
INTERIOR POINT ALGORITHMS FOR 3D CONTACT PROBLEMS

Radek Kučera∗, Jitka Machalová, Pavel Ženčák

1. Introduction

We shall be concerned with solving

minimize 1
2
x>Ax− x>b,

subject to x1,i ≥ li, x2
2,i + x2

3,i ≤ g2
i , i = 1, . . . , m,

x = (x>1 , x>2 , x>3)> ∈ Rn,

(1)

where |x1| = |x2| = |x3| = m, n = 3m, A ∈ Rn×n is the symmetric, positive definite
Hessian matrix, b ∈ Rn, and l, g ∈ Rm. This problem arises, e.g., in duality based methods
for the solution of 3D contact problems of linear elasticity with Tresca friction. As a widely
used approach of contact problems with (more realistic) Coulomb friction is based on a
sequence of Tresca friction problems [2], an efficient solver for (1) is of crucial importance.
In this contribution we shall test algorithms based on an ”interior point” idea.

2. Description of algorithms

The solution to (1) exists, and it is necessarily unique. We denote it by x∗. It is well-
known [1] that x∗ is fully determined by the Karush-Kuhn-Tucker (KKT) conditions. The
basic idea of interior point methods consists in applying Newton iterations to equalities in
the KKT conditions while inequalities are satisfied strictly by damping Newton steps.

Let us introduce the Lagrangian L : Rn × R2m 7→ R associated with (1) by

L(x, λ, µ) =
1

2
x>Ax− x>b + λ>(l − x1) + µ>(X2

2 + X2
3 −G2)e,

where X2, X3, G ∈ Rm×m are defined by X2 = diag(x2), X3 = diag(x3), G = diag(g), and
e = (1, . . . , 1)> ∈ Rm. There is y∗ := (λ∗, s∗, µ∗, d∗) ∈ R4m so that the pair (x∗, y∗) is the
unique solution to the following system:

∂L
∂x

(x, λ, µ) = 0,
∂L
∂λ

(x, λ, µ) + s = 0, λ>s = 0,
∂L
∂µ

(x, λ, µ) + d = 0, µ>d = 0, (2)

λ ≥ 0, s ≥ 0, µ ≥ 0, d ≥ 0. (3)

∗Supported by grants GAČR 101/08/0574, and MSM6198910027.

1

Here, λ, and µ are the Lagrange multipliers while s, and d are the slack variables. The
classical KKT conditions can be derived from (2), (3) by eliminating the slack variables.

Let us divide A, b into blocks Aij, bi, i, j ∈ {1, 2, 3} consistently with the partition of x
onto x1, x2, x3. We can equivalently rewrite (2), (3) as

F (x, y) = 0, y ≥ 0, (4)

where y := (λ>, s>, µ>, d>)>, and F : Rn+4m 7→ Rn+4m,

F (x, y) :=

A11x1 + A12x2 + A13x3 − λ− b1

A21x1 + (A22 + 2M)x2 + A23x3 − b2

A31x1 + A32x2 + (A33 + 2M)x3 − b3

−x1 + s + l
ΛSe
(X2

2 + X2
3 −G2)e + d

MDe

with Λ, S, M,D ∈ Rm×m, Λ = diag(λ), S = diag(s), M = diag(µ), D = diag(d). The
Jacobi matrix to F reads as follows:

J(x, y) =

A11 A12 A13 −I 0 0 0
A21 A22 + 2M A23 0 0 2X2 0
A31 A32 A33 + 2M 0 0 2X3 0
−I 0 0 0 I 0 0

0 0 0 S Λ 0 0
0 2X2 2X3 0 0 0 I
0 0 0 0 0 D M

. (5)

Let (x(k), y(k)), y(k) > 0 be a known approximation of (x∗, y∗). The Newton direction
is the solution to the linear system

J(x(k), y(k))

(
∆x(k+1)

∆y(k+1)

)
= −F (x(k), y(k)), (6)

and the new iterate is

(x(k+1), y(k+1)) = (x(k), y(k)) + α(k)(∆x(k+1), ∆y(k+1)), (7)

where α(k) = min
∆y

(k+1)
i <0

{1,−δy
(k)
i /∆y

(k+1)
i } with δ ∈ (0, 1] providing y(k+1) > 0 (typically

δ = 0.999).
The computations based on (6), (7) can take short steps before violating y(k+1) > 0 so

that the convergence rate can be slow. Therefore we use two modifications [7] called path
following method, and (Mehrotra’s) predictor-corrector method keeping iterates deeper in
the feasible region so that it enables us to perform longer steps.

2

Let us replace (4) by

F (x, y) = (0>, 0>, 0>, 0>, τe>, 0>, τe>)>, y > 0, (8)

where τ > 0. Solutions (xτ , yτ) to (8) define in Rn × R4m
+ a curve C(τ) called central path

that leads to (x∗, y∗) as τ tends to zero. The next algorithm combines Newton iterations
for the equation in (8) with changes of τ so that the (modified) Newton steps follow C(τ).

Algorithm PF: Given x(0) ∈ Rn, y(0) ∈ R4m
+ , σl, σq, δ ∈ [0, 1], and ε ≥ 0. Set k := 0.

(1) Compute β
(k)
l = λ(k)>s(k)/m, β(k)

q = µ(k)>d(k)/m, and τ
(k)
l = σlβ

(k)
l , τ (k)

q = σqβ
(k)
q .

Solve

J(x(k), y(k))

(
∆x(k+1)

∆y(k+1)

)
= −F (x(k), y(k)) + (0>, 0>, 0>, 0>, τ

(k)
l e>, 0>, τ (k)

q e>)>, (9)

and generate (x(k+1), y(k+1)) by (7).

(2) If ‖(∆x(k+1), ∆y(k+1))‖Rn+4m ≤ ε, return (x̄, ȳ) = (x(k+1), y(k+1)), else set k := k + 1,
and go to step (1).

The parameters β
(k)
l , β(k)

q , and σl, σq are called duality measures, and centering param-
eters, respectively. Let us note that σl = σq = 0 reduces Algorithm PF to the standard
(damped) Newton method. Our choices of σl, and σq are based on the rule proposed in [4]:

σl = (min{2 · 10−3, 5 · 10−5(1− ξl)/ξl})3,

where ξl = mini=1,...,m{λ(k)
i s

(k)
i }/β(k)

l , and analogously for σq.
The second algorithm calculates centering parameters adaptively using second order

information (curvature) of the central path C(τ). First, in the predictor stage, we compute
duality measures βP

l , βP
q for the longest step of the (standard) Newton direction. Then,

in the corrector stage, we set σl, σq near 0, when the good progress along the predicted
direction is made, or near 1 conversely.

Algorithm PC: Given x(0) ∈ Rn, y(0) ∈ R4m
+ , δ ∈ (0, 1), and ε ≥ 0. Set k := 0.

(1) Solve

J(x(k), y(k))

(
∆xP

∆yP

)
= −F (x(k), y(k)),

compute αP = min∆yP
i <0{1,−y

(k)
i /∆yP

i }, and

βP
l = (λ(k) + αP ∆λP)>(s(k) + αP ∆sP)/m,

βP
q = (µ(k) + αP ∆µP)>(d(k) + αP ∆dP)/m.

(2) Set σl =
(
βP

l /β
(k)
l

)3
, σq =

(
βP

q /β(k)
q

)3
, compute (∆x(k+1), ∆y(k+1)) solving (9) with

the right-hand-side replaced by

−F (x(k), y(k)) + (0>, 0>, 0>, 0>,−e>∆ΛP ∆SP + τ
(k)
l e>, 0>,−e>∆MP ∆DP e + τ (k)

q e>)>,

3

and generate (x(k+1), y(k+1)) by (7).

(3) If ‖(∆x(k+1), ∆y(k+1))‖Rn+4m ≤ ε, return (x̄, ȳ) = (x(k+1), y(k+1)), else set k := k + 1,
and go to step (1).

3. Numerical experiments

3.1 Model problem. Let us consider a steel brick in R3 lying on a rigid foundation.
The brick occupies the domain Ω = (0, 3) × (0, 1) × (0, 1), whose boundary ∂Ω split into
three nonempty disjoint parts Γu = {0} × (0, 1) × (0, 1), Γc = (0, 3) × (0, 1) × {0}, and
Γp = ∂Ω \ (Γ̄u ∪ Γ̄c) with different boundary conditions. The zero displacements are
prescribed on Γu, whereas the surface tractions act on Γp. On Γc we consider the contact
conditions, i.e., the non-penetration, and the effect of friction. The elastic behavior of the
brick is described by Lamé equations that, after finite element discretization, lead to a
symmetric positive definite stiffness matrix K ∈ R3nc×3nc , and to a load vector f ∈ R3nc .
Moreover, we introduce full rank matrices N, T1, T2 ∈ Rm×3nc projecting displacements
at contact nodes to normal and tangential directions, respectively, and we denote B =(
N>, T>

1 , T>
2

)> ∈ R3m×3nc . For more details about this model problem we refer to [2].
Here, we shall use the dual formulation in terms of contact stresses. Considering only

Tresca friction, our model problem reduces directly to (1), where A = BK−1B>, b =
BK−1f , l = 0, and gi ≥ 0 are given slip bound values at contact nodes. Let us note that
unknowns x1, and x2, x3 represent the normal, and tangential contact stresses, respectively.

3.2 Inner solver . Our algorithms require repeatedly to solve the linear systems

J(x, y)

(
∆x
∆y

)
=

(
rx

ry

)
(10)

with the Jacobi matrix given by (5), and rx ∈ Rn, ry = (r>λ , r>s , r>µ , r>d)> ∈ R4m, ∆y =
(∆λ>, ∆s>, ∆µ>, ∆d>)> ∈ R4m. First we compute the solution to the reduced system
arising from (10) by eliminating increments with respect to the slack variables:

JR(x, y)

(
∆x
∆z

)
=

(
rx

rz

)
, (11)

where

JR(x, y) =

A11 A12 A13 −I 0
A21 A22 + 2M A23 0 2X2

A31 A32 A33 + 2M 0 2X3

−I 0 0 −Λ−1S 0
0 2X2 2X3 0 −M−1D

,

and rz = (r>λ − r>s Λ−1, r>µ − r>d M−1)> ∈ R2m, ∆z = (∆λ>, ∆µ>)> ∈ R2m. Then we obtain
the eliminated components by ∆s = Λ−1(rs − S∆λ), and ∆d = M−1(rd − D∆µ). It is
easy to prove that the Schur complement with respect to the second diagonal block in

4

JR(x, y) is positive definite provided y > 0. Therefore JR(x, y) is non-singular but indefi-
nite. In order to solve (11), we apply the conjugate gradient method with an appropriate
preconditioning [5, 6].

3.3 Tests . We compare the algorithms PF, and PC with the one presented in [3], here de-
noted by QPC. For various numbers of the primal, and dual degrees of freedoms (3nc/3m),
we report the computational time (time), the total number of the matrix-vector multiplica-
tions (nA), and, in case of the interior point algorithms, the number of the outer iterations
(out), and the number of the full steps (full), i.e. the steps with α(k) = 1. All computations
are performed by Matlab 7 on Pentium 4, 2.8 GHz with 1GB RAM.

The first experiments in Table 3.1 demonstrate the computational strategy in which
the Hessian matrix A is assembled (only in PF, and PC). As the time consumed by
assembling A predominates for larger 3nc/3m, this strategy seems to be non-acceptable
form more realistic contact problems.

QPC PF PC
3nc/3m time nA time timeA time timeA

162/54 0.29 203 0.07 0.03 (45%) 0.12 0.03 (26%)
900/180 2.08 311 0.68 0.34 (50%) 1.07 0.34 (31%)

2646/378 12.91 347 5.85 3.46 (59%) 7.00 3.26 (47%)
5832/648 53.4 384 27.1 18.1 (67%) 27.0 15.8 (59%)

10890/990 126.2 408 79.7 58.5 (73%) 90.0 60.5 (67%)
18252/1404 361.9 493 246.2 192.5 (78%) 274.0 184 (67%)
28350/1890 809.4 478 620.5 493.0 (79%) 677.6 493.5 (73%)

Table 3.1: A is assembled in PF, and PC (timeA is consumed by assembling A).

QPC PF, precond. 1 PC, precond. 1
3nc/3m time nA time nA out full time nA out full

162/54 0.29 203 0.25 97 19 11 0.30 195 27 16
900/180 2.08 311 0.94 112 20 12 1.20 154 17 11

2646/378 12.91 347 6.69 139 22 13 6.33 147 13 8
5832/648 53.4 384 29.33 173 25 13 23.8 157 13 7

10890/990 126.2 408 109.5 233 30 13 68.3 159 13 6
18252/1404 361.9 493 265.3 244 31 12 177.7 183 14 7
28350/1890 809.4 478 644.2 282 36 13 420.9 209 16 7

Table 3.2: A is not assembled, the preconditioner 1 is assembled.

In Tables 3.2, and 3.3 we present the computational efficiency of PF, and PC with
non-assembled A. We test two preconditioners for (10) based on an approximation of a

5

QPC PF, precond. 2 PC, precond. 2
3nc/3m time nA time nA out full time nA out full

162/54 0.29 203 0.28 154 27 12 0.23 148 16 12
900/180 2.08 311 0.98 112 20 14 1.05 138 13 8

2646/378 12.91 347 6.61 133 22 13 5.5 122 12 8
5832/648 53.4 384 26.6 150 24 13 22.6 145 13 8

10890/990 126.2 408 105.4 218 30 13 66.4 151 13 7
18252/1404 361.9 493 253.2 224 31 13 169.8 169 14 7
28350/1890 809.4 478 584.7 251 33 12 397.1 190 15 7

Table 3.3: A is not assembled, the preconditioner 2 is assembled.

Schur complement to the stiffness matrix K. While the first preconditioner uses diagonal
scaling, the second one requires more expensive computations [6]. Let us note that both
preconditioners are assembled.

4. Conclusions

In the contribution we present our first experience with solving contact problems by
the interior point algorithms. As the results seem promising many questions are still open,
namely the convergence prove of both algorithms. The future work consists also of applying
non-assembled preconditioners, and of implementing theoretically supported inner solvers.

References

[1] S. Boyd, L. Vandenberghe: Convex optimization. Cambridge University Press, Cam-
bridge 2004.

[2] J. Haslinger, R. Kučera, and Z. Dostál: An algorithm for the numerical realization
of 3D contact problems with Coulomb friction. J. Comput. Appl. Math., 164-165
(2004), pp. 387–408.

[3] R. Kučera: Convergence rate of an optimization algorithm for minimizing quadratic
functions with separable convex constraints. SIAM J. Optim., 19 (2008), pp. 846–862.

[4] J. Nocedal, A. Wächter, and R. A. Waltz: Adaptive barrier strategies for nonlinear
interior methods. TR RC 23563, IBM T.J. Watson Research Center, 2005.

[5] L. Lukšan, C. Matonoha, J. Vlček: Interior point methods for large-scale nonlinear
programming. TR No. 917, Academy of Sciences of the Czech Republic 2004.

[6] J. Machalová, P. Ženčák, and R. Kučera: Metody vnitřńıch bodu pro řešeńı úlohy
nelineárńıho programováńı. ODAM 2007, pp. 4–17.

[7] J. Nocedal, S. J. Wright: Numerical optimization. Springer, New York 1999.

6

