472 192.21 36/547 217.79 21/781 267.48
28350/1890 44/448 390.95 41/585 483.29 43/773 619.60 15/730 516.36
41616/2448 44/417 703.17 43/459 755.78 44/674 1049.09 18/684 918.69

7. Conclusions and comments

We have presented the new interior-point algorithm for the minimization of strictly
quadratic functions subject to the simple bounds and separable quadratic inequal-
ity constraints. In the theoretical part of the paper, we proved that the algorithm
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converges to the solution, when it generates a bounded sequence of iterations.
Another theoretical result consists in the spectral analysis of the preconditioned
matrices of the inner linear systems. It is shown that the eigenvalues lay in the
positive interval whose bounds are determined solely by the matrix A. We arrived
at the result, in a sense optimal, that the condition numbers of the preconditioned
matrices are uniformly bounded independently of the current interior-point itera-
tion.
The second part of the paper is devoted to numerical tests. First, we found ex-

perimentally optimal values of the parameters determined the high computational
performance of the algorithm for solving large scale problems. Then, we compared
the efficiency with the active set algorithm proposed by the first author [10, 20, 21]
in solving 3D contact problems of linear elasticity with friction. The efficiency of
the interior-point algorithm is higher in almost all numerical experiments. Its lack
consists in weaker theoretical results that do not comprise the prove of the con-
vergence rate. Nevertheless, it seems that the algorithm is the promising tool for
solving realistic problems of the real world.
The final comment is the qualitative comparison with other methods for solv-

ing contact problems of linear elasticity. One can divide them on the primal ap-
proaches, e.g., the non-smooth multiscale method of Krause [19], the primal-dual
approaches, e.g., the semi-smooth Newton method of Hueber et al. [18], and the
dual approaches, e.g., the FETI (finite element tearing and interconnecting) based
domain decomposition method of Dostál et al. [7, 22]. Such classification is rough,
since each of this approaches depends strongly on the algorithm for solving inner
problems. Our interior-point algorithm may be conceived as the inner solver for
the dual approach. The preconditioners discussed in the paper are related to the
algorithm structure so that they remove singularities inherently given by the real-
ization of the interior-point idea. In other words, they are the inner preconditioners
of the interior-point algorithm. The outer preconditioner for the dual approach is
the usage of the FETI method itself. Based on our spectral analysis, we deduce
that the inner preconditioners presented in the paper are well situated to profit
also from the FETI method. This topic together with other techniques exploiting
the PDE structure are postponed to future works.
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