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Abstract. Efficient methods for solving the Stokes problem with a friction effect simulated by the slip boundary condition
are developed. The dual formulation of the problem arising from the finiteelement approximation leads to the minimization
of the strictly quadratic function with few unknowns constrained by simple bounds. Two solution algorithms highly efficient
in contact solid mechanics are tested: the active set strategy and the path-following variant of the interior point method.
Numerical experiments conclude the paper.
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INTRODUCTION

Observing a fluid flow along a solid impermeable wall, one can notice in some applications a variable tangential
velocity of the fluid that may depend on a material quality or ashape of the wall. Such behaviour of the fluid is usually
simulated by the slip boundary condition. It is used for modelling the blood flow, the metal forming processes, the
polymer flow, or the hydrodynamics problems; see [11, 1] and references therein. Conditions of this type are used also
in contact problems of solid mechanics, where they describefriction laws between bodies [6].

Our paper deals with the slip boundary condition analogous to the Tresca friction law. To demonstrate difficulties
and still to keep ideas as clear as possible, we consider the Stokes problem in a planar domain. The weak formulation
leads to the variational inequality of the second kind that is equivalent to the minimum of the total potential energy [1].
The finite element approximation leads to the algebraic problem given by the minimization of the non-differentiable
energy function subject to two linear equality constraintsdescribing the impermeability of the slip part of the boundary
and the incompressibility of the fluid. After eliminating the velocity components, we get the smooth dual function in
terms of three Lagrange multipliers. The first Lagrange multiplier regularizes the problem. Its components are subject
to simple bounds. The other two Lagrange multipliers treat the impermeability and the incompressibility conditions.
The third Lagrange multiplier plays the role of the pressurein the whole fluid domain. The solution to the dual
problem is computed by the active set algorithm [3, 2, 10] or by the path-following algorithm that is a variant of the
interior point method [9]. These algorithms represent conceptually different strategies how to solve the dual problem.
Numerical experiments illustrate computational efficiencies.

FORMULATION OF THE MODEL PROBLEM

Let Ω be a bounded domain inR2 with a sufficiently smooth boundary∂Ω that is split into three disjoint parts:
∂Ω = γD ∪ γN ∪ γC. We consider the model of the viscous flow of an incompressible Newtonian fluid modelled by the
Stokes equations inΩ with the Dirichlet and Neumann boundary conditions onγD andγN, respectively, and with the
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impermeability and the slip boundary conditions onγC:

−ν∆u+∇p = f in Ω,
∇ ·u = 0 in Ω,

u = uD on γD,
σσσ = σσσN on γN,
un = 0 on γC,
|σt | ≤ g on γC,

|σt |< g ⇒ ut = 0 on γC,
|σt |= g ⇒ ∃k≥ 0 : ut = −kσt on γC,











































(1)

where

σσσ = ν
du
dn

−pn.

Here,u = (u1,u2) is the flow velocity function,p is the pressure function,f = (f1,f2) describes forces acting on the
fluid, ν > 0 is the kinematic viscosity,uD andσσσN are the Dirichlet and Neumann boundary data, respectively,n andt
are the unit outer normal and tangential vectors to∂Ω, respectively,un = u ·n andut = u · t, σt = σσσ · t are the normal
and tangential components ofu, σσσ alongγC, respectively, andg≥ 0 is the slip bound function onγC. We will always
assume thatγD 6= /0 andγC 6= /0. The existence of an unique (weak) solution componentu is proved in [1]. The existence
of an uniquep is guaranteed, e.g., whenγN 6= /0 [4]

ALGEBRAIC FORMULATIONS

The finite element approximation of (1) leads to the following algebraic problem:

Find ū∈ V such thatJ (ū)≤ J (u) ∀u∈ V, (2)

whereJ (u) = 1
2u⊤Au−u⊤b+g⊤|Tu|, V= {u∈R

nu : Nu= 0, Bu= 0}, A∈R
nu×nu is symmetric, positive definite,

T,N ∈ R
nc×nu, B ∈ R

np×nu are full row-rank,b ∈ R
nu, andg ∈ R

nc
+ ; np is the number of nodes,nc is the number of

nodes lying onγC\γD, andnu is the dimension of the algebraic solution representing thevelocity. The constraints inV
describe the impermeability and incompressibility conditions. Nota that (2) is generated from (1) using finite elements
satisfying theinf-supstability condition [4].

Let us introduce the LagrangianL : Rnu ×Λ 7→ R to (2) defined by

L (u,λ ) =
1
2

u⊤Au−u⊤b+λ⊤Cu,

whereΛ= {λt ∈R
nc : |λt | ≤ g}×R

nc+np, λ = (λ⊤
t ,λ⊤

n , p⊤)⊤ ∈Λ is the Lagrange multiplier, andC= (T⊤,N⊤,B⊤)⊤.
The minimization problem (2) is equivalent to the followingsaddle-point formulation:

Find (ū, λ̄ ) ∈ R
nu ×Λ such thatL (ū,λ )≤ L (ū, λ̄ )≤ L (u, λ̄ ) ∀(u,λ ) ∈ R

nu ×Λ. (3)

Eliminating the velocity component by ¯u= A−1(b−C⊤λ̄ ), we get the dual problem:

Find λ̄ ∈ Λ such that q(λ̄ )≤ q(λ ) ∀λ ∈ Λ, (4)

whereq(λ ) = 1
2λ⊤Fλ −λ⊤d with the symmetric, positive definite dual HessianF =CA−1C⊤ andd =CA−1b.

AlthoughJ is non-differentiable due to the last term, the dual problemconsists in minimizing the strictly quadratic
function that is smooth. The minimum to the dual problem willbe computed by algorithms highly efficient in contact
problems of solid mechanics [3, 9]. Note that the dual problem (4) containsnc constrained components (ofλt), while
remainingnc+np components (ofλn andp) are unconstrained. Asnp corresponds to the whole fluid domain andnc
only to the slip part of the boundary, it is typicallynp ≫ nc for finer meshes. Therefore, only few unknowns are subject
to constraints for large algebraic problems. This fact influences considerably the efficiency of computations.



NUMERICAL EXPERIMENTS

The problem (1) is approximated by the P1-bubble/P1 [7] and P2/P1 [4] finite elements on triangular meshes. The
inf-supstability of the Lagrange multipliers is proved in [1] for the P1-bubble/P1 finite elements. In the case of the
P2/P1 finite elements, the stability is observed experimentally, if the friction effect is considered at vertices of triangles
lying on γC [8].

The geometry ofΩ is seen in Figure 1. The decomposition of the boundary∂Ω is as follows:γD = (0,1)×{1},
γNleft = {0}× (0,1), γNright = {1}× (0,1), γN = γNleft ∪ γNright , andγC = {(x,−0.1sin(2πx)) : x∈ (0,1)}. The forcesf,
and the boundary datauD, σσσN are defined by the analytic solution of [7] that is known for the pure Dirichlet-Neumann
problem (with the Dirichlet boundary condition consideredalso onγC). The analytic solution is unknown in our case
that is the situation typical for problems with friction. Weprescribe differentg onγC in order to demonstrate all friction
effects; see Figure 2 .
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FIGURE 1. Solution for the P1-bubble/P1 finite elements,g= 10: isobar lines (left) and velocity field (right).

In Tables 1 and 2 we summarize results of our numerical tests.In columns labeled by AS and PF we introduce
the number of matrix-vector multiplications by the dual HessianF and the CPU time (in seconds) for the active set
algorithm [3] and the path-following algorithm [9], respectively. We use the different terminating tolerance (10−5 for
AS and 10−3 for PF) leading to comparable residua of computed solutions. Note that the size of the dual problem
treated by these algorithms isnp+2nc. The symbol ">5000" stands for situations, when the terminating criterion is
not achieved for the default number of iterations. All codesare implemented in Matlab 2013b and the computations
are performed by ANSELM supercomputer at VŠB-TU Ostrava.
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FIGURE 2. g= 1 (left): the slip bound is achieved all onγC; g= 10 (middle): the slip bound is achieved on a part ofγC; g= 50
(right): the slip bound is not achieved onγC



TABLE 1. P1-bubble/P1 finite elements

slip bound g= 1 g= 10 g= 50

nu/np/nc AS PF AS PF AS PF

544 / 289 / 17 91 (0.03) 115 (0.04) 250 (0.60) 127 (0.10) 125 (0.12) 157 (0.04)
2112 / 1089 / 33 111 (0.15) 117 (0.15) 1094 (1.98) 178 (0.28) 151 (0.20) 153 (0.18)
8320 / 4225 / 65 151 (1.88) 113 (1.63) 4993 (54.03) 194 (2.24) 205 (2.32) 216 (2.43)
33024 / 16641/ 129 123 (8.67) 170 (13.71) > 5000 259 (18.98) 676 (46.00) 180 (13.27)
131584 / 66049 / 257 184 (99.71) 173 (108.09) > 5000 252 (148.51) 2090 (1121.5) 319 (181.49)

TABLE 2. P2/P1 finite elements

slip bound g= 1 g= 10 g= 50

nu/np/nc AS PF AS PF AS PF

544 / 81 / 9 58 (0.03) 80 (0.04) 128 (0.28) 98 (0.06) 67 (0.03) 93 (0.04)
2112 / 289 / 17 78 (0.37) 97 (0.35) 271 (0.87) 110 (0.34) 85 (0.43) 99 (0.39)
8320 / 1089 / 33 82 (1.43) 96 (1.76) 870 (12.90) 119 (1.96) 100 (1.49) 87 (1.45)
33024 / 4225 / 65 102 (10.56) 105 (12.83) 3153 (304.15) 107 (12.44) 150 (15.02) 123 (13.66)
131584 / 16641 / 129 111 (97.45) 116 (122.33) > 5000 187 (184.90) 273 (236.42) 114 (114.73)
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