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Abstract The present article deals with fictitious domain methods for numerical
realization of scalar variational inequalities with the Signorini type conditions on the
boundary. Two variants are introduced and analyzed. A discretization is done by finite
elements. It leads to a system of non-smooth, piecewise linear equations. This system
is solved by the semismooth Newton method. Numerical experiments confirm the
efficiency of this approach.
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1 Introduction

Fictitious domain methods (FDM) belong to a class of methods for numerical realiza-
tion of large scale linear algebraic systems arising from finite element discretizations
of elliptic boundary value problems. Their idea is simple: the original problem defined
in a domain ω is replaced by a new one formulated in a larger domain � ⊃ ω with a
simple shape (a box, e.g.). The new problem is chosen in such a way that its solution
restricted to ω coincides with the solution of the original problem. Since� has a sim-
ple shape, one can use specific partitions for constructing finite element spaces. Here
we confine ourselves to the so-called non-fitted meshes when the partition of � does
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70 J. Haslinger et al.

not respect the geometry of ω. In this case uniform meshes represent a natural choice
and the resulting stiffness matrix does not depend on ω. In addition, it has a structure
enabling us to use fast solvers. There are several ways how to define the problem in�
with the property mentioned above. One of them is the method of boundary Lagrange
multipliers which has been used for solving Dirichlet boundary value problems [6–8]
and Neumann problems [9]. This approach however suffers from a serious drawback:
the solution is only from H3/2−η(�), η > 0, due to a generally non-zero jump of the
normal derivative across γ (the boundary ofω). If non-fitted meshes are used, then this
singularity appears inside of some elements of the used partition, namely those ones
the interior of which is cut by γ . Consequently, the theoretical rate of convergence of
approximate solutions in the H1(�)-norm can not exceed 1/2. In addition, the biggest
error is concentrated around γ which explains also a slower convergence in the H1(ω)-
norm of solutions restricted to ω. To improve the accuracy in ω, the authors proposed
in [10] a new variant of FDM . Instead of Lagrange multipliers on γ they used control
variables defined on a close curve� in� having a positive distance fromω and enforc-
ing the Dirichlet condition on γ to be satisfied. The solution is still singular in � but
the singularity is shifted from γ to � and as a result, convergence in ω became faster.
The aim of this article is twofold: first to introduce a fictitious domain formulation of
unilateral boundary value problems and secondly, to propose its “smooth” variant in
the spirit mentioned above. We focus on a simple scalar variational inequality with Si-
gnorini type conditions on γ , but a similar approach can be used for contact problems,
e.g. Our fictitious domain formulation consists of an elliptic equation in� completed
by an equation on γ for the projection operator onto a convex set which represents
the equivalent expression of the unilateral conditions prescribed there. Similarly to
the Dirichlet problem we shall consider two cases, namely: (i) boundary Lagrange
multipliers on γ ; (ii) control variables on�, where� is a close curve exterior toω. The
reason for considering (ii) is the same as above, namely to smooth (at least partially)
our fictitious domain solution in a vicinity of ω. In both cases the auxiliary boundary
variables enforce the satisfaction of the unilateral conditions. We prove the existence
and uniqueness of the solution in (i). On the other hand, (ii) is more involved. The
existence analysis is based on approximate controllability type results. We show that
using square integrable controls on � we are able to satisfy the unilateral conditions
either exactly provided that an appropriate small source term δ is added on γ or with
an arbitrary accuracy if this term is neglected. A typical finite element discretization
gives a large system of linear equations completed with a small system of piecewise
linear (i.e. non-smooth) equations which arise from a discretization of the unilateral
conditions. The resulting algebraic problem is numerically solved by a semismooth
Newton method [3,4,11]. Each linearized step leads to a non-symmetric, saddle-point
type system which can be solved very efficiently by a projected Schur complement
method [10]. The authors would like to emphasize that this article is focused solely
on the continuous setting of this approach while its discretization is taken only as a
tool for verifying its applicability.

The article is organized as follows: in Sect. 2 two variants of the fictitious domain
formulation are introduced. Section 3 deals with the existence analysis for both vari-
ants, including the proof of an approximate controllability property which is needed
in (ii). In Sect. 4, we describe a discretization of the problem. The special emphasize
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Fictitious domain formulations of unilateral problems 71

is paid on the approximation of the non-smooth equation defining the unilateral condi-
tions. Section 5 is devoted to algorithmic aspects of this method such as the semismooth
Newton method, the active set strategy and main ideas of the projected Schur comple-
ment method. Finally, Section 6 presents numerical results of three model examples.

2 Setting of the problem

We shall consider the following unilateral problem in a bounded domain ω ⊂ R
2 with

the Lipschitz continuous boundary γ :

−�u + u = f in ω,

u ≥ g, ∂u
∂nγ

≥ 0, ∂u
∂nγ

(u − g) = 0 on γ,

}
(2.1)

where f ∈ L2
loc(R

2), g ∈ H1/2(γ ) are given functions and ∂
∂nγ

denotes the normal

derivative of a function on γ .
The weak formulation of (2.1) reads as follows:

Find u ∈ K such that
(u, v − u)1,ω ≥ ( f, v − u)0,ω ∀v ∈ K ,

}
(P)

where

K = {v ∈ H1(ω)| v ≥ g a.e. on γ }

is the closed convex set and (· , ·)k,S stands for the scalar product in Hk(S), k ≥ 0
integer (H0(S) := L2(S)). It is well-known that (P) has a unique solution.

Denote

H1/2(γ ) = {ϕ ∈ L2(γ )| ϕ = v on γ, v ∈ H1(ω)},
H−1/2(γ ) = (H1/2(γ ))′ (dual of H1/2(γ )),

H−1/2
+ (γ ) = cone of all non-negative elements of H−1/2(γ ).

An alternative (and equivalent) formulation of P is given by

Find u ∈ H1(ω) such that

(u, v)1,ω = ( f, v)0,ω + 〈 ∂u
∂nγ

, v〉γ ∀v ∈ H1(ω),

∂u
∂nγ

∈ H−1/2
+ (γ ),

〈µ− ∂u
∂nγ

, u − g〉γ ≥ 0 ∀µ ∈ H−1/2
+ (γ ),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.2)

where 〈·, ·〉γ is the duality pairing between H−1/2(γ ) and H1/2(γ ).
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72 J. Haslinger et al.

Assumption Throughout this article we shall suppose that ∂u
∂nγ

∈ L2+(γ ). This

assumption is satisfied provided that g ∈ H3/2(γ ) and ω has a sufficiently smooth
boundary or ω is polygonal and convex since u ∈ H2(ω) [2]. In this case, the last
inequality in (2.2) can be written as

(µ− ∂u

∂nγ
, u − g)0,γ ≥ 0 ∀µ ∈ L2+(γ ). (2.3)

Let P denote the projection of L2(γ ) onto L2+(γ ). Then

Pϕ = max{0, ϕ} ∀ϕ ∈ L2(γ ) (2.4)

and (2.3) is equivalent to

∂u

∂nγ
= P(

∂u

∂nγ
− ρ(u − g)), (2.5)

where ρ > 0 is arbitrary. Thus assuming ∂u
∂nγ

∈ L2(γ ), problem P can be expressed

as the system of two equations:

(u, v)1,ω = ( f, v)0,ω + ( ∂u
∂nγ

, v)0,γ ∀v ∈ H1(ω),

∂u
∂nγ

= P( ∂u
∂nγ

− ρ(u − g)), ρ > 0,

⎫⎬
⎭ (2.6)

which will be a starting point for our next considerations.
Next, we shall introduce two variants of a fictitious domain formulation. To this

end we choose a bounded domain � having a simple shape (a box, e.g.) such that
ω ⊂ � and construct a close curve � ⊂ � surrounding ω. We shall distinguish two
cases depending on the mutual position of γ and �:
(i) γ = �; (ii) dist(γ, �) > 0 (see Fig. 1).

Fig. 1 Geometry of the problem
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Fictitious domain formulations of unilateral problems 73

We define the following problem in �:

Find (û, λ) ∈ H1
0 (�)× H−1/2(�) such that

(û, v)1,� = ( f, v)0,� + 〈λ, v〉� ∀v ∈ H1
0 (�),

∂
∂nγ

û(ω) ∈ L2(γ ),

∂
∂nγ

û(ω) = P( ∂
∂nγ

û(ω)− ρ(û(ω)− g)), ρ > 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(P̂(�))

where û(ω) := û|ω and 〈·, ·〉� stands for the duality pairing between H−1/2(�) and
H1/2(�).

Problem P̂(�)will be called the fictitious domain formulation of the unilateral prob-
lem (2.1). If � = γ , we speak on the nonsmooth variant, otherwise P̂(�) is termed
the smooth variant (the reason for this terminology will be clarified in Remark 3.2).
The relation between P̂(�) and P follows from the next Lemma.

Lemma 2.1 Let (û, λ) be a solution of P̂(�). Then û(ω) solves P .

Proof From the first equation in P̂(�) we obtain:

−�û(ω)+ û(ω) = f in ω.

The unilateral conditions on γ are hidden in the last equation in P̂(�). 	

Remark 2.1 Any solution (û, λ) of P̂(�) satisfies:

−�û + û = f in �1 ∪ (� \�1),[
∂ û
∂n�

]
�

= λ on �,

û = 0 on ∂�,

⎫⎪⎬
⎪⎭

where�1 is the domain between ∂� and �,
[
∂
∂n�

]
�

stands for the jump of the normal

derivative across �. In addition, the unilateral conditions for û|ω are satisfied on γ .

Remark 2.2 Instead of H1
0 (�) appearing in P̂(�) other spaces can be used. In model

examples presented in the last section we use H1
per(�)—the space of all periodic

functions belonging to H1(�). Just the fact that functions from H1
per(�) satisfy the

periodic boundary conditions will play the crucial role in numerical realization.

Problem P̂(�) can be equivalently formulated as an optimal control problem.
Indeed, let û(µ) ∈ H1

0 (�) be the solution of the state equation

(û(µ), v)1,� = ( f, v)0,� + 〈µ, v〉� ∀v ∈ H1
0 (�)

in which µ ∈ H−1/2(�) plays the role of a control variable and

(µ) = 1

2
‖ ∂

∂nγ
(û(µ)|ω)− P(

∂

∂nγ
(û(µ)|ω)− ρ(û(µ)|ω − g))‖2

0,γ (2.7)
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be the cost functional for thoseµ for which ∂
∂nγ

(û(µ)|ω) ∈ L2(γ ). Then (û, λ) solves

P̂(�) if and only if (λ) = 0.

3 Existence analysis

The aim of this section will be to analyze the solvability of the fictitious domain formu-
lation P̂(�). The situation is very easy when � = γ as follows from the next theorem.

Theorem 3.1 Let � = γ and suppose that the solution u of P is such that ∂u
∂nγ

∈
L2+(γ ). Then (P̂(γ )) has a unique solution.

Proof Denote u(�) the unique solution of the Dirichlet problem in � = �\ω:

−�u(�)+ u(�) = f in �,
u(�) = 0 on ∂�,

u(�) = u on γ

⎫⎬
⎭ (3.1)

and set

û =
{

u in ω,
u(�) in �.

Then (û, [ ∂ û
∂nγ

]γ ) satisfies the first equation in (P̂(γ )) as follows from Green’s

formula. Since û|ω solves P , the non-smooth Eq. (2.5) on γ is automatically
satisfied. 	


If dist(γ, �) > 0, the problem is more involved and is closely related to a control-
ability type property. To see that let us define for any λ ∈ H−1/2(�) the following
problem in � = � \ ω:

Find u(λ) ∈ H1(�) such that
(u(λ), v)1,� = ( f, v)0,� + 〈λ, v〉� ∀v ∈ H1

0 (�),

u(λ) = 0 on ∂�,
u(λ) = u on γ

⎫⎪⎪⎬
⎪⎪⎭ (P(λ))

(recall that u ∈ K solves P). If there was λ̄ ∈ H−1/2(�) such that

∂u(λ̄)

∂nγ
+ ∂u

∂nγ
= 0 on γ, (3.2)

then the function

û =
{

u in ω,
u(λ̄) in �

would be a solution of P̂(�).
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Fictitious domain formulations of unilateral problems 75

Unfortunately, such λ̄ does not exist, in general. Only what we can prove is that
(3.2) is satisfied with an arbitrary accuracy. To show that let us introduce the mapping
� : H−1/2(�) → H−1/2(γ ) defined by

�(λ) = ∂u(λ)

∂nγ
∈ H−1/2(γ ) ∀λ ∈ H−1/2(�), (3.3)

where u(λ) solves (P(λ)) and denote V := �(H−1/2(�)) ⊆ H−1/2(γ ).

Lemma 3.1 The set V is dense in H−1/2(γ ).

Proof Without loss of generality we may consider problem (P(λ)) with f ≡ 0 and
homogeneous Dirichlet data on ∂�. Let u(λ) ∈ H1

0 (�),λ ∈ H−1/2(�), be the solution
of

(u(λ), v)1,� = 〈λ, v〉� ∀v ∈ H1
0 (�). (3.4)

Let w ∈ H1/2(γ ) be such that

〈∂u(λ)

∂nγ
, w〉γ = 0 ∀λ ∈ H−1/2(�). (3.5)

We want to show that w = 0. For w satisfying (3.5) consider the Dirichlet problem:

Find z ∈ H1(�) such that
(z, v)1,� = 0 ∀v ∈ H1

0 (�),

z = 0 on ∂�,
z = w on γ.

⎫⎪⎪⎬
⎪⎪⎭ (3.6)

Inserting v := u(λ) ∈ H1
0 (�) into (3.6) we have:

(z, u(λ))1,� = 0 ∀λ ∈ H−1/2(�). (3.7)

The symmetry of the scalar product, (3.4) and Green’s theorem yield:

0 = (u(λ), z)1,� = 〈λ, z〉� + 〈∂u(λ)

∂nγ
, z〉γ

= 〈λ, z〉� + 〈∂u(λ)

∂nγ
, w〉γ = 〈λ, z〉� ∀λ ∈ H−1/2(�)

making use of (3.5)–(3.7). Therefore z = 0 on � implying z ≡ 0 in�1 (recall that�1
is a domain between ∂� and �). Then from the continuation theorem it immediately
follows that z ≡ 0 in �. Thus w = 0 on γ . 	


On the basis of Lemma 3.1 we prove the following result.
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Theorem 3.2 Let dist(γ, �) > 0 and suppose that the solution u of P is such that
∂u
∂nγ

∈ L2+(γ ). Then for every ε > 0 there exist: λε ∈ H−1/2(�), ûε ∈ H1
0 (�) and

δε ∈ H−1/2(γ ) satisfying:

(ûε, v)1,� = ( f, v)0,� + 〈λε, v〉� + 〈δε, v〉γ ∀v ∈ H1
0 (�),

∂
∂nγ

ûε(ω) ∈ L2(γ ),

∂ ûε(ω)
∂nγ

= P(∂ ûε(ω)
∂nγ

− ρ(ûε(ω)− g)) on γ, ρ > 0,

‖δε‖−1/2,γ ≤ ε,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.8)

where ûε(ω) := ûε|ω .

Proof Let ε > 0 be given. From Lemma 3.1 we know that there exists λε ∈ H−1/2(�)

such that

||∂u(λε)

∂nγ
+ ∂u

∂nγ
||−1/2,γ ≤ ε,

where u(λε) solves (P(λε)). Define a function ûε ∈ H1
0 (�) by

ûε =
{

u in ω,
u(λε) in �

and set δε := ∂u(λε)
∂nγ

+ ∂u
∂nγ

. Then the triplet {ûε, λε, δε} solves (3.8) as follows from

Green’s formula and the fact that ∂
∂nγ

ûε(ω) = ∂u
∂nγ

on γ . 	


Remark 3.1 The same analysis with the same result can be done when the space
H1

0 (�) is replaced by H1
per(�). It is also readily seen that the space H−1/2(�) can be

replaced by L2(�) and the density result of Lemma 3.1 holds true.

Remark 3.2 Any solution ûε of (3.8) is such that its restriction onω solves the original
unilateral problem P , i.e. ûε(ω) is defined in a unique way. As far as the global reg-
ularity of ûε is concerned, the best what one can expect is that ûε ∈ H3/2−η(�) for
any η > 0 in view of a generally non-zero jump of the normal derivative of ûε across
�. The same holds true for the solution û of the non-smooth variant but there is an
important difference. If γ ≡ �, the singularity of û is located just on the boundary
of the original domain ω whereas is moved away from ω if the smooth variant is
used (see Fig. 2). The solution ûε of (3.8) still has a singularity on γ due to the term
δε . But this term can be chosen in such a way that its norm is arbitrarily small. This
is important from the computational point of view. If finite element spaces are con-
structed by using non-fitted meshes then the curves � and γ cut some elements of the
respective partitions. This leads to a significant discretization error in a vicinity of �.
Thus, if γ ≡ �, the error of the numerical solution is concentrated around γ , where
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(b)(a)

Fig. 2 Singularity of the solution. a Smooth variant, b non-smooth variant

the unilateral conditions are prescribed. On the other hand, if dist(γ, �) > 0 then the
main singularity is moved away from γ and one can expect that the error on γ coming
from δε could be “small”.

The formulation (3.8) can be hardly used for computations since δε is not known
a-priori. Going back to the optimal control formulation of P̂(�) at the end of Sect. 2
one can prove that under appropriate regularity assumptions on the solutions to P and
(P(λ)) it holds:

inf
µ∈L2(�)

(µ) = 0, (3.9)

where  is defined by (2.7) (if γ = � then inf can be replaced by min).
Indeed, we first show that the source terms λε and δε in (3.8) can be taken more

regular. To this end, let g ∈ H3/2(γ ) and the boundary γ be such that the solution
u of P belongs to H2(ω) ∩ K implying u|γ ∈ H3/2(γ ), ∂u

∂nγ
∈ H1/2(γ ). Next we

shall consider the auxiliary problem (P(λ)) with λ ∈ H1/2(�). We shall suppose that
its solution u(λ) ∈ H1(�) is such that u(λ)|�2

∈ H2(�2), where �2 is the domain
between � and γ . Consequently, the mapping  defined by (3.3) can be considered
as a mapping from L2(�) into L2(γ ) preserving the density property: �(L2(�)) is
dense in L2(γ ). From the definition of δε in the proof of Lemma 3.1 we see that in
fact δε ∈ H1/2(γ ) and ‖δε‖0,γ ≤ ε.

In what follows we shall suppose that (3.8) is satisfied by {ûε, λε, δε} ∈ H1
0 (�)×

L2(�) × L2(γ ) and ‖δε‖0,γ ≤ ε. The solution ûε can be written as ûε = û1
ε + û2

ε ,

where û j
ε ∈ H1

0 (�), j = 1, 2 solve:

(û1
ε, v)1,� = ( f, v)0,� + (λε, v)0,� ∀v ∈ H1

0 (�),

(û2
ε, v)1,� = (δε, v)0,γ ∀v ∈ H1

0 (�).

Inserting the decomposition of ûε into the second equality in (3.8) and denoting
û j
ε (ω) := û j

ε |ω we obtain
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‖∂ û1
ε(ω)

∂nγ
− P(

∂ û1
ε(ω)

∂nγ
− ρ(û1

ε(ω)− g))‖0,γ (3.10)

≤ ‖∂ û2
ε(ω)

∂nγ
‖0,γ + ‖P(

∂ û1
ε(ω)

∂nγ
+ ∂ û2

ε(ω)

∂nγ
− ρ(û1

ε(ω)+ û2
ε(ω)− g))

−P(
∂ û1

ε(ω)

∂nγ
− ρ(û1

ε(ω)− g))‖0,γ

≤ 2‖∂ û2
ε(ω)

∂nγ
‖0,γ + ρ‖û2

ε(ω)‖0,γ

provided that both
∂ û1

ε(ω)

∂nγ
and

∂ û2
ε(ω)

∂nγ
belong to L2(γ ). Finally let us assume that

‖∂ û2
ε(ω)

∂nγ
‖0,γ ≤ C‖δε‖0,� ≤ Cε. From this and (3.10) we arrive at (3.9).

4 Discretization

In this section we describe a finite element discretization of P̂(�). We derive an alge-
braic problem while technical details will be postponed to the last section.

Let Vh ⊂ H1
0 (�), �H (γ ) ⊂ L2(γ ), �H (�) ⊂ L2(�) be finite dimensional sub-

spaces and dim Vh = n, dim�H (γ ) = dim�H (�) = m. By a discretization of P̂(�)
we mean the following problem:

Find(ûh, λH ) ∈ Vh ×�H (�)such that
(ûh, vh)1,� = ( f, vh)0,� + (λH , vh)0,� ∀vh ∈ Vh,

δH ûh = P(δH ûh − ρ(τH ûh − gH )), ρ > 0,

⎫⎬
⎭ (P̂(�)H

h )

where δH ûh , τH ûh and gH are approximations of
∂ ûh|ω
∂nγ

, ûh|γ and g, respectively, in

�H (γ ).
It is easy to prove the existence of a solution of (P̂(�))H

h for a particular choice of
finite element spaces and of the mappings δH and τH provided that � ≡ γ and ω is
polygonal. Indeed, let Vh be a space of piecewise linear functions over a triangulation
Th of � which respects the geometry of ω, i.e. Th|ω is a triangulation of ω, as well.
Further, let �H (�) = �H (γ ) := Vh|γ be the space of restrictions on γ of all trial

functions. Then the solution of (P̂(�))H
h can be obtained in a similar way as in the

continuous case by sticking two finite element approximations of (2.1) and (3.1) in ω
and � \ ω, respectively. The mappings δH and τH are defined by

(δH ûh, τH ûh) = (λh, wh|γ ),

where (wh, λh) is the unique solution to the mixed finite element approximation of
(2.1) on Vh|ω × �+

H (γ ) with �+
H (γ ) being the set of non-negative functions from

�H (γ ).
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Fictitious domain formulations of unilateral problems 79

In what follows no assumptions on the mutual position of � and γ and used parti-
tions will be imposed.

Let {ϕ j }n
j=1, {ψi }m

i=1 and {ψ̃i }m
i=1 be basis functions of Vh , �H (γ ) and �H (�),

respectively. In order to simplify our presentation, we suppose that �H (γ ) is the
space of piecewise constant functions over a partition of γ enjoying the following two
properties:

(A1) {ψi }m
i=1 are orthonormal in the L2(γ )-scalar product;

(A2) the projection Pµ of µ ∈ �H (γ ) is realized by projecting the coordinates of µ
with respect to {ψi }m

i=1 onto R+, i.e.,

σ = P(µ) ⇐⇒ σi = max{0, µi }, i = 1, . . . ,m,

where µ = ∑m
i=1 µiψi , σ = ∑m

i=1 σiψi .

We define:

gH :=
m∑

i=1

giψi , gi = (ψi , g)0,γ , (4.1)

τH ûh :=
m∑

i=1

µiψi , µi = (ψi , ûh)0,γ , (4.2)

δH ûh :=
m∑

i=1

σiψi , σi = (ψi , δhûh)0,γ , (4.3)

i.e. gH , τH ûh and δH ûh are the orthogonal projections of g, ûh|γ and δhûh onto�H (γ ),
respectively. Here, δhûh denotes an approximation of the normal derivative of ûh on
γ defined dirrectly from the finite element solution ûh .

We first describe how to define δhûh when the smooth variant is used. The gradient
∇ûh is discontinuous on the interelement boundaries and the scalar product ∇ûh|γ ·nγ
does not give a good approximation of the normal derivative. For this reason ∇ûh will
be replaced by a suitable approximation from Vh × Vh :

∇̃ûh :=
n∑

j=1

(∇̃ûh) jϕ j , (∇̃ûh) j =
∑
k∈K

α(k)u j+k, (4.4)

where α(k) ∈ R
2 are appropriately chosen parameters and u j+k denote the nodal val-

ues of ûh at the nodes specified by the index set K. A possible way how to choose α(k)

is based on averaging of gradients. For some types of finite elements (linear, bilinear,
e.g.) and for specific values of α(k), k ∈ K, it is known that ∇̃ûh approximates ∇û
with a higher order of accuracy than ∇ûh itself; see [15]. Thus one can hope that the
scalar product

δhûh = ∇̃ûh|γ · nγ
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leads to a better approximation of the normal derivative. Numerical tests confirm this
expectation even though the theoretical justification (to our knowledge) is not yet done.

Unfortunately, the previous construction can not be used for the non-smooth vari-
ant. In this case we introduce δhûh as a piecewise linear function on (an approximation
of) γ which is defined by the values δhûh(xk), where xk , k ∈ K, are the intersections
of γ with the finite element mesh on�. At each xk , δhûh(xk) is given by the following
second order differentiation formula:

δhûh(xk) = 5ûh(xk − hnγ )− 8ûh(xk − 2hnγ )+ 3ûh(xk − 3hnγ )

2h
, k ∈ K.

Inserting (4.1), (4.2) and (4.3) into the second equation in P̂(�)H
h and using (A2),

we obtain

(ψi , δhûh)0,γ = max{0, (ψi , δhûh)0,γ − ρ((ψi , ûh)0,γ − gi )}, i = 1, . . . ,m. (4.5)

Since ûh = ∑n
j=1 u jϕ j , (4.5) can be written as

Cγ,i �u = max{0,Cγ,i �u − ρ(Bγ,i �u − gi )}, i = 1, . . . ,m,

where �u = (u1, . . . , un)
�, Cγ,i and Bγ,i is the i th row of Cγ ∈ R

m×n and Bγ ∈ R
m×n

with the entries

cγ,i j = (ψi , δhûh)0,γ , bγ,i j = (ψi , ϕ j )0,γ , i = 1, . . . ,m, j = 1, . . . , n,

respectively.
Finally, we arrive at the following algebraic representation of P̂(�)H

h :

Find (�u, �λ) ∈ R
n × R

m such that
A�u = �f + B�

�
�λ,

Cγ �u = max{0,Cγ �u − ρ(Bγ �u − g)}

⎫⎬
⎭ (4.6)

Here the entries of �λ ∈ R
m are the coordinates of λH ∈ �H (�) with respect to

{ψ̃i }m
i=1, A ∈ R

n×n denotes the standard stiffness matrix, B� ∈ R
m×n is defined

analogously to Bγ replacing γ by �, �f ∈ R
n has components f j = ( f, ϕ j )0,� and

�g = (g1, . . . , gm)
�. Let us note that the max-function in (4.6) is understood compo-

nentwisely.

5 Description of the algorithm

We will use the Newton-type method for numerical realization of (4.6). For this reason,
we express our problem in the form of one equation. To simplify the presentation, the
arrow over vectors will be omitted.
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Let F : R
n+m → R

n+m be the function defined by

F(y) :=
(

Au − B�
� λ− f

G(u)

)
, y :=

(
u
λ

)
, (5.1)

where G(u) := Cγ u − max{0,Cγ u − ρ(Bγ u − g)}. Then (4.6) can be written as

F(y) = 0. (5.2)

This is a non-smooth equation due to the presence of the max-function. Fortunately, F
is a PC1-function and (5.2) can be solved by the following piecewise smooth Newton
method [4]:

y0 ∈ R
n+m given, k = 0;

Find dk ∈ R
n+m : F(yk)+ Fo(yk)dk = 0;

set yk+1 = yk + dk, k := k + 1,
until stopping criterion.

⎫⎪⎪⎬
⎪⎪⎭ (5.3)

Here Fo(y) plays the role of the Jacobian in the smooth Newton method. Taking
into account the definition of the non-smooth term, it holds:

Fo(y) =
(

A −B�
�

Go(u) 0

)
,

where the i th row of Go(u) ∈ R
m×n is given by

Go
i (u) = Cγ,i − s(Cγ,i u − ρ(Bγ,i u − gi )) (Cγ,i − ρBγ,i ), i = 1, . . . ,m

with s : R → R defined by

s(x) =
{

1, x > 0,
0, x ≤ 0.

Let us note that s is the so-called slanting function to the max-function [3,11]. A more
convenient setting of Go uses an active set terminology.

Let M := {1, 2, . . . ,m}. We define the sets of inactive and active indices at y =
(u�, λ�)� ∈ R

n+m by

I(u) := {i ∈ M : Cγ,i u − ρ(Bγ,i u − gi ) ≤ 0},
A(u) := {i ∈ M : Cγ,i u − ρ(Bγ,i u − gi ) > 0}.

It is readily seen that

Go
i (u) =

{
Cγ,i , i ∈ I(u),
ρBγ,i , i ∈ A(u).
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Let D(S) denote the diagonal matrix defined for S ⊆ M by

D(S) = diag(s1, . . . , sm) with si =
{

1, i ∈ S,
0, i /∈ S.

Using this notation, we obtain

Go(u) = D(I(u))Cγ + ρD(A(u))Bγ .

The Newton method (5.3) applied to (5.2) leads to the following active-set type
algorithm, where u0 ∈ R

n , λ0 ∈ R
m and εu > 0 are given.

Algorithm ActiveSet[A,Bγ ,Cγ ,B� , f ,g,u0,λ0,εu]→ (u, λ)

(0) Set k := 0 and choose ρ > 0.
(1) Define the inactive and active sets: Ik := I(uk), Ak := A(uk).

(2) Solve:

(
A −B�

�

D(Ik)Cγ + ρD(Ak)Bγ 0

)(
uk+1

λk+1

)
=

(
f
ρD(Ak)g

)
.

(3) Set err(k) := ‖uk+1 − uk‖/‖uk+1‖. If err(k) ≤ εu , return u := uk+1, λ := λk+1.
(4) Set k := k + 1 and go to step (1).

We see that each iterative step (2) leads to a linear system arising from a finite
element discretization of the fictitious domain formulation of a mixed Dirichlet–Neu-
mann boundary value problem. It is also readily seen that ρ can be discarded from this
system. Indeed, if the systems in step (2) were solved exactly then ρ would not play
any role in the definitions of Ik and Ak for k ≥ 1 since always either Cγ,i uk = 0 or
Bγ,i uk − gi = 0. Moreover, an appropriate choice of the initial iterate u0 (giving only
the Dirichlet boundary condition on γ , e.g.) makes it possible to discard ρ completely
from the algorithm.

The efficiency of the algorithm ActiveSet depends on how efficiently the following
non-symmetric saddle-point like problems can be solved:

(
A B�

1
B2 0

) (
u
λ

)
=

(
f
h

)
. (5.4)

As methods developed directly for such systems are rare, we recall main ideas of the
projected Schur complement method presented in [10]. It combines the Schur com-
plement reduction with the null-space method implemented by orthogonal projectors.

For B ∈ R
m×n we denote N(B) the null-space and R(B|V) the range-space of B

on a subspace V ⊆ R
n . If V = R

n , we simply write R(B) := R(B|Rn). The system
(5.4) has a unique solution iff [10]
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N(B�
1 ) = {0}, (5.5)

N(A) ∩ N(B2) = {0}, (5.6)

R(A|N(B2)) ∩ R(B�
1 ) = {0}. (5.7)

Remark 5.1 We should prove that each system obtained in step (2) of the algorithm
ActiveSet satisfies (5.5)–(5.7) being equivalent to the non-singularity of Fo(y). It is
readily seen that (5.5) is equivalent to the following condition:

(µH , vh)0,� = 0 ∀vh ∈ Vh ⇒ µH = 0 on �. (5.8)

To satisfy (5.8) it is sufficient to take the ratio H/h sufficiently large. Condition (5.6)
is trivially satisfied whenever A is non-singular. If A is the stiffness matrix on the space
Vh ⊂ H1

per(�) for the differential operator −�u (i.e. without the absolute term) then

N(A) = {(1, . . . , 1)�} and (5.6) is satisfied for A(u) �= ∅. Unfortunately, (5.7) is not
easy to verify in a general case. If A(u) = M and (5.8) holds then (5.7) is satisfied
provided that � is a small perturbation of γ [10].

The block A in (5.4) corresponds to the stiffness matrix computed by the
H1(�)-scalar product on Vh in our case, hence A is non-singular. On the other
hand there are situations when A is singular (in numerical experiments we shall use
Vh ⊂ H1

per(�) and the differential operator in (2.1) without the absolute term u, e.g.).
For this reason we confine ourselves to this more complicated case. The modification
for A regular is straightforward.

Suppose that A is singular with the defect l = dim N(A), l ≥ 1 and consider
N1 ∈ R

n×l and N2 ∈ R
n×l whose columns span the null-space N(A) and N(A�),

respectively. Finally denote by A† a generalized inverse to A. In what follows we shall
consider an arbitrary but fixed selections of A†, N1 and N2.

Theorem 5.1 [10] Let (5.5)–(5.7) hold. Then the second component λ of a solution
to (5.4) is the first component of a solution to

(
B2 A† B�

1 −B2 N1

−N�
2 B�

1 0

)(
λ

α

)
=

(
B2 A† f − h

−N�
2 f

)
. (5.9)

The first component u is given by the formulae

u = A†( f − B�
1 λ)+ N1α.

The matrix in (5.9) is the (negative) generalized Schur complement. Let us note
that (5.9) is formally the same saddle-point system as (5.4) but its size is considerably
smaller. We shall solve (5.9) using two orthogonal projectors

P1 := I − G�
1 (G1G�

1 )
−1G1, P2 := I − G�

2 (G2G�
2 )

−1G2,

on N(G1), N(G2), where G1 := −N�
1 B�

2 , G2 := −N�
2 B�

1 , respectively. In order
to simplify the next presentation we denote S := B2 A† B�

1 , d := B2 A† f − h and
e := −N�

2 f.
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Theorem 5.2 [10] Let (5.5)–(5.7) hold. Then λ is the first component of a solution to
(5.9) iff λ = λN + λR, where λN ∈ N(G2), λR ∈ R(G�

2 ) solve

λR = G�
2 (G2G�

2 )
−1e

and

P1SλN = P1(d − SλR). (5.10)

The second component α is given by

α = (G1G�
1 )

−1G1(d − Sλ).

The last theorem enables us to find the solution to (5.9) by the separate computa-
tions of λR, λN and α. The heart of this strategy consists in solving the equation (5.10).
We employ the projected BiCGSTAB method derived in [10] from its non-projected
version [14].

In the kth step of the algorithm ActiveSet, the initial BiCGSTAB iterate uses the
result from the previous Newton step, i.e. P2λ

k , and, in addition, an adaptive termi-
nating tolerance ελ := ε

(k)
λ is chosen. The idea consists in respecting the precision

err(k−1) achieved in the previous Newton step. If the progress is not sufficiently large
then the tolerance is reduced independently on err(k−1) as follows:

ε
(k)
λ := min{εmin × err(k−1), cfact × ε

(k−1)
λ } (5.11)

with 0 < εmin < 1, 0 < cfact < 1, err(0) = 2 and ε(0)λ = εmin/cfact (typically
εmin = 10−2 and cfact = 0.2).

It should be noted that Theorem 5.2 generalizes ideas of the FETI domain decom-
position method [5]. Another interpretation of this approach is the non-symmetric
variant of the null-space method [1] applied to (5.9).

In the rest of this section, we will show how to accelerate both the Newton and
BiCGSTAB iterations. As the fictitious domain � has a simple geometry, it is easy to
define a multilevel family of nested partitions and the corresponding spaces Vh j with
stepsizes h j , 0 ≤ j ≤ J , h j+1 < h j (h j+1 = h j/2 e.g.). In order to accelerate iter-
ations on the finest J th level, one can apply the hierarchical multigrid scheme called
nested iterations [12], which is formulated below. Let us note that the index j refers
to the j th level.

The computation starts on the coarsest level, j = 0, with the initial iterate (u0,(0),

λ0,(0)) arbitrarily chosen ((0, 0) e.g.). The initial iterate on each subsequent level is
determined as the prolongated result from the nearest lower level. The terminating
tolerance εu = ε

( j)
u on the j th level is set proportionally to an expected discretization

error that is ε( j)
u := νh p

j and err(0) := ν1h p
j in (5.11), where p is an expected con-

vergence rate (in the L2(ω)-norm) and 0 < ν < ν1 are control parameters. The result
obtained with such εu can be viewed as an inexact solution of the discretized problem
(4.6) with the same convergence rate as the exact one.
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Algorithm HMS[J ,h0, . . . , h J , ν, p]

(0) Set j := 0 and choose u0,(0), λ0,(0).
(1) If j > 0 prolongate (u( j−1), λ( j−1)) → (u0,( j), λ0,( j)).

(2) ActiveSet[A( j),B( j)
γ ,C ( j)

γ ,B( j)
� , f ( j),g( j),u0,( j),λ0,( j),νh p

j ] → (u( j), λ( j))

(3) If j = J return u := u(J ).
(4) Set j := j + 1 and go to step (1).

6 Numerical examples

We will assess experimentally two aspects analyzed in the article. Firstly, we will
illustrate the higher accuracy and improved convergence properties of the fictitious
domain method with γ �≡ � compared to this one with γ ≡ �. Secondly, we shall
demonstrate the computational efficiency of the algorithm ActiveSet combined with
the projected Schur complement method.

We solve three model examples with the same geometry (see Fig. 3):

ω = {(x, y) ∈ R
2| (x − 0.5)2/0.42 + (y − 0.5)2/0.22 < 1},

� = (0, 1)× (0, 1).

We replace H1
0 (�) by H1

per(�) in the fictitious domain formulation P̂(�). As men-
tioned before the theoretical results of Sect. 3 remain valid also in this case. The
advantage of this new choice consists in the fact that the resulting stiffness matrix A in
(4.6) has a block circulant structure which allows us to use the highly efficient Poisson
like solver [13] based on the discrete Fourier transform.

The space Vh consists of piecewise bilinear functions constructed over a uniform
rectangulation of �. Further, �H (γ ) and �H (�) are given by piecewise constant
functions on partitions of polygonal approximations of γ and �, respectively. The
stepsizes H on γ and � are chosen in such a way that the condition (5.5) and
dim�H (γ ) = dim�H (�) are satisfied.

Fig. 3 Geometry of ω
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The nodal gradient value (∇̃ûh) j used in (4.4) for the smooth variant is defined as
the arithmetic mean of the gradient values of the finite element solution at the common
j th node [15].

In Tables below we report the number of primal variables (n), the number of indices
in the active (mA = |A|) and inactive (mI = |I|) set, the number of the outer (Newton)
iterations, the total number of the inner (BiCGSTAB) iterations, the computational time
and the relative errors of approximate solutions in the indicated norms (the compar-
isons are done with respect to the exact solution uex (Example 6.1) or to the reference
solution ure f (Examples 6.2 and 6.3) computed by the smooth variant on the fine
mesh with h = 1/8,192 which corresponds to the system with more than 67 millions
of equations). From the errors, we determine the convergence rates of our fictitious
domain approaches. The terminating tolerance in the algorithm ActiveSet is εu = 10−5.

Example 6.1 (smooth solution, one contact zone) Let us consider problem (2.1) with
the exact solution

uex(x, y) = ((x − 0.5)+)3 + 0.5((y − 0.5)+)3, (x, y) ∈ R
2,

i.e. the right-hand side f is given by f = −�uex + uex in R
2 and the obstacle

g is defined by g|γ1 = uex |γ1 on γ1, γ1 = γ \ γ 2, γ2 = {(x, y) ∈ γ | x <

0.5, y < 0.5}, and by g(x, y) = sin(−2ϕ) for (x, y) ∈ γ2, where (ϕ, r) is the
polar coordinate of the point (x − 0.5, y − 0.5) (see Figs. 3, 4). The computed

Fig. 4 Ex. solution uex
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Fig. 5 Comp. sol. ûh

0
0.5

10

0.5

1

−0.05

0

0.05

123



Fictitious domain formulations of unilateral problems 87

Fig. 6 Differ. ûh −uex in ω
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Fig. 7 Differ. ûh −uex on γ
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Fig. 8 Control variable λH
on �
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solution by the smooth variant is shown in Fig. 5. Differences between the numer-
ical and exact solutions inside ω and on the boundary γ are depicted in Figs. 6
and 7, respectively. Finally, the corresponding control variable λH on � is shown
in Fig. 8. Tables 1 and 2 summarize the results of the non-smooth and smooth fic-
titious domain formulation, respectively. The boundary � for the smooth variant is
constructed by shifting γ six h units in the direction of the outward normal vec-
tor nγ and H/h = | log2(h)|. The computed relative errors and the convergence
rates confirm the prediction of Sect. 3. Table 3 illustrates the acceleration of con-
vergence as well as saving of the computational time when the nested iterations
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Table 1 Non-smooth fictitious domain formulation (γ ≡ �)

Step h n/mA/mI Out./
∑

inn. C.time ErrL2(ω) ErrH1(ω) ErrL2(γ )
its. (s)

1/128 16,641/24/10 5/24 0.31 4.1007e-02 3.3325e+00 1.7029e-02

1/256 66,049/41/21 6/45 1.81 2.0074e-02 2.3310e+00 8.5208e-03

1/512 263,169/77/33 7/69 13.07 9.7866e-03 1.6275e+00 4.2527e-03

1/1,024 1,050,625/140/58 7/93 74.65 4.8435e-03 1.1449e+00 2.0830e-03

1/2,048 4,198,401/261/99 7/115 432.6 2.2777e-03 7.8540e-01 1.0952e-03

1/4,096 16,785,409/484/178 8/131 2,328 1.1353e-03 5.5449e-01 7.2174e-04

Convergence rates: 1.0374 0.5186 0.9346

Table 2 Smooth fictitious domain formulation (γ �≡ �)

Step h n/mA/mI Out./
∑

inn. C.time ErrL2(ω) ErrH1(ω) ErrL2(γ )
its. (s)

1/128 16,641/26/8 5/48 0.47 3.2409e-04 2.9532e-01 5.0704e-04

1/256 66,049/46/16 5/69 2.56 6.3196e-05 1.3041e-01 9.1074e-05

1/512 263,169/81/29 5/112 20.89 1.5917e-05 6.5444e-02 2.6525e-05

1/1,024 1,050,625/147/51 7/162 150.6 4.3527e-06 3.4223e-02 1.1771e-05

1/2,048 4,198,401/270/90 6/190 674.1 1.3812e-06 1.9278e-02 5.1861e-06

1/4,096 16,785,409/494/168 9/296 5,000 8.0760e-07 1.4741e-02 2.2854e-06

Convergence rates: 1.7617 0.8809 1.5012

Table 3 Smooth fictitious domain formulation (γ �≡ �) with nested iterations

Step h n/mA/mI Out./
∑

inn. C.time ErrL2(ω) ErrH1(ω) ErrL2(γ )
its. (s)

1/128 16,641/28/8 4/30 0.55 2.9459e-04 2.8156e-01 3.1239e-04

1/256 66,049/48/16 4/56 2.45 6.2674e-05 1.2987e-01 6.9933e-05

1/512 263,169/84/28 5/90 18.94 1.6119e-05 6.5858e-02 2.6928e-05

1/1,024 1,050,625/147/49 4/92 93.34 4.3720e-06 3.4299e-02 1.1827e-05

1/2,048 4,198,401/271/93 4/152 582.1 1.3465e-06 1.9035e-02 4.7873e-06

1/4,096 16,785,409/494/166 4/204 3,980 7.9822e-07 1.4655e-02 2.2902e-06

Convergence rates: 1.7469 0.8735 1.3786

are used. Finally, Table 4 illustrates a smoothing effect of δ := dist(γ, �). If �
is shifted far enough from γ (expressed in multiples of h), the smoothness of the
computed solution increases inside ω which in turn results in smaller discretization
errors. On the other hand we shall show in the next examples that the condition num-
ber of P1 B2 A† B1 on N(G2) becomes larger for increasing δ. The value δ = 6h
used in our examples (and found experimentaly) turned out to be a good compro-
mise.
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Table 4 Dependence of the convergence rate on δ := dist(γ, �), h = 1/256

Param. δ n/mA/mI Out./
∑

inn. C.time (s) ErrL2(ω) ErrH1(ω) ErrL2(γ )
its.

0 h 66,049/41/21 6/45 1.81 2.0074e-02 2.3310e+00 8.5208e-03

2 h 66,049/44/18 5/42 1.68 1.6031e-03 6.5682e-01 1.4522e-03

4 h 66,049/46/16 5/56 2.06 8.8714e-05 1.5451e-01 1.6632e-04

6 h 66,049/46/16 5/69 2.56 6.3196e-05 1.3041e-01 9.1074e-05

8 h 66,049/46/16 5/101 3.62 6.0014e-05 1.2708e-01 5.1199e-05

Fig. 9 Comp. sol. ûh
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Fig. 10 Differ. ûh −uref in ω
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Example 6.2 (two contact zones) We solve (2.1) with the right hand-side f = −10
and the obstacle g given by g(x, y) = 5 sin(2ϕ)(r2 + r(cosϕ+ sin ϕ)+ 0.5)1/2 −1.5
on γ , where (ϕ, r) is the polar coordinate of the point (x − 0.5, y − 0.5) (see Fig. 9).
The behavior of ûh − ure f inside ω and on the boundary γ is depicted in Figs. 10
and 11. Tables 5 and 6 summarize the results of the non-smooth and smooth fic-
titious domain formulation, respectively. The construction of � and the ratio H/h
are as in Example 6.1 and also the conclusions are the same. Table 7 illustrates the
acceleration of convergence and saving of the computational time when the nested
iterations are used. As the behavior of solvers (BiCGSTAB, e.g.) depends on the con-
dition number or in case of non-symmetric matrices on the normality declination,
these characteristics for the matrix K := P1 B2 A† B1 on N(G2) during the Newton
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Fig. 11 Differ. ûh −uref on γ
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Table 5 Non-smooth fictitious domain formulation (γ ≡ �)

Step h n/mA/mI Out./
∑

inn. its. C.time (s) ErrL2(ω) ErrH1(ω) ErrL2(γ )

1/128 16,641/5/31 5/24 0.31 5.7782e-03 7.3554e-02 9.9305e-03

1/256 66,049/8/54 5/30 1.34 4.1129e-03 5.2790e-02 4.0288e-03

1/512 263,169/12/98 7/56 14.79 1.1455e-03 3.4829e-02 2.1000e-03

1/1,024 1,050,625/23/175 8/83 75.4 1.2240e-03 3.5068e-02 9.9925e-04

1/2,048 4,198,401/41/319 9/123 457.4 5.7576e-04 2.7780e-02 5.7557e-04

1/4,096 16,785,409/75/587 12/194 3,342 4.7758e-04 2.0726e-02 6.8034e-04

Convergence rates: 0.7542 0.3402 0.8237

Table 6 Smooth fictitious domain formulation (γ �≡ �)

Step h n/mA/mI Out./
∑

inn. its. C.time (s) ErrL2(ω) ErrH1(ω) ErrL2(γ )

1/128 16,641/5/31 5/62 0.63 1.5977e-02 1.4851e-01 1.6659e-02

1/256 66,049/8/54 6/80 3.17 3.6103e-03 8.1444e-02 4.7115e-03

1/512 263,169/13/97 7/149 25.24 3.2593e-03 4.4551e-02 3.7531e-03

1/1,024 1,050,625/23/175 8/207 195.8 3.2977e-04 1.0043e-02 4.6532e-04

1/2,048 4,198,401/41/319 9/294 1,075 6.9140e-05 3.8364e-03 9.7680e-05

1/4,096 16,785,409/75/587 10/393 6,509 9.1815e-06 1.5589e-03 3.2264e-05

Convergence rates: 2.1214 1.3784 1.8528

iterations are depicted, see Figs. 12 and 13 (for h = 1/256 and different shifts δ). Each
of these iterations corresponds to a mixed Dirichlet–Neumann problem. In all tests,
one can see that these characteristics approach the respective value determined by the
mixed Dirichlet–Neumann problem satisfied by the solution of the original unilateral
problem. Finally, from Fig. 14 we see that the condition number of K increases if h
tends to zero when δ is fixed. For this reason δ is not fixed but is taken as a function
of h.
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Table 7 Smooth fictitious domain formulation (γ �≡ �) with nested iterations

Step h n/mA/mI Out./
∑

inn. its. C.time (s) ErrL2(ω) ErrH1(ω) ErrL2(γ )

1/128 16,641/5/31 4/29 0.53 1.5977e-02 1.4851e-01 1.6659e-02

1/256 66,049/8/56 4/38 1.87 5.4942e-03 8.4101e-02 6.7655e-03

1/512 263,169/13/99 3/43 10.86 8.7074e-04 3.5163e-02 1.4525e-03

1/1,024 1,050,625/23/177 3/59 64.47 1.6465e-04 7.4974e-03 2.5333e-04

1/2,048 4,198,401/41/319 3/78 366.9 6.9135e-05 3.8363e-03 9.7678e-05

1/4,096 16,785,409/76/588 3/118 2,526 2.4750e-05 2.1603e-03 2.8003e-05

1/8,192 67,125,249/140/1080 3/191 23,370 ‘ref’ ‘ref’ ‘ref’

Convergence rates: 1.9432 1.3174 1.9127

Fig. 12 Condition number
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Fig. 13 Normality declination
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Fig. 14 Condition number
(δ = 1/32)
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Fig. 15 Comp. sol. ûh
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Fig. 16 Differ. ûh −uref in ω
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Example 6.3 (Example 6.2 without the absolute term u) The equation in ω now reads
as follows:

�u = 20 in ω.

Other data are the same as in Example 6.2. The problem is semicoercive but due to
the sign of the right hand-side, it has a unique solution u. The results are summarized
in Figs. 15, 16, 17, 18, 19 and 20 and in Tables 8, 9 and 10. They are similar to those
computed in Example 6.2.
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Fig. 17 Differ. ûh −uref on γ
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Fig. 18 Condition number
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Fig. 19 Normality declination
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7 Conclusions and comments

Two variants of a fictitious domain formulation of unilateral boundary value problems
are analyzed in this article. The first (non-smooth) approach enforces the satisfactions
of unilateral boundary conditions by Lagrange multipliers defined on the boundary γ
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Fig. 20 Condition number
(δ = 1/32)
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Table 8 Non-smooth fictitious domain formulation (γ ≡ �)

Step h n/mA/mI Out./
∑

inn. its. C.time (s) ErrL2(ω) ErrH1(ω) ErrL2(γ )

1/128 16,641/7/29 6/31 0.39 1.3521e-02 9.1807e-02 2.2136e-02

1/256 66,049/13/49 6/54 2.3 7.0716e-03 6.0371e-02 6.9435e-03

1/512 263,169/23/87 7/69 13.71 4.5768e-03 3.6564e-02 3.1013e-03

1/1,024 1,050,625/41/157 9/127 106.3 2.7119e-03 3.8892e-02 1.6530e-03

1/2,048 4,198,401/74/286 10/166 639.6 9.9011e-04 3.0425e-02 8.3333e-04

1/4,096 16,785,409/136/526 11/241 4,205 8.0521e-04 2.2513e-02 1.0264e-03

Convergence rates: 0.8461 0.3719 0.9211

Table 9 Smooth fictitious domain formulation (γ �≡ �)

Step h n/mA/mJ Out./
∑

inn. its. C.time (s) ErrL2(ω) ErrH1(ω) ErrL2(γ )

1/128 16,641/7/29 4/44 0.48 3.3419e-02 1.6955e-01 3.4271e-02

1/256 66,049/14/48 5/86 3.58 6.5415e-03 8.8017e-02 7.9521e-03

1/512 263,169/23/87 6/119 23.35 2.6697e-03 4.0197e-02 2.8341e-03

1/1,024 1,050,625/41/157 7/221 174.9 3.2798e-04 8.3563e-03 4.7836e-04

1/2,048 4,198,401/74/286 7/276 976.6 1.5904e-04 4.5718e-03 2.1104e-04

1/4,096 16,785,409/136/526 9/442 7,544 2.0672e-05 1.7129e-03 4.8686e-05

Convergence rates: 2.0687 1.3775 1.8734

of the original domain ω. Therefore the fictitious domain solution has a singularity on
γ that can result in an intrinsic error of the computed solution. In the second (smooth)
approach the singularity is moved away from ω̄ so that the fictitious domain solution
keeps the regularity of the original solution in ω. Numerical experiments illustrate
the efficiency of the smooth variant giving almost the same convergence rates as the
classical Ritz–Galerkin method provided that the original solution is smooth enough.
From the above examples we see that the numerical solution oscillates in a vicinity of
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Table 10 Smooth fictitious domain formulation (γ �≡ �) with nested iterations

Step h n/mA/mI Out./
∑

inn. its. C.time (s) ErrL2(ω) ErrH1(ω) ErrL2(γ )

1/128 16,641/7/29 4/30 0.61 3.3413e-02 1.6954e-01 3.4267e-02

1/256 66,049/14/50 3/33 1.75 3.9598e-03 8.7142e-02 6.3479e-03

1/512 263,169/24/88 3/51 12.45 1.1261e-03 3.7856e-02 1.9881e-03

1/1,024 1,050,625/42/158 3/69 73.44 9.4370e-04 1.2378e-02 1.0656e-03

1/2,048 4,198,401/74/286 3/110 496.3 1.5906e-04 4.5720e-03 2.1105e-04

1/4,096 16,785,409/135/525 3/115 2,626 3.6853e-05 2.1328e-03 5.9375e-05

1/8,192 67,125,249/249/971 3/187 23,110 ‘ref’ ‘ref’ ‘ref’

Convergence rates: 1.8083 1.3124 1.7570

transition points where contact zones change into non-contact ones. It is worth noticing
that the errors in Example 6.1 on the coarsest grid (16,641 of primal variables) used
in the smooth approach are smaller than the ones on the finest grid (more than 16
millions of primal variables) in the non-smooth approach.

The algebraic system arising from a finite element discretization is represented by
a system of piecewise affine functions. The structure of this system makes it pos-
sible to apply the semismooth Newton method in the outer iterative loop which is
equivalent to an active-set strategy. Let us note that the computations benefit from the
superlinear convergence rate of the semismooth Newton method [3,11]. Each Newton
step requires to solve a non-symmetric saddle-point system with a possibly singular
diagonal block. To this end, we use the projected Schur complement method [10]
employing the projected BiCGSTAB algorithm as the inner iterative loop. In order
to accelerate iterations (outer and inner) a non-linear version of nested iterations is
used [12]. This preconditioning technique links theoretical results on convergence
rates of finite element discretizations with the terminating criterions for both Newton
and BiCGSTAB methods. The numerical experiments demonstrate a higher efficiency
of computations.
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