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1. Introduction

We shall be concerned with solving

minimize % rT Az — 70,
subject to @1; > 1, x5, + x5, < g2 i=1,...,m, (1)

= (x],7y,74)" €R",

where |z1| = |x2| = |x3] = m, n = 3m, A € R™" is the symmetric, positive definite
Hessian matrix, b € R”, and [, g € R™. This problem arises, e.g., in duality based methods
for the solution of 3D contact problems of linear elasticity with Tresca friction. As a widely
used approach of contact problems with (more realistic) Coulomb friction is based on a
sequence of Tresca friction problems [2], an efficient solver for (1) is of crucial importance.
In this contribution we shall test algorithms based on an ”interior point” idea.

2. Description of algorithms

The solution to (1) exists, and it is necessarily unique. We denote it by z*. It is well-
known [1] that * is fully determined by the Karush-Kuhn-Tucker (KKT) conditions. The
basic idea of interior point methods consists in applying Newton iterations to equalities in
the KKT conditions while inequalities are satisfied strictly by damping Newton steps.

Let us introduce the Lagrangian £ : R" x R?*™ — R associated with (1) by

1
Lz, A\ p) = 5:1:TA$ —2 b+ AN (I —2) + p (X2 + X2 — GP)e,
where Xo, X3, G € R™™ are defined by Xy = diag(zs2), X5 = diag(z3), G = diag(g), and

e=(1,...,1)T € R™. There is y* := (\*, s*, u*,d*) € R™ so that the pair (z*,y*) is the
unique solution to the following system:

oL L oc 0 aT._qg 9L 0 4T
%(%NM)-Q a)\(vaaM)_l—S_(L >\ 5_07 au(‘ra>%ﬂ)+d_07 H d_oa (2)
A>0,8>0, u>0,d>0. (3)
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Here, A\, and p are the Lagrange multipliers while s, and d are the slack variables. The
classical KKT conditions can be derived from (2), (3) by eliminating the slack variables.

Let us divide A, b into blocks A;;, b;, 7, j € {1, 2,3} consistently with the partition of x
onto 1, Ta, v3. We can equivalently rewrite (2), (3) as

F(z,y) =0, y=0, (4)
where y := (AT,s", u",d")7, and F : RnHim s Rrtim,

Anzy + Aprg + Ajges — A — by
Anxy + (Age + 2M)xs + Agzws — by
Ag1x1 + Agowo + (Ass + 2M)xs — by
F(z,y):=| —x1+s+1

ASe

(X24+ X2 —-G?e+d

M De

with A, S, M,D € R™™ A = diag()\), S = diag(s), M = diag(u), D = diag(d). The
Jacobi matrix to F' reads as follows:

AH Alg A13 -1 0 0 0
Ay Ags +2M Ay 0 0 2X, 0
A31 A32 A33 +2M 0 0 2X;3 0
J(xy)=1| —I 0 0| 0 I 0 0 (5)
0 0 0] S A 0 O
0 2X5 2X3] 0 O 0 I
0 0 0 0 O D M

Let (z®,y®), y® > 0 be a known approximation of (z*,y*). The Newton direction
is the solution to the linear system

Ax(kJrl)
J (™, y*) ( Ay+) | = —F(a®, y®)), (6)
and the new iterate is
(a:(k“), y(k+1)) — (x(k)’ y(k)) + a(k)(Ax(kJrl)’ Ay(kJrl))’ (7)

where a®) = minAy§k+1)<0{1, —5y§k)/Ayfk+l)} with 6 € (0, 1] providing y*+Y > 0 (typically
d =0.999).

The computations based on (6), (7) can take short steps before violating y*+% > 0 so
that the convergence rate can be slow. Therefore we use two modifications [7] called path
following method, and (Mehrotra’s) predictor-corrector method keeping iterates deeper in
the feasible region so that it enables us to perform longer steps.
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Let us replace (4) by
F(z,y)=(0",0",0",0",7¢",0",7¢")", y >0, (8)

where 7 > 0. Solutions (z7,y") to (8) define in R™ x R{™ a curve C(7) called central path
that leads to (z*,y*) as 7 tends to zero. The next algorithm combines Newton iterations
for the equation in (8) with changes of 7 so that the (modified) Newton steps follow C(7).

ALGORITHM PF: Given 29 € R*, ¢ ¢ Ri™, 07,04,60 € [0,1], and € > 0. Set k := 0.

(1) Compute ﬁl(k) = )\(k)Ts(k)/m, ﬁék) = H(k)Td(k)/m, and Tl(k) = UZﬁl(k)> Tq(k) = Uqﬁ,gk)-
Solve
A.flf(k+1) k
J(z®) k) < Ay | = —F(z® 4™y 4+ (0T,07,07,07, 7 )eT,OT,Ték)eT)Ta (9)

and generate (z*+1) y*+D) by (7).

(2) If [[(Az* D AyEHD) ||gnram < €, return (Z,7) = (2D yE+HD) else set k 1= k + 1,
and go to step (1).

The parameters Bl(k), ﬂgk), and o0y, 0, are called duality measures, and centering param-
eters, respectively. Let us note that 0; = 0, = 0 reduces ALGORITHM PF to the standard
(damped) Newton method. Our choices of 0, and o, are based on the rule proposed in [4]:

oy = (min{2-107%,5-107°(1 — &)/&})?,

where & = min;—; m{)\gk)sgk)} / 6l(k), and analogously for o,.

The second algorithm calculates centering parameters adaptively using second order
information (curvature) of the central path C(7). First, in the predictor stage, we compute
duality measures (3, ﬁ(f for the longest step of the (standard) Newton direction. Then,
in the corrector stage, we set o;, o, near 0, when the good progress along the predicted

direction is made, or near 1 conversely.
ALcoriTHM PC: Given 2?0 € R", y© € R4™ § € (0,1), and € > 0. Set k := 0.
(1) Solve

P
) (g ) =),
compute a” = miny,r {1, —y/AyF}, and

gl = (AW L aP AN (W) 4 aP AsP) /m,
pr = (® + o AT (d® + o AdP) /m.

(2) Set o = (ﬁf/ﬁl(k)>3, o, = (ﬁf/ﬁék))g, compute (Az*D Ay*+1)) solving (9) with
the right-hand-side replaced by

_F(:L,(k)’y(k)) + (OT,OT’OT’OT’ —eTAAPASE + Tl(k)eT’OT7 —e"AMPADFe + Tq(k)eT)T,
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and generate (z#1) ¢*+D) by (7).

(3) If |[(Ax* D Ay*+D)||gniam < €, return (Z,7) = (2*+D, y*+)) else set k = k + 1,
and go to step (1).

3. Numerical experiments

3.1 Model problem. Let us consider a steel brick in R? lying on a rigid foundation.
The brick occupies the domain 2 = (0,3) x (0,1) x (0,1), whose boundary 952 split into
three nonempty disjoint parts I, = {0} x (0,1) x (0,1), ', = (0,3) x (0,1) x {0}, and
r, = o0\ (I, UT,) with different boundary conditions. The zero displacements are
prescribed on I',, whereas the surface tractions act on I',. On I'; we consider the contact
conditions, i.e., the non-penetration, and the effect of friction. The elastic behavior of the
brick is described by Lamé equations that, after finite element discretization, lead to a
symmetric positive definite stiffness matrix K € R3"<*3%¢ and to a load vector f € R3",
Moreover, we introduce full rank matrices N, Ty, T, € R™*3"% projecting displacements
at contact nodes to normal and tangential directions, respectively, and we denote B =
(N Ty )T € R3™*3ne For more details about this model problem we refer to [2].
Here, we shall use the dual formulation in terms of contact stresses. Considering only
Tresca friction, our model problem reduces directly to (1), where A = BK-'BT b =
BK='f, 1 =0, and g; > 0 are given slip bound values at contact nodes. Let us note that
unknowns x1, and xo, x3 represent the normal, and tangential contact stresses, respectively.

3.2 Inner solver. Our algorithms require repeatedly to solve the linear systems

e (3)-(3)

with the Jacobi matrix given by (5), and r, € R", r, = (rI,rJ,rI,rdT)T € R™ Ay =

(AXNT,AsT, ApT,Ad™)T € R*. First we compute the solution to the reduced system
arising from (10) by eliminating increments with respect to the slack variables:

e (32 )=(17) 1)

where
An Aip Ais -1 0
Ay Agy +2M Ao 0 2X5
Jr(z,y) = | Az Asy Asz +2M 0 2X3 |,
-1 0 0| =A"LS 0
0 2X5 2X3 0 —M~'D

andr, = (ry —r/A™ ) —rg M™)T € R¥™ Az = (AXT,Ap")" € R*™. Then we obtain
the eliminated components by As = A71(r, — SAN), and Ad = M~Y(rq — DAp). Tt is

easy to prove that the Schur complement with respect to the second diagonal block in
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Jr(z,y) is positive definite provided y > 0. Therefore Jg(z,y) is non-singular but indefi-
nite. In order to solve (11), we apply the conjugate gradient method with an appropriate
preconditioning [5, 6].

3.3 Tests. We compare the algorithms PF, and PC with the one presented in [3], here de-
noted by QPC. For various numbers of the primal, and dual degrees of freedoms (3n./3m),
we report the computational time (¢ime), the total number of the matrix-vector multiplica-
tions (n4), and, in case of the interior point algorithms, the number of the outer iterations
(out), and the number of the full steps (full), i.e. the steps with a*) = 1. All computations
are performed by Matlab 7 on Pentium 4, 2.8 GHz with 1GB RAM.

The first experiments in Table 3.1 demonstrate the computational strategy in which
the Hessian matrix A is assembled (only in PF, and PC). As the time consumed by
assembling A predominates for larger 3n./3m, this strategy seems to be non-acceptable
form more realistic contact problems.

QPC PF PC
3n./3m || time \ ng || time \ timey time \ timey
162/54 0.29 | 203 0.07 | 0.03 (45%) 0.12 | 0.03 (26%)
900/180 2.08 | 311 0.68 | 0.34 (50%) 1.07 | 0.34 (31%)
2646/378 || 12.91 | 347 5.85 | 3.46 (59%) 7.00 | 3.26 (47%)
5832/648 53.4 | 384 27.1 | 18.1 (67%) 27.0 | 15.8 (59%)
10890/990 || 126.2 | 408 79.7 | 58.5 (73%) 90.0 | 60.5 (67%)
(78%) (67%)
(79%) (73%)

18252/1404 || 361.9 | 493 || 246.2 | 192.5 (78%) || 274.0 184 (67%
28350/1890 || 809.4 | 478 || 620.5 | 493.0 (79%

677.6 | 493.5 (73%

Table 3.1: A is assembled in PF, and PC (time, is consumed by assembling A).

QPC PF, precond. 1 PC, precond. 1

3n./3m || time \ na || time \ na \ out \ full || time \ na \ out \ full
162/54 | 0.29 | 203 | 025| 97| 19| 11 0.30 | 195 | 27| 16
900/180 || 2.08 | 311 || 0.94 | 112 | 20| 12 1.20 | 154 | 17| 1
2646/378 || 12.91 | 347 || 6.69 | 139 | 22| 13| 6.33 | 147 | 13
5832/648 | 53.4 | 384 |1 29.33 | 173 | 25| 13| 23.8 | 157 | 13
10890/990 || 126.2 | 408 || 109.5 | 233 | 30 | 13| 68.3 | 159 | 13
18252/1404 || 361.9 | 493 || 265.3 | 244 | 31| 12 | 177.7 | 183 | 14

28350/1890 || 809.4 | 478 || 644.2 | 282 | 36| 13 || 420.9 | 209 | 16

~| 3| o~ oo =

Table 3.2: A is not assembled, the preconditioner 1 is assembled.

In Tables 3.2, and 3.3 we present the computational efficiency of PF, and PC with
non-assembled A. We test two preconditioners for (10) based on an approximation of a
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QPC PF, precond. 2 PC, precond. 2

3ne/3m || time | na | time | na | out | full | time | na | out | full
162/54 0.29 | 203 0.28 | 154 | 27| 12 0.23 | 148 | 16 12
900/180 2.08 | 311 098 | 112 | 20 14 1.05 | 138 | 13 8
2646/378 12.91 | 347 6.61 | 133 | 22 13 5.5 | 122 12
5832/648 53.4 | 384 26.6 | 150 | 24 13 226 | 145 | 13
10890/990 | 126.2 | 408 || 105.4 | 218 | 30 13 66.4 | 151 13
18252/1404 361.9 | 493 || 253.2 | 224 | 31 13 || 169.8 | 169 14

28350/1890 || 809.4 | 478 || 584.7 | 251 | 33| 12| 397.1 | 190 | 15

~1| ~3| 1| oo 0

Table 3.3: A is not assembled, the preconditioner 2 is assembled.

Schur complement to the stiffness matrix K. While the first preconditioner uses diagonal
scaling, the second one requires more expensive computations [6]. Let us note that both
preconditioners are assembled.

4. Conclusions

In the contribution we present our first experience with solving contact problems by

the interior point algorithms. As the results seem promising many questions are still open,
namely the convergence prove of both algorithms. The future work consists also of applying
non-assembled preconditioners, and of implementing theoretically supported inner solvers.
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