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Abstract The goal is to analyze the semi-smooth Newton method applied to
the solution of contact problems with friction in two space dimensions. The
primal-dual algorithm for problems with the Tresca friction law is reformu-
lated by eliminating primal variables. The resulting dual algorithm uses the
conjugate gradient method for inexact solving of inner linear systems. The
globally convergent algorithm based on computing a monotonously decreasing
sequence is proposed and its R-linear convergence rate is proved. Numerical
experiments illustrate the performance of different implementations including
the Coulomb friction law.
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1 Introduction

Finite element approximations of frictional contact problems lead typically
to nonsmooth equations that are equivalent, in many cases, to a constrained
minimization. Algorithms based on active sets belong to the most efficient
iterative methods for solving such problems in two (2D) as well as three (3D)
space dimensions. There are at least two strategies how to introduce active set
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algorithms in context of contact problems. The first one have been developed
for dual contact problems given by the minimization of a strictly quadratic
cost function subject to separable inequality constraints that is the case of
Tresca friction; see [10,5] for 2D and [18,19,7] for 3D case, respectively. Here,
the active set is the index subset of components, for which the constraints
are satisfied by equalities in the current iteration. The conjugate gradient
method (CGM) generates iterations with respect to non-active components
and, when the progress is not sufficient, the active set is changed by a gradient
projection step. Thus, the algorithm seeks for the active set of the solution so
that it generates monotonously decreasing iterations lying in the feasible set
and enjoys the R-linear convergence rate [10,5,7,19]. The paper [8] presents an
alternative duality and active set based domain decomposition approach with
the proof of a global linear complexity for 2D semicoercive contact problems
with friction.

Another class of active set algorithms arises from the use of the semi-
smooth Newton method (SSNM). The starting point is the primal-dual for-
mulation of a contact problem, in which contact conditions are reformulated
by nonsmooth equations [33] as proposed already in [1]. Later on, it was
recognized that the SSNM may be interpreted as a primal-dual active set
method [25,14]. This approach is widely used for direct solving contact prob-
lems with different friction laws; see [32,22,23] for the 2D and [24] for the
3D case, respectively. The paper [34] comprises an up to date comprehensive
exposition of the SSNM oriented research for contact problems. The standard
convergence analysis is usually based on the slant differentiability concept [4,
25] leading to the local superlinear convergence rate. This convergence result
assumes exact solutions of inner linear systems that is, however, unrealistic
for large-scale problems. Another drawback consists in the fact that an initial
iteration ”sufficiently close” to the solution is required; see [28] for a sophis-
ticated choice. The Newton-type methods for solving abstract discrete varia-
tional inequalities are summarized in [11]. An inexact Newton method applied
to nonsmooth equations were analyzed already in [29] including a globally con-
vergent result. However, according to our knowledge, there is no analysis of a
global convergence rate in cases, when the inner subproblems of the SSNM are
solved inexactly.

The aim of our paper is to analyze discrete active set algorithms arising
from the SSNM applied to the solution of contact problems with Tresca friction
in 2D. The outline of the paper is as follows. The PDEs describing the prob-
lem are given in the rest of Section 1. The algebraic problem resulting from a
finite element approximation is introduced in Section 2. The primal-dual for-
mulation given by nonsmooth equations depends on a positive parameter ρ.
In Section 3, we derive the active-set algorithm in terms of dual variables
(Lagrange multipliers) and we recall the superlinear convergence rate valid
for the exact SSNM. The implementation introduced in Section 4 is based on
the use of the CGM with an adaptive precision control for inexact solving in-
ner subproblems. Main results are summarized in Section 5. First, we analyze
sufficient conditions guaranteeing that a modified algorithm will generate a
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monotonously decreasing sequence of the cost function values. For that, one
needs: (i) feasibility of iterations and (ii) the upper bound ρ < 2σ−1

max, where
σmax is the largest eigenvalue of the dual Hessian. The inequality in (ii) plays
an important role in the active-set algorithms for the constrained minimization
problems developed in [10,5,9]. The proof of the R-linear convergence rate of
our (modified) algorithm uses the auxiliary result on the decrease of the cost
function along the projected gradient path from [2]. Numerical experiments
reported in Section 6 confirm the analysis. This section contains also a short
extension to contact problems with Coulomb friction, where we combine the
SSNM with the TFETI domain decomposition method [6]. The geometry of
the model problem arises in mining industry [8].

Since the SSNM starts from an algebraic counterpart of PDEs, we introduce
formulation of the problem in terms of the Lame equations. We consider two
elastic bodies represented by non-overlapping bounded domains Ωk ⊂ R

2 with
Lipschitzian boundaries ∂Ωk, k = 1, 2 (see Figure 1.a). Each boundary splits

on three non-empty disjoint parts γu
k , γ

p
k , and γc

k so that ∂Ωk = γu
k∪γ

p
k∪γ

c
k. The

zero displacements are prescribed on γu
k , surface tractions pk ∈ (L2(γp

k))
2 act

on γp
k , and the bodiesΩk are subject to volume forces fk ∈ (L2(Ωk))

2, k = 1, 2.
We seek displacement fields uk in Ωk satisfying the following equations

−divσk(uk) = fk in Ωk

uk = 0 on γu
k

σk(uk)νk = pk on γp
k



 k = 1, 2, (1.1)

where νk is the unit outward normal vector to the boundary ∂Ωk. The stress
field σk(uk) inΩk is related to the linearized strain tensor εk(uk) = 1/2(∇uk+
∇⊤uk) by the linearized Hooke law for elastic, homogeneous, and isotropic
materials: σk(uk) = aktr(εk(uk))I+2bkεk(uk), where ”tr” is the trace of ma-
trices, I ∈ R

2×2 is the identity matrix, and ak, bk > 0 are the Lamé constants.
We predefine one-to one transfer mapping χ : γc

1 7→ γc
2, by means of which we

define the initial distance between the bodies δ(x) = ‖χ(x)− x‖, x ∈ γc
1 and

the critical direction: ν(x) = (χ(x) − x)/δ(x), if δ(x) 6= 0, or ν(x) = ν1(x),
if δ(x) = 0. The unit vector orthogonal to ν = ν(x) is denoted by τ = τ (x),
x ∈ γc

1. On the contact interface, we consider three contact conditions:

uν − δ ≤ 0, σν ≤ 0, σν(uν − δ) = 0 on γc
1, (1.2)

σ1(u1)ν1 = σ2(u2 ◦ χ)ν1 on γc
1, (1.3)

|στ | ≤ g
|στ | < g ⇒ uτ = 0
|στ | = g ⇒ ∃cτ ≥ 0 : uτ = −cτστ



 on γc

1, (1.4)

where uν = (u1 − u2 ◦ χ)⊤ν, uτ = (u1 − u2 ◦ χ)⊤τ , σν = ν⊤σ1(u1)ν1,
στ = τ⊤σ1(u

1)ν1, and g ∈ L2(γc
1), g ≥ 0 is the slip bound. Here, (1.2) is the

unilateral contact law, (1.3) describes the transmission of contact stresses, and
(1.4) is the Tresca friction law. For the weak form of (1.1)-(1.4), we refer to [16,
27]. The algebraic problem arising from the finite element approximation is
the starting point of our analysis in the next section. Note that there is no
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algebraic counterpart of (1.3), since the transmission of contact stresses is
inherently hidden in the weak form.

Let us introduce notation used trough the whole paper. All vectors and
matrices are denoted below by mathematical italic. Rp×q is the space of p× q
matrices, Rp = R

p×1 is the space of p-dimensional vectors, and R
p
+ is the

non-negative orthant in R
p. 0 stands for a zero matrix, a zero vector, or the

zero number, while I is a square identity matrix. The caligraphic symbols are
used for sets of indices, e.g., M = {1, 2, . . . , p} and A, I ⊆ M. Let N ∈ R

p×q.
Then, NA ∈ R

|A|×q is composed by those rows of N whose indices belong to
A. Let A ∈ R

p×p be symmetric, positive definite with the smallest and largest
eigenvalues 0 < σmin ≤ σmax, respectively. The submatrix AAI ∈ R

|A|×|I| is
composed by those entries of A whose row, column indices belong to A, I,
respectively. If I 6= ∅, then

σminv
⊤v ≤ v⊤AIIv ≤ σmaxv

⊤v ∀v ∈ R
|I|. (1.5)

Finally, the Euclidean norm of v ∈ R
p, v = (v1, v2, . . . , vp)

⊤, is defined by
‖v‖2 = v⊤v = v21 + v22 + · · ·+ v2p.

2 Algebraic contact problems with Tresca friction

Let us consider the problem to find (u∗, λ∗
ν , λ

∗
τ ) ∈ R

n × R
m × R

m satisfying:

Ku+N⊤λν + T⊤λτ − f = 0, (2.1)

Nu− d ≤ 0, λν ≥ 0, λ⊤
ν (Nu− d) = 0, (2.2)

|λτ,i| ≤ gi
|λτ,i| < gi ⇒ (Tu)i = 0
|λτ,i| = gi ⇒ ∃ci ≥ 0 : (Tu)i = ciλτ,i



 i ∈ M, (2.3)

where M = {1, . . . ,m} is the index set, K ∈ R
n×n is symmetric and positive

definite, N,T ∈ R
m×n have full row-rank, f ∈ R

n, d ∈ R
m
+ , and gi are entries

of g ∈ R
m
+ . This problem is the algebraic primal-dual formulation of the con-

tact problem with Tresca friction arising from a finite element discretization.
The primal unknown u∗ approximates displacements, while the dual unknowns
λ∗
ν , λ

∗
τ approximate the (negative) normal, tangential contact stresses, respec-

tively. Note that (2.1)-(2.3) can be considered as the Karush-Khun-Tucker
conditions to a (primal) contact problem so that λ∗

ν , λ
∗
τ play also the role of

the Lagrange multipliers.
First of all we show how to eliminate the primal unknown. Let us introduce

the Lagrangian L : Rn × Λν × Λτ 7→ R to (2.1)-(2.3) by

L(u, λν , λτ ) =
1

2
u⊤Ku− u⊤f + λ⊤

ν (Nu− d) + λ⊤
τ Tu,

where Λν = R
m
+ and Λτ = {λτ ∈ R

m : |λτ,i| ≤ gi, i ∈ M}. It is easy to show
that (u∗, λ∗

ν , λ
∗
τ ) is the saddle-point of L, i.e., this point satisfies

L(u∗, λν , λτ ) ≤ L(u∗, λ∗
ν , λ

∗
τ ) ≤ L(u, λ∗

ν , λ
∗
τ ) ∀(u, λν , λτ ) ∈ R

n × Λν × Λτ .
(2.4)
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The second inequality in (2.4) is equivalent to

u∗ = K−1(f −N⊤λ∗
ν − T⊤λ∗

τ ). (2.5)

Inserting (2.5) in the first inequality in (2.4), one can derive the problem in
terms of the Lagrange multipliers. Before giving this formulation, we introduce
some notation.

Let q : R2m 7→ R be the quadratic cost function defined by

q(λ) =
1

2
λ⊤Aλ− λ⊤b, (2.6)

where λ = (λ⊤
ν , λ

⊤
τ )

⊤, A = BK−1B⊤ with B =
(
N⊤, T⊤

)⊤
is symmetric and

positive definite, b = BK−1f − c, and c =
(
d⊤, 0⊤

)⊤
. The gradient r : R2m 7→

R to q at λ ∈ R
2m is given by

r(λ) = Aλ− b. (2.7)

Denote λ∗ = (λ∗
ν
⊤, λ∗

τ
⊤)⊤ and Λ = Λν × Λτ . This notation enables us to

express the first inequality in (2.4), after eliminating of u∗, as

(λ− λ∗)⊤r(λ∗) ≥ 0 ∀λ ∈ Λ. (2.8)

Since λ∗ satisfying (2.8) minimizes q on Λ [30], we arrive at the dual formula-
tion of the contact problems with Tresca friction:

λ∗ = argmin q(λ) subject to λ ∈ Λ. (2.9)

As q is strictly quadratic and Λ is the closed and convex set, there is the unique
solution λ∗ ∈ Λ to (2.9) [30]. It proves also that our original problem (2.1)-(2.3)
has the unique solution with the first component u∗ determined by (2.5).

Now we reformulate (2.1)-(2.3) as a projective equation represented by
nonsmooth functions. Let PΛν

: Rm 7→ Λν , PΛτ
: Rm 7→ Λτ be the projections

onto Λν , Λτ defined by the max-function as follows:

PΛν ,i(λν) = max{0, λν,i}, (2.10)

PΛτ ,i(λτ ) = max{0, λτ,i + gi} −max{0, λτ,i − gi} − gi, (2.11)

respectively. Let us introduce the function G : Rn+2m 7→ R
n+2m with y =

(u⊤, λ⊤
ν , λ

⊤
τ )

⊤ given by

G(y) =




Ku+N⊤λν + T⊤λτ − f
λν − PΛν

(λν + ρ(Nu− d))
λτ − PΛτ

(λτ + ρTu)


 , (2.12)

where ρ > 0 is an arbitrary but fixed parameter. It is easy to verify that
(2.1)-(2.3) and the equation

G(y) = 0, (2.13)

have the same solution y∗ = (u∗⊤, λ∗
ν
⊤, λ∗

τ
⊤)⊤. The function G is nonsmooth

due to the presence of the max-function. Fortunately, it is semi-smooth in the
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sense of [4] so that the SSNM can be used. We will analyze it in the next
sections.

In the rest of this section, we summarize some auxiliary results. We denote
PΛ : R2m 7→ Λ the projection onto Λ given by PΛ = (P⊤

Λν

, P⊤
Λτ

)⊤. The reduced
gradient r̃α : Λ 7→ R to q for α > 0 is defined by:

r̃α(λ) =
1

α
(λ− PΛ(λ− αr(λ))). (2.14)

It is well-known [19] that r̃α is the optimality criterion to (2.9) in the sense
that λ∗ ∈ Λ solves (2.9) iff r̃α(λ

∗) = 0. Therefore, the reduced gradient will be
used as the stopping criterion in our algorithms. The following lemma is the
key ingredient of our analysis.

Lemma 1 Let σmin, σmax be the smallest, largest eigenvalue of A, respectively,
and let λ∗ be the solution to (2.9). The following statement holds:

q(PΛ(λ− αr(λ)))− q(λ∗) ≤ η(α) (q(λ)− q(λ∗)) (2.15)

for all λ ∈ Λ, where

η(α) =

{
1− ασmin for α ∈ [0, σ−1

max],

1− (2σ−1
max − α)σmin for α ∈ [σ−1

max, 2σ
−1
max].

Proof See [10,5] for the first case and [2] for the second case. 2

3 Semi-smooth Newton method

The concept of semismoothness uses slant differentiability of a function. Here,
we recall basic results related to our problem [4].

Let Y , Z be Banach spaces with the norms ‖ · ‖Y , ‖ · ‖Z , respectively, and
L(Y,Z) denote the set of all bounded linear mappings of Y into Z with the
norm ‖ · ‖L(Y,Z). Let U ⊆ Y be an open subset and G : U 7→ Z be a function.

Definition 1 (i) The function G is called slantly differentiable at y ∈ U if
there exists a mapping Go : U 7→ L(Y,Z) such that {Go(y+h)} are uniformly
bounded for sufficiently small h ∈ Y and

lim
h→0

‖G(y + h)−G(y)−Go(y + h)h‖Z
‖h‖Y

= 0.

The function Go is called a slanting function for G at y.
(ii) The function G is called slantly differentiable in U , if there exists Go :
U 7→ L(Y,Z) such that Go is a slanting function for G at every point y ∈ U .
The function Go is called a slanting function for G in U .
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Theorem 1 Let G be slantly differentiable in U with a slanting function Go.
Suppose that y∗ ∈ U is a solution to the nonlinear equation G(y) = 0. If Go(y)
is non-singular for all y ∈ U and {‖Go(y)−1‖L(Y,Z) : y ∈ U} is bounded, then
the Newton iterations

yk+1 = yk −Go(yk)−1G(yk) (3.1)

converge superlinearly to y∗ provided that ‖y0 − y∗‖Y is sufficiently small.

Proof See [4]. 2

Let us focus on the max-function φ(y) = max{0, y} with Y = Z = R. This
function is slantly differentiable and

φo(y) =





1 for y > 0
σ for y = 0
0 for y < 0

is the slanting function in R for an arbitrary real number σ (below we use
σ = 1). As the function G given by (2.12) is defined by finitely many max-
functions, it is also slantly differentiable with Y = Z = R

n+2m. A convenient
setting of its slanting function Go uses an active set terminology.

Recall that M = {1, 2, . . . ,m}. Let Aν ,Aτ ⊆ M denote the active sets and
Iν , I

+
τ , I−

τ ⊆ M be the respective inactive sets at y = (u⊤, λ⊤
ν , λ

⊤
τ ) ∈ R

n+2m:

Aν = {i ∈ M : 0 ≤ λν,i + ρ(Nu− d)i},

Iν = M\Aν ,

I+
τ = {i ∈ M : gi < λτ,i + ρ(Tu)i},

I−
τ = {i ∈ M : λτ,i + ρ(Tu)i < −gi},

Aτ = M\
(
I+
τ ∪ I−

τ

)
.

For S ⊆ M, we define the indicator matrix D(S) = diag(s1, s2, . . . , sm) with
si = 1 for i ∈ S and si = 0 for i 6∈ S. The function G given by (2.12) can be
written as:

G(y) =




Ku− f +N⊤λν + T⊤λτ

λν −D(Aν)(λν + ρ(Nu− d))
λτ −D(Aτ )(λτ + ρTu)−D(I+

τ )g +D(I−
τ )g


 .

Differentiating with respect to y, we derive the following slanting function:

Go(y) =




K N⊤ T⊤

−ρD(Aν)N D(Iν) 0
−ρD(Aτ )T 0 D(I+

τ ∪ I−
τ )


 .

Each iterative step of (3.1) consists in solving the linear system with the
matrix Go(yk) and with the right hand-side vector

Go(yk)yk −G(yk) =




f
−ρD(Aν)d
(D(I+

τ )−D(I−
τ ))g


 .
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From the block structure, one can easily deduce that the components of λk+1
ν ,

λk+1
τ corresponding to the inactive sets are known à-priori as

λk+1
ν,Iν

= 0, λk+1

τ,I+
τ

= gI+
τ

, λk+1

τ,I−

τ

= −gI−

τ

. (3.2)

The remaining components of yk+1 satisfy the reduced saddle-point linear
system:




K N⊤
Aν

T⊤
Aτ

NAν
0 0

TAτ
0 0







uk+1

λk+1
ν,Aν

λk+1
τ,Aτ


 =




f − T⊤
I+
τ

gI+
τ

+ T⊤
I−

τ

gI−

τ

dAν

0


 . (3.3)

In the rest of this section, we show how to implement the iterative process
(3.1) without necessity to generate the sequence {uk}. To this end, we denote

A = Aν ∪ {i+m| i ∈ Aτ} and I = {1, 2, . . . , 2m} \ A. (3.4)

We need also the matrices A, B and the vectors b, c introduced in (2.6). If
A = ∅, λk+1 is fully determined by (3.2). Let A be non-empty. The second
and third block equations in (3.3) read as

BAu
k+1 = cA. (3.5)

The first block equation in (3.3) yields

uk+1 = K−1(f −B⊤
Aλk+1

A −B⊤
I λk+1

I ), (3.6)

where λk+1
I is given by (3.2). Substituting (3.6) into (3.5), one can see that

λk+1
A solves the linear system

AAAλ
k+1
A = b̂A (3.7)

with b̂A = bA − AAIλ
k+1
I . Consequently, λk+1 minimizes the cost function q

subject to the constraints (3.2). Finally, note that

rk = r(λk) = BK−1B⊤λk −BK−1f + c = −Buk + c =

(
−Nuk + d
−Tuk

)
.

Therefore, one can omit u = uk also from the definitions of the active/inactive
sets replacing it by the gradient values:

(Nuk − d)i = −rki , (Tuk)i = −rki+m, i ∈ M.

We arrive at the following algorithmic scheme, in which α used in the defini-
tion of the reduced gradient (2.14) is chosen by ρ.

Algorithm SSNM

Given λ0 ∈ R
2m, ε ≥ 0, and ρ > 0. For k ≥ 0, compute:

(Step 1 ) If ‖r̃ρ(PΛ(λ
k))‖ ≤ ε, return λ = PΛ(λ

k), else go to step Step 2.
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(Step 2 ) Assembly the active/inactive sets at λk:

Aν = {i ∈ M : λk
i − ρrki ≥ 0}, (3.8)

Iν = M\Aν , (3.9)

I+
τ = {i ∈ M : gi < λk

i+m − ρrki+m}, (3.10)

I−
τ = {i ∈ M : λk

i+m − ρrki+m < −gi}, (3.11)

Aτ = M\ (I+τ ∪ I−
τ ). (3.12)

(Step 3 ) Find λk+1 so that

λk+1 = argmin q(λ) subject to (3.2). (3.13)

The following theorem summarizes the standard convergence results.

Theorem 2 Let y0 ∈ R
2m, ε = 0, and ρ > 0. Let {λk} be the sequence

generated by Algorithm SSNM and let λ∗ be the solution to (2.9). (i) Then,
{λk} converges to λ∗ superlinearly provided that ‖λ∗−λ0‖ is sufficiently small.
(ii) If {λk} converges, then it is the finite sequence and its last element is λ∗.

Proof As Algorithm SSNM is equivalent to (3.1), we verify the assumptions
of Theorem 1 to prove (i). There is an appropriate permutation matrix Q =
Q(y) enabling us to transform Go(y) as follows:

QGo(y)Q⊤ =




K N⊤
Aν

T⊤
Aτ

N⊤
Iν

T⊤
I+
τ ∪I−

τ

−ρNAν
0 0 0 0

−ρTAτ
0 0 0 0

0 0 0 I 0

0 0 0 0 I




.

We get the block upper triangular matrix with non-singular diagonal blocks.
Therefore, Go(y) is non-singular for any y ∈ R

n+2m. The boundedness of
{‖Go(y)−1‖ : y ∈ R

n+2m} yields from the fact that this set is finite and its
largest element is the desired bound. The statement (ii) follows immediately
from the finite number of the active/inactive sets. The theorem is proved. 2

Remark 1 Note that ρ can be discarded from Aν and Iν , when the inner
subproblems in Step 3 are solved exactly (and λ0 = 0, e.g.), since either
λk
i = 0 or rki = 0. A similar observation is valid also for Aτ , I

+
τ , and I−

τ

provided that λk is sufficiently close to λ∗ and g is sufficiently large. We will
see in next sections that ρ plays a significant role in our globally convergent
algorithm.
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4 Inexact implementation

The computational efficiency of the SSNM depends on a way how the in-
ner subproblems are implemented. We propose to accept inexact solutions
to (3.13), denoted again by λk+1, that are computed by few CGM iterations
(see Appendix (A2)). It is referred by

λk+1 = CGM(A, b,A, λk+1,0, tolk+1), (4.1)

where λk+1,0 is the initial CGM iteration and tolk+1 denotes the stopping tol-
erance. The implementation ideas are summarized by Algorithm ISSNM,
where errk = ‖r̃ρ(PΛ(λ

k))‖ stands for the precision achieved on the outer level.
The value tolk+1 in Step 3.1 respects errk but, when the progress is not suf-
ficient, it improves the previous tolerance tolk. The inner initialization λk+1,0

in Step 3.2 is chosen by the previous iteration λk and by the constraints (3.2).

Algorithm ISSNM (Inexact SSNM)

Given λ0 ∈ R
2m, ε ≥ 0, ρ > 0, and rtol, cfact ∈ (0, 1).

Set err0 = ‖r̃ρ(PΛ(λ
0))‖, tol0 = rtol/cfact, and k = 0.

(Step 1 ) If errk ≤ ε , return λ = PΛ(λ
k), else go to step Step 2.

(Step 2 ) Assembly the active/inactive sets at λk by (3.8)-(3.12) and (3.4).

(Step 3.1 ) tolk+1 = min{rtol × errk/err0, cfact × tolk}

(Step 3.2 ) λk+1,0
A = λk

A, λ
k+1,0
ν,Iν

= 0, λk+1,0

τ,I+
τ

= gI+
τ

, λk+1,0

τ,I−

τ

= −gI−

τ

(Step 3.3 ) λk+1 = CGM(A, b,A, λk+1,0, tolk+1)

(Step 3.4 ) errk+1 = ‖r̃ρ(PΛ(λ
k+1))‖, k = k + 1, and go to Step 1.

Note that the convergence is not guaranteed by Theorem 2, since the inner
subproblems are solved inexactly.

5 Globally convergent algorithm

The iterative process of Algorithm ISSNM may be interpreted as the re-
started minimization procedure searching for the minima of (2.9). The key idea
leading to the globally convergent result consists in modifying the algorithm
so that the sequence {q(λk)} generated by the new algorithm is monotonously
decreasing. The following lemma proves the sufficient conditions, under which
the restart of the CGM does not increase the value of q

Lemma 2 Let λk ∈ Λ and ρ ∈ (0, 2σ−1
max). If λ

k+1,0 is given by Step 3.2 of
Algorithm ISSNM, then

q(λk) ≥ q(λk+1,0). (5.1)
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Proof Denote λ = λk, µ = λk+1,0. Using λA = µA and (1.5), we get

q(λk)− q(λk+1,0) = (λI − µI)
⊤rI(λ)−

1

2
(λI − µI)

⊤AII(λI − µI)

≥ (λI − µI)
⊤rI(λ)−

1

2
σmax‖λI − µI‖

2. (5.2)

The first assumption λk ∈ Λ yields 0 ≤ λi and −gi ≤ λi+m ≤ gi, i ∈ M. For
i ∈ Iν = Iν(λ), we have 0 ≤ λi < ρri(λ) and µi = 0 that implies

(λi − µi)
2 ≤ ρ(λi − µi)ri(λ).

For i ∈ I+
τ = I+

τ (λ), we have 0 ≥ λi+m − gi > ρri+m(λ) and µi+m = gi that
implies

(λi+m − µi+m)2 ≤ ρ(λi+m − µi+m)ri+m(λ).

The same inequality holds also for i ∈ I−
τ = I−

τ (λ), since in this case 0 ≤
λi+m + gi < ρri+m(λ) and µi+m = −gi. We arrive at

‖λI − µI‖
2 ≤ ρ(λI − µI)

⊤rI(λ).

Using this result in (5.2), we obtain

q(λk)− q(λk+1,0) ≥

(
ρ−1 −

1

2
σmax

)
‖λI − µI‖

2.

The right hand-side of the last inequality is non-negative due to ρ ∈ (0, 2σ−1
max).

The lemma is proved. 2

Since the inequality q(λk+1,0) ≥ q(λk+1) yields immediately from the
CGM, Lemma 2 guarantees that {q(λk)} is (at least) non-increasing. Before
introducing the globally convergent algorithm, we interpret Step 3.2.

Lemma 3 Let λk+1,0 be given by Step 3.2 of Algorithm ISSNM. The fol-
lowing statement holds:

λk+1,0
I = PΛ,I

(
λk − ρr(λk)

)
. (5.3)

Proof For i ∈ Iν = Iν(λ
k), we have λk

i − ρri(λ
k) < 0. Using (2.10), we get

PΛ,i(λ
k − ρr(λk)) = PΛν ,i(λ

k − ρr(λk)) = 0 = λk+1,0
i .

For i ∈ I+
τ = I+

τ (λk), we have gi < λk
i+m − ρri+m(λk). Using (2.11), we get

PΛ,i+m(λk − ρr(λk))) = PΛτ ,i(λ
k − ρr(λk)) = gi = λk+1,0

i+m .

For i ∈ I−
τ (λk), we get the same result. The lemma is proved.
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We modify Algorithm ISSNM in three points. First, we introduce the
upper bound for ρ. Second, we ensure that all iterations belong to Λ. For
that, we choose λ0 ∈ Λ and terminate the CGM loops before an iteration
outside of Λ is generated. It is referred by the CGMfeas (see Appendix (A1)).
Finally, the projection (5.3) in Step 3.2 is extended onto all components that
simplifies considerably the convergence analysis (see Appendix (A3) for further
comments). The resulting algorithm reads as follows.

Algorithm GISSNM (Globally convergent ISSNM)

Given λ0 ∈ Λ, ε ≥ 0, ρ ∈ (0, 2σ−1
max), and rtol, cfact ∈ (0, 1).

Set err0 = ‖r̃ρ(λ
0)‖, tol0 = rtol/cfact, and k = 0.

(Step 1 ) If errk ≤ ε is small , return λ = λk, else go to step Step 2.

(Step 2 ) Assembly the active/inactive sets at λk by (3.8)-(3.12) and (3.4).

(Step 3.1 ) tolk+1 = min{rtol × errk/err0, cfact × tolk}

(Step 3.2 ) λk+1,0 = PΛ(λ
k − ρr(λk))

(Step 3.3 ) λk+1 = CGMfeas(A, b,A, λk+1,0, tolk+1)

(Step 3.4 ) errk+1 = ‖r̃ρ(λ
k+1)‖, k = k + 1, and go to Step 1.

The following theorem proves the R-linear convergence rate.

Theorem 3 Let λ0 ∈ Λ, ε = 0, ρ ∈ (0, 2σ−1
max), and rtol, cfact ∈ (0, 1). Let

σmin, σmax be the smallest, largest eigenvalue of A, respectively, and let λ∗ be
the solution to (2.9). Let {λk} denote the sequence generated by Algorithm

GISSNM. The following statement holds:
(i) the sequence {q(λk)} decreases so that

q(λk+1)− q(λ∗) ≤ η(ρ) (q(λk)− q(λ∗)), (5.4)

where

η(ρ) =

{
1− ρσmin for ρ ∈ (0, σ−1

max],

1− (2σ−1
max − ρ)σmin for ρ ∈ [σ−1

max, 2σ
−1
max);

(ii) if {λk} is finite, then its last element is λ∗;
(iii) if {λk} is infinite, then it converges to λ∗ R-linearly so that

‖λk − λ∗‖ ≤ C η(ρ)k/2, (5.5)

where C =
√
2(q(λ0)− q(λ∗))/σmin.

Proof First of all, we show that each iteration is well-defined, if the stopping
criterion in Step 1 is not fulfilled (for ε = 0). As ‖r̃ρ(λ

k)‖ > 0, we have
r̃ρ(λ

k) 6= 0 so that the definition of the reduced gradient (2.14) with λ = λk

and α = ρ yields

λk+1,0 = PΛ(λ
k − ρr(λk)) = λk − ρr̃ρ(λ

k).
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Therefore, Step 3.2 generates λk+1,0 ∈ Λ so that λk+1,0 6= λk. Then, the
CGMfeas in Step 3.3 produces λk+1 such that

q(λk+1) ≤ q(λk+1,0). (5.6)

The equality in (5.6) occurs iff λk+1 = λk+1,0 that is the case, when the
CGMfeas does not generate any inner iteration due to a large value of tolk+1.
Otherwise, λk+1 6= λk+1,0 and the inequality (5.6) is strict. In both cases, we
get λk+1 ∈ Λ so that λk+1 6= λk.

Lemma 1 with λ = λk and α = ρ implies

q(λk+1,0)− q(λ∗) = q(PΛ(λ
k−ρr(λk)))− q(λ∗) ≤ η(ρ) (q(λk))− q(λ∗)). (5.7)

Combining (5.7) with (5.6), we arrive at (5.4). As η(ρ) < 1, the sequence
{q(λk)} decreases, which proves the statement (i).

Let {λk} be finite. The last element of this sequence denoted by λ in Step 1
fulfils ‖r̃ρ(λ)‖ = ε = 0 so tha λ = λ∗. The statement (ii) is proved.

Let {λk} be infinite. To prove (5.5), we start from

q(λk)− q(λ∗) = (λk − λ∗)⊤r(λ∗) +
1

2
(λk − λ∗)⊤A(λk − λ∗).

Using (2.8) with λ = λk, we get

(λk − λ∗)⊤A(λk − λ∗) ≤ 2
(
q(λk)− q(λ∗)

)
.

Estimating the left hand-side using the smallest eigenvalue of A (see (1.5))
and the right hand-side inductively by (5.4), we obtain

σmin‖λ
k − λ∗‖2 ≤ 2η(ρ)k

(
q(λ0)− q(λ∗)

)
.

The bound (5.5) is an easy consequence. The convergence of {λk} to λ∗ follows
immediately from (5.5) that proves (iii). 2

Remark 2 For ρ = σ−1
max, we get the smallest value of the convergence factor:

η(ρ) = 1− κ(A)−1,

where κ(A) = σmax/σmin is the condition number of A.

Remark 3 The parameters rtol, cfact do not influence the upper bound in
(5.5), but affect the performance of the CGM iterations. Their optimal values
may be found experimentally.

Remark 4 Algorithm GISSNM is closely related to the algorithmMPRGP
(Modified Proportioning with Reduced Gradient Projections) investigated in [10]
for dual formulations of contact problems (see also [5,19,7]). A principal dif-
ference consists in a different definition of the active/inactive sets. As the
active/inactive sets arising from the SSNM define a complementary decompo-
sition of the index set, i.e. A∩ I = ∅ and A∪ I = {1, 2, . . . , 2m}, one can use
them also in the algorithm MPRGP. Moreover, the same convergence rate can
be proved (see Remark 3.2 in [9]).
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Remark 5 The statements of Theorem 3 remain valid even, if the CGM is
replaced by an arbitrary (inner) solver satisfying (5.6). Taking λk+1 = λk+1,0,
we arrive at the projected gradient method [3]:

λk+1 = PΛ(λ
k − ρr(λk)), k = 0, 1, . . .

with λ0 ∈ Λ and ρ ∈ (0, 2σ−1
max).

6 Numerical experiments

We will assess the performance of our algorithms for contact of two steal
bricks. The second benchmark represents more realistic contact problem with
Coulomb friction.

6.1 Two steal bricks

Let us consider the problem (1.1)-(1.4) with the following data. Two plane
elastic bodies Ω1 = (0, 3)× (1, 2), Ω2 = (0, 3)× (0, 1) are characterized by the
Young modulus Ek = 21.19 · 1010 and the Poisson ratio νk = 0.277 (steal) and
ak = Ekνk/(1−ν2k), bk = Ek/(2(1+νk)), k = 1, 2. The decompositions of ∂Ω1

and ∂Ω2 read as follows: γu
1 = {0}×(1, 2), γc

1 = (0, 3)×{1}, γp
1 = ∂Ω1\γu

1 ∪ γc
1

and γu
2 = {0} × (0, 1), γc

2 = (0, 3) × {1}, γp
2 = ∂Ω2 \ γu

2 ∪ γc
2, respectively.

The volume forces vanish for both bodies. The non-vanishing surface tractions
p1 = (p1x, p1y) act on γp

1 so that

p1y(s, 2) = p1y,L + p1y,R s, s ∈ (0, 3),

p1x(3, s) = p1x,B(2− s) + p1x,U (s− 1), s ∈ (1, 2),

p1y(3, s) = p1y,B(2− s) + p1y,U (s− 1), s ∈ (1, 2),

where p1y,L = −6 · 107, p1y,R = −1 · 107, p1x,B = p1x,U = p1y,U = 2 · 107,
and p1y,B = 4 · 107. The constant slip bound is given as g = 1.7 · 107 on γc

1.
The problem is approximated using linear finite elements over regular trian-
gulations, as it is seen in Figure 1.(a). The computed results are drawn in
Figure 1.(b)-(d).

In tables below we report the total number of outer iterations iter (i.e.
the last value of k) and the total number of matrix-vector multiplications
with A denoted by nA for different sizes of unknowns n and m. Note that nA

characterizes the computational complexity. A sufficiently accurate value of
σmax is estimated, if it is necessary, by few steps of the power method. The
algorithms are initialized by λ0 = 0 and terminated by ε = 10−4 · ‖b‖. This
value of ε leads to sufficiently small relative equilibria in the algebraic contact
problems (2.1)-(2.3) that are below the level 10−6. The algorithms are written
in Matlab 2009a. The computations are performed by Intel Core i5 (2.53GHz)
with RAM 4GB.
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Fig. 1 (a) Bodies Ω1 and Ω2, the applied tractions, and the triangulations (n = 1320,
m = 30). (b) Contact interface for the solution. (c) Distribution of the normal contact
stress. (d) Distribution of the tangential contact stress.

Example 1. We simulate exact solving of subproblems (3.13) using Algo-

rithm ISSNM with rtol = 1e−8 (and cfact = 0.8). Table 1 demonstrates the
fact that computations do not depend on ρ except of the extremely large value
of ρ, for which the algorithm oscillates; see Remark 1.

Table 1 SSNM: different ρ

ρ 1e−2 1 1e2 1e4 1e12

n/m iter/nA iter/nA iter/nA iter/nA iter/nA

5040/120 10/312 10/312 10/312 10/312 200/5373
19680/240 10/427 10/427 10/427 10/427 200/8403
43920/360 12/574 12/574 12/574 12/574 200/10275
77760/480 11/607 11/607 11/607 11/607 200/11876
121200/600 12/699 12/699 12/699 12/699 200/13061

if iter = 200, the default number of outer iterations is achieved

Example 2. The aim of this example is to find experimentally optimal values
of rtol and cfact for Algorithm ISSNM. In Tables 2 and 3, we summarize
some of our tests, from which one can propose: rtol = 0.1, cfact = 0.8. This
choice will be used below including Algorithm GISSNM.
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Table 2 ISSNM: ρ = σ−1
max, rtol = 0.1, different cfact

cfact 0.2 0.6 0.8 0.9 0.99

n/m iter/nA iter/nA iter/nA iter/nA iter/nA

1320/60 07/73 06/46 07/35 07/35 07/38
11160/180 10/178 10/124 09/49 09/49 09/49
30600/300 10/207 10/136 09/48 09/48 09/48
59640/420 10/239 10/147 09/49 09/49 09/49
98280/540 11/295 11/177 09/51 09/51 09/51
146520/660 11/324 11/213 10/57 09/51 09/51
204360/780 12/381 12/244 10/59 10/59 10/59

Table 3 ISSNM: ρ = σ−1
max, cfact = 0.8, different rtol

rtol 0.01 0.05 0.1 0.5 0.9

n/m iter/nA iter/nA iter/nA iter/nA iter/nA

1320/60 08/59 08/48 07/35 12/43 14/43
11160/180 10/78 09/54 09/49 12/50 17/50
30600/300 10/70 09/52 09/48 13/48 18/56
59640/420 09/63 09/56 09/49 13/49 20/58
98280/540 09/64 10/64 09/51 13/59 23/69
146520/660 10/75 09/55 10/57 15/58 16/60
204360/780 11/81 09/57 10/59 14/59 17/59

Example 3. Table 4 shows how Algorithm ISSNM behaves with respect to
the value ρ taken as β multiple of σ−1

max. We observe that the dependence on
β is weak.

Table 4 ISSNM: ρ = β · σ−1
max

β 0.05 1 1.9 20 100

n/m iter/nA iter/nA iter/nA iter/nA iter/nA

1320/60 07/35 07/35 07/35 07/36 10/48
11160/180 09/49 09/49 09/49 08/41 10/52
30600/300 09/48 09/48 09/48 08/43 10/55
59640/420 09/49 09/49 09/49 10/59 11/62
98280/540 09/51 09/51 09/51 09/45 12/72
146520/660 09/53 10/57 10/57 10/59 10/54
204360/780 10/59 10/59 10/59 10/61 10/56

Example 4. It is seen from Table 5 that the dependence of Algorithm GI-

SSNM on β is more significant. Although the algorithm is globally convergent
for 0 < β < 2, the best performance is achieved by β = 15. The convergence
rate is slow for β = 0.05 and the algorithm oscillates for β = 20.
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Table 5 GISSNM: ρ = β · σ−1
max

β 0.05 1 1.9 15 20

n/m iter/nA iter/nA iter/nA iter/nA iter/nA

1320/60 36/91 31/80 27/71 13/40 18/55
11160/180 109/237 82/184 64/146 26/69 200/410
30600/300 176/371 114/247 91/200 33/82 200/1827
59640/420 200/409 138/296 101/222 38/87 200/2013
98280/540 200/409 164/345 118/253 45/103 200/414
146520/660 200/409 172/364 126/270 47/105 200/2290
204360/780 200/409 186/386 138/290 49/108 200/2398

if iter = 200, the default number of outer iterations is achieved

Example 5. We compare Algorithm GISSNM with related algorithms. The
MPRGP denotes the algorithm of [10]. The role of ρ is played by the stepsize
α̃ in the MPRGP. Therefore, we set α̃ = ρ. The MPRGP-S is the MPRGP
modified so that the active/inactive sets are taken as in the SSNM (see Re-
mark 4). In Table 6, we introduce the matrix-vector multiplications nA leading
to comparable relative equilibria on the level 10−6. One can conclude that the
performance of Algorithm GISSNM and the MPRGP is comparable. The
use of the active/inactive sets from the SSNM may stabilize computations in
the sense that the MPRGP-S converges for β = 20 (with the best performance)
while the MPRGP oscillates in this case.

Table 6 Different algorithms: ρ = β · σ−1
max

GISSNM MPRGP-S MPRGP GISSNM MPRGP-S MPRGP
β 1.9 1.9 1.9 15 20 15

n/m nA nA nA nA nA nA

30600/300 200 252 185 82 78 78

43920/360 203 262 198 86 85 89

59640/420 222 278 219 87 90 83

77760/480 240 323 227 101 95 89

98280/540 253 339 250 103 102 96

121200/600 270 339 253 96 95 105

146520/660 270 356 262 105 109 115

174240/720 279 361 265 113 106 106

204360/780 290 381 286 108 109 110

Example 7. Figure 2 shows iteration history for different variants of the method.
We plot two graphs for each test: values of the cost function q (left) and values
of the reduced gradient norm ‖r̃ρ‖ (right). We observe values corresponding
to the union of all CGM iterations, i.e. to the sequence

⋃
k{λ

k,j}, that is
drawn by blue solid lines. The values corresponding to the Newton iterations
{λk} are depicted by red stars. Here, we use notation introduced in the figure
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caption. It is seen from SSNM, SSNM(5), and ISSNM(1) that the sequence
{q(λk) : k ≥ 1} is monotonously increasing, if the globally convergent result
does not hold. If ρ is to large, the algorithm may oscillate between two po-
sitions with the same reduced gradient norms, as it is seen in ISSNM(103).
The globally convergent algorithm GISSNM(1.9) leads to the monotonously
decreasing sequences of the cost function values, as it follows from the theory.
However, the total efficiency is higher for GISSNM(15), when the convergence
is non-monotonous due to ρ > 2σ−1

max. Finally, note that the finite termination
property proved in Theorem 2.(ii) is confirmed by the high jump in values of
the reduced gradient norm of SSNM after the last Newton iteration.

6.2 An extension to Coulomb friction

The benchmark in this subsection is a simplification of this one originally used
in [8]. Let us consider the clamp joint of the support of mines; see Figure 3
(left). These joints are placed in the tunnels to prevent buckling. The arch
of the support of mines consists of several segments that are tied by clamp
clips. In the center of attention is the place of contact, where these segments
overlap. For computations we interpret the situation as the planar problem.
The bodies A and D are the clamp elements and bodies B and C are the
supports. The parts of clamp join are steel with the Young moduls 210 000
MPa and the Poisson ratio 0.3. The thicknesses are different. Body A and
D have 10 mm, B and C have 40 mm. Different thickness simulates different
stiffness of the parts. Body C is fixed in space. The zero Dirichlet boundary
conditions are depicted by the red lines in the figure. The surface tractions 10
kN simulate the action of bolts, see the red arrows in the figure. The rests of
the boundaries are equipped by zero tractions and contact conditions. Contact
conditions including the Coulomb friction law are prescribed where necessary
with the constant coefficient of friction F = 0.3. On Figure 3 (right) resulting
total displacements are shown.

The contact problem with Coulomb friction is given by (1.1)-(1.4) with the
following minor change in (1.4): g is replaced by −Fσν . The algebraic problem
arising from the finite element approximation takes the form (2.1)-(2.3) with
gi replaced by F(λν + ρ(Nu − d))+i , where the superscript ”+” denotes the
non-negative part of a number [1]. In our algorithm, we combine the SSNM
with the TFETI domain decomposition method [6]. Each Newton iteration is
given by the primal-dual linear system Ayk+1 = b, where

A =




K N⊤ T⊤ B⊤
e

−ρD(Aν)N D(Iν) 0 0
−ρD(Aτ )T FD(Aν)(D(I−

τ )−D(I+
τ )) D(I+

τ ∪ I−
τ ) 0

Be 0 0 0


 ,
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Fig. 2 Iteration history. SSNM: exact solving of inner subproblems; SSNM(5): five CGM
iterations performed in each inner subproblem; ISSNM(β): β = 1 and β = 103; GISSNM(β):
β = 1.9 and β = 15; where ρ = β · σ−1
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0


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Fig. 3 Planar problem of the clamp joint (left). Total displacements (mm), n/m =
78230/12718 (right).

The active/inactive sets are defined by (3.8)-(3.12) with F(λk
i − ρrki )

+ in-
stead of gi. Be plays the role of the ”gluing” matrix interconnecting solution
components from artificial subdomains and λk+1

e approximates the respective
Lagrange multiplier. The remaining entries are analogous to the case of Tresca
friction. Eliminating uk+1, we get the reduced linear system with two concep-
tual distinctions: as the block diagonal matrix K is singular, an efficient proce-
dure form computing actions of a generalized inverse K† is needed (see [20] for
more details); as A is non-symmetric, the reduced linear systems are solved by
the projected BiCGSTAB algorithm for non-symmetric matrices [13,21]. The
adaptive inner precision control terminating BiCGSTAB iterations is used as
in Algorithm ISSNM.

We will compare the computational efficiency of the proposed algorithm
with the fixed point approach (FPA) combining the successive approximations
with the augmented Lagrangian method (see [5] and references therein). As the
symmetry of inner subproblems is guaranteed in the FPA, the MPRGP [10]
is used. The stopping criteria are chosen so that comparable accuracies of
the computed solutions are achieved (the relative equilibria are on the level
10−6). Optimal values of other parameters are used, e.g. ρ = α̃ = 1.9 · σ−1

max,
where σmax is the largest eigenvalue of A = BK†B⊤, B = (N⊤, T⊤, B⊤

e )⊤,
rtol = 0.5, and cfact = 0.9. All computations are performed by our Matsol li-
brary implemented in Matlab [17]. Decompositions onto artificial subdomains
are made by METIS [15]. In Table 7, s denotes the number of subdomains,
n is the number of primal variables (displacements), and m is the number
of dual variables (Lagrange multipliers). The total number of outer iterations
iter represents the Newton ones for the SSNM or combined the fixed point and
the augmented Lagrangian ones for the FPA. The computational complexity
is characterized by the total number nK of matrix-vector multiplications by
K† that is the most expensive operation. We can conclude that the SSNM is
more efficient than the FPA in 10 cases while the opposite situations appears
in 4 cases. Note that the complexity of computations (characterized by iter
and nK) is not monotonous when the size of the problem increases. This ob-
servation is typical when solving problems with a complicated geometry, since,
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e.g., contact nodes with a weak contact may differ on different discretization
levels.

It is known that the discrete contact problem with Coulomb friction has
a solution for any F , but its uniqueness is not guaranteed for F large [26].
When the problem has a continuum of solutions [31], the matrix A is singular
for the active/inactive sets in a solution.

Table 7 Coulomb friction: comparison of the algorithms

FPA SSNM

s n/m iter/nK iter/nK

10 67454/1942 23/697 29/1317
20 68236/2724 53/2170 24/898
40 69332/3820 13/766 30/1424

100 71936/6424 39/962 27/1865
150 73716/8204 33/779 22/690
200 75376/9864 31/890 23/499
260 77262/11750 57/1112 19/575
360 79814/14302 97/4674 21/459
400 80548/15036 56/1310 27/929
460 81908/16396 18/1268 36/982
500 82742/17230 31/1374 34/3168
600 84632/19120 31/995 19/335
900 89660/24148 80/2010 37/1389

1000 91086/25568 102/2020 26/994

7 Conclusions and comments

We have analyzed the SSNM applied to the solution of contact problems with
friction in 2D. We have shown for the Tresca friction law that the method
is equivalent to a restarted minimization procedure. The globally convergent
variant (Algorithm GISSNM) is closely related to the active set algorithms
originally developed for dual formulations of contact problems. The analogous
R-linear convergence rate holds. The numerical experiments indicate that the
heuristic implementation (Algorithm ISSNM) is more efficient. Namely, it
does not depend on the parameter determining the steplength along the pro-
jected gradient. We have experimentally tested the SSNM also for the Coulomb
friction law, when the inner linear systems are given by nonsymmetric matri-
ces. Although the convergence rate is not valid in this case, the experiments
are promising. A computational difficulty is hidden in possible floating bodies
(for Tresca as well as Coulomb friction), since an inappropriate choice of the
active/inactive sets may lead to a singular inner linear system. It is the rea-
son for prescribing Dirichlet boundary conditions for all bodies in our model
problems. An appropriate regularization is possible in such a case.
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Our analysis can be extended for 3D contact problems. However, it is more
involved due to projections onto circles in R

2 describing the friction law in
3D. The slanting function to such projection is constant outside the circle
only along lines going to the center. We postpone the analysis of 3D case to a
future work.

The SSNM is often used in function spaces, i.e. for problems in a continu-
ous setting. It implies immediately a scalable behavior of the outer (Newton)
loop, since each finite element approximation is a realization of the continuous
method with the same convergence property (superlinear convergence rate).
This result assumes, as we have already mentioned, exact solutions of inner
subproblems. We have surprisingly observed scalable computations also for
Algorithm ISSNM with the inexact implementation of the inner loop. A
sophisticated theory enabling to prove the scalability of discrete algorithms
related to our Algorithm GISSNM can be found in [5,8] (see also refer-
ences therein). The use of the TFETI domain decomposition method plays an
important role in this case.

Appendix

(A1) Let A, I be index sets such that A∪ I = {1, 2, . . . , 2m} and A∩ I = ∅.
We consider the problem

λ̄ = argmin q(λ) subject to λI = λk+1,0
I , (7.1)

where q(λ) = 1
2λ

⊤Aλ − λ⊤b is given by A ∈ R
2m×2m being symmetric, pos-

itive definite, b ∈ R
2m, and λk+1,0 ∈ Λ. Recall that Λ = {λ ∈ R

2m : 0 ≤
λi, |λi+m| ≤ gi, i ∈ M} and r = r(λ) = Aλ− b. We introduce the CGMfeas

with the stopping tolerance tol = tolk+1 > 0.

CGMfeas(A, b,A, λk+1,0, tol)

(1 ) r = Aλk+1,0 − b, pA = rA, pI = 0, j = 0

(2 ) while ‖rA‖ > tol ‖b‖ and λk+1,j ∈ Λ

(3 ) w = Ap, αcg = r⊤p/p⊤w

(4 ) λk+1,j+1 = λk+1,j − αcgp, j = j + 1

(5 ) r = r − αcgw, γ = r⊤AwA/p
⊤w, pA = rA − γpA

(6 ) endwhile

(7 ) if λk+1,j ∈ Λ

(8 ) return λk+1 = λk+1,j

(9 ) elseif λk+1,j 6∈ Λ

(10 ) αf = max{α ∈ [0, 1) : αλk+1,j − (1− α)λk+1,j−1 ∈ Λ}

(11 ) return λk+1 = αfλ
k+1,j − (1− αf )λ

k+1,j−1

(12 ) endif
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Steps (2 )-(6 ) represent the standard CGM loop with added the feasibility
test λk+1,j ∈ Λ in step (2 ). Steps (7 )-(12 ) define the result λk+1 ∈ Λ returned
by the CGMfeas . If λ

k+1,j 6∈ Λ, λk+1 is determined by the largest feasible
steplength αf in the last conjugate gradient direction. This is called the half
step in [10,5,19,9,7]. Note that the CGMfeas performs typically few CGM
iterations.

(A2) The CGM for solving (7.1) differs from the CGMfeas as follows: the
feasibility test is omitted from step (2 ) and steps (7 )-(12 ) are replaced by one
return step λk+1 = λk+1,j .

(A3) Let us replace the initial CGM iteration in Step 3.2 of Algorithm

GISSNM so that

λk+1,0
A = λk

A, λk+1,0
I = PΛ,I

(
λk − ρr(λk)

)
. (7.2)

The first CGM iteration (given by step (4 ) of the CGMfeas with j = 0)
satisfies:

λk+1,1
I = λk+1,0

I = PΛ,I

(
λk − ρr

(
λk

))

and

λk+1,1
A = λk+1,0

A − αcgrA
(
λk+1,0

)

= λk+1,0
A − αcg

(
AAAλ

k+1,0
A +AAIλ

k+1,0
I − bA

)

= λk
A − αcg

(
AAAλ

k
A +AAIPΛ,I

(
λk − ρr

(
λk

))
− bA

)

= λk
A − αcg

(
rA

(
λk

)
+AAI

(
PΛ,I

(
λk − ρr

(
λk

))
− λk

I

))

= λk
A − αcgrA

(
λk

)
+ αcgρAAI r̃ρ,I

(
λk

)

= λk
A − ρrA

(
λk

)
− (αcg − ρ)rA

(
λk

)
+ αcgρAAI r̃ρ,I

(
λk

)
,

where r̃ρ, denotes the reduced gradient (2.14) with α = ρ. Due to the definition
of the active/inactive sets (3.8)-(3.12), we have PΛ,A

(
λk − ρr

(
λk

))
= λk

A −

ρrA
(
λk

)
so that

λk+1,1 = PΛ

(
λk − ρr

(
λk

))
− s(λk) (7.3)

with sI(λ
k) = 0 and sA(λ

k) = (αcg − ρ)rA
(
λk

)
− αcgρAAI r̃ρ,I

(
λk

)
. The

following inequalities follows from the CGM:

q(λk) ≥ q(λk+1,0) ≥ q(λk+1,1).

Under assumptions that ρ ≤ αcg and r̃ρ,I
(
λk

)
is sufficiently small, one can

prove:
q(λk+1,0) ≥ q

(
PΛ

(
λk − ρr

(
λk

)))
≥ q(λk+1,1). (7.4)

The following interpretation yields from (7.3) and (7.4): if the initial CGM
iteration is given by (7.2), the full projection PΛ

(
λk − ρr

(
λk

))
is inherently

included in the SSNM after the first CGM iteration.
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9. Z. Dostál, R. Kučera: An optimal algorithm for minimization of quadratic functions with
bounded spectrum subject to separable convex inequality and linear equality constraints.
SIAM J. Optim. 20 (2010), 2913–2938.

10. Z. Dostál, J. Schöberl: Minimizing quadratic functions over non-negative cone with the
rate of convergence and finite termination. Comput. Optim. Appl. 30 (2005), 23–44.

11. F. Facchinei, J. S. Pang: Finite-dimensional variational inequalities and complemen-
tarity problems. Vol. 1 and Vol. 2, Springer Series in Operations Research and Financial
Engineering, Springer-Verlag, New York, 2003.

12. G. H. Golub, C. F. Van Loan: Matrix computation. The Johns Hopkins University
Press: Baltimore, 1996.
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