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Abstract. We study the discretized problem of the shape optimization of three-dimensional
elastic bodies in unilateral contact. The aim is to extend existing results to the case of contact
problems obeying the Coulomb friction law. Mathematical modelling of the Coulomb friction problem
leads to an implicit variational inequality. It is shown that for small coefficients of friction the
discretized problem with Coulomb friction has a unique solution and that this solution is Lipschitzian
as a function of a control variable describing the shape of the elastic body.

The two-dimensional case of this problem was studied by the authors in [2]; here we used the so-
called implicit programming approach combined with the generalized differential calculus of Clarke.
The extension of this technique to the three-dimensional situation is by no means straightforward.
The main source of difficulties is the nonpolyhedral character of the second-order (Lorentz) cone,
arising in the 3D model. To facilitate the computation of the subgradient information, needed
in the used numerical method, we exploit the substantially richer generalized differential calculus of
Mordukhovich. Numerical examples illustrate the efficiency and reliability of the suggested approach.

1. Introduction and preliminaries. Contact shape optimization is a special
branch of structural optimization whose goal is to find shapes of deformable bodies
which are in a mutual contact. A typical problem in many applications is to find
shapes guaranteeing a-priori given stress distributions on parts in contact [1]. A spe-
cific feature of contact shape optimization is its nonsmooth character due to the fact
that the respective state mapping is given by various types of variational inequali-
ties. For contact problems without friction or with the so-called given friction (see
[8]), whose mathematical models lead to variational inequalities of the first and the
second kind, sensitivity analysis was done in [26] for continuous models and in [9] for
discretized models. Assuming a more realistic Coulomb law of friction, the situation
becomes much more complicated in view of the fact that the state problem is now rep-
resented by a non-trivial implicit variational inequality [5]. For the sake of simplicity
we restrict ourselves to structures consisting of one deformable body unilaterally sup-
ported by a rigid foundation (the so-called Signorini problem) considering Coulomb
friction on a common part.

The two-dimensional case of this problem was studied by the authors in [2]; there
we used the so-called implicit programming approach [15, 20] combined with the
generalized differential calculus of Clarke [3]. The extension of this technique to the 3D
case meets, however, serious hurdles both in the numerical solution of the respective
state problem as well as in appropriate stability and sensitivity issues. The main
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source of these hurdles is the non-polyhedral character of the second-order (Lorentz)
cone, arising in the 3D model. To facilitate the computation of the subgradient
information, needed in the used numerical method, we have thus invoked the results
of [12] and exploited the substantially richer generalized differential calculus of B.
Mordukhovich [16, 18]. This means that we compute now a matrix from the Clarke
generalized Jacobian of the discretized state mapping via the limiting (Mordukhovich)
coderivative of this mapping. This has enabled us an efficient treatment of coupled
multifunctions arising on the right-hand side of the generalized equation defining the
state mapping.

The outline of the paper is as follows. Section 2 is devoted to a brief description
of the state problem, i.e., the contact problem with Coulomb friction in its original,
infinite-dimensional formulation. In Section 3 we describe its finite-element discretiza-
tion and introduce our shape optimization problem. Thereafter we present various
properties of the discretized state mapping and end up with the proof of its strong
regularity. Section 4 concerns the used implicit-programming method. In particular,
it deals with the computation of Clarke’s subgradients of the respective composite
cost function which have to be supplied to the used algorithm of nonsmooth opti-
mization. In this section, we make use of several sophisticated rules of generalized
differentiation. The first part of the last Section 5 is devoted to the numerical solution
of the state problem. In the second part we present the test examples.

Our notation is standard: Ā denotes the closure of a set A and, for a multifunction
Φ : X ⇉ Y,Gr Φ = {(x, y) ∈ X × Y | y ∈ Φ(x)} is the graph of Φ. BR denotes a
ball in R

n of radius R centered at the origin. For a vector x ∈ R
n and an index set

N ⊂ {1, 2, . . . , n}, xN denotes the subvector of x composed from the components xi,
i ∈ N . For a Lipschitz single-valued mapping F : R

n → R
m, ∂̄F (x) is the generalized

Jacobian of Clarke, defined by

∂̄F (x) = conv{ lim
i→∞

∇F (xi) | xi
ΩF→ x},

where ΩF is the set of points at which F is differentiable. If m = 1, we speak of the
Clarke subdifferential.

In Section 4 we extensively use the following notions of the generalized differential
calculus of Mordukhovich [17, 18].

Given a closed set A ⊂ R
n and a point x̄ ∈ A, we denote by N̂A(x̄) the Fréchet

(regular) normal cone to A at x̄, defined by

N̂A(x) = {x∗ ∈ R
n | lim sup

x
A

−→x

〈x∗, x − x〉

‖x − x‖
≤ 0} .

The limiting (Mordukhovich) normal cone to A at x, denoted NA(x), is defined by

NA(x) := Lim sup
x

A
−→x

N̂A(x) ,

where “Lim sup” is the Kuratowski-Painlevé outer limit of sets (see [24]). If A is

convex, then NA(x) = N̂A(x) amounts to the classic normal cone in the sense of
convex analysis.

On the basis of the above notions, we can also describe the local behaviour of
multifunctions. Let Φ : R

n
⇉ R

m be a multifunction with closed graph and (x, y) ∈

Gr Φ. The multifunction D̂∗Φ(x, y) : R
m

⇉ R
n, defined by

D̂∗Φ(x, y)(y∗) := {x∗ ∈ R
n | (x∗,−y∗) ∈ N̂Gr Φ(x, y)}
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is called regular coderivative of Φ at (x, y). Analogously, the multifunction D∗Φ(x, y) :
R

m
⇉ R

n, defined by

D∗Φ(x, y)(y∗) := {x∗ ∈ R
n | (x∗,−y∗) ∈ NGr Φ(x, y)}

is called limiting (Mordukhovich) coderivative of Φ at (x, y). If Φ happens to be

single-valued, we simply write D̂∗Φ(x)(D∗Φ(x)). If Φ is continuously differentiable,

then D̂∗Φ(x) = D∗Φ(x) amounts to the adjoint Jacobian.

2. Setting of the problem. We start with the definition of the state problem.
Let Ω̂ = R× (0, c), R = (0, a) × (0, b), be a block in R

3, a, b, c > 0 given. By Uad we
denote a family of admissible functions, where

Uad = {α ∈ C0,1
(
R̄

)
| 0 ≤ α ≤ C0 in R̄, ‖α′‖∞,R ≤ C1,

C2 ≤

∫

R

α dx1dx2 ≤ C3}, (2.1)

i.e., the set Uad contains all non-negative, bounded, Lipschitz equi-continuous func-
tions in R̄, satisfying an integral type constraint. Positive numbers C0, C1, C2, C3

are chosen in such a way that Uad 6= ∅. With any α ∈ Uad we associate a subdomain
Ω(α) ⊂ Ω̂:

Ω(α) = {(x1, x2, x3) ∈ Ω̂ | x3 ≥ α(x1, x2) ∀(x1, x2) ∈ R}.

Functions α ∈ Uad will play the role of control variables determining the shape of
Ω(α).

Let α ∈ Uad be fixed and consider an elastic body represented by Ω(α). Its
boundary ∂Ω(α) is split into three non-empty, non-overlapping parts Γu(α), Γp(α)
and Γc(α): ∂Ω(α) = Γ̄u(α) ∪ Γ̄p(α) ∪ Γ̄c(α), where different boundary conditions
will be prescribed. On Γu(α) the body is fixed, while surface tractions of density
P = (P1, P2, P3) act on Γp(α). The body is unilaterally supported along Γc(α) by a
rigid foundation represented by the half-space R

2 × R− , where

Γc(α) = {(x1, x2, x3) | x3 = α(x1, x2) ∀(x1, x2) ∈ R}

is the graph of α. Finally, Ω(α) is subject to body forces of density F = (F1, F2, F3).
Our aim is to find an equilibrium state taking into account friction on Γc(α). This
state is characterized by a displacement field u = (u1, u2, u3) satisfying the following
system of differential equations and boundary conditions:

- (equilibrium equations):

∂σij

∂xj

+ Fi = 0 in Ω(α), i = 1, 2, 3; )∗ (2.2)

- (Hooke’s law):

σij : = σij(u) = cijklǫkl(u) in Ω(α), where ǫkl = 1/2

(
∂uk

∂xl

+
∂ul

∂xk

)
,

i, j, k, l = 1, 2, 3; (2.3)

∗Here and in what follows the summation convention is adopted.
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- (kinematical boundary conditions):

ui = 0 on Γu(α), i = 1, 2, 3; (2.4)

- (prescribed tractions):

Ti : = σijνj = Pi on Γp(α), i = 1, 2, 3; (2.5)

- (unilateral conditions):

u3(x
′, α(x′)) ≥ −α(x′) ∀x′ = (x1, x2) ∈ R

T3(x) := σ33(x) ≥ 0, T3(x)(u3(x) + α(x′)) = 0 ∀x ∈ Γc(α)

}
(2.6)

- (Coulomb law of friction):

if ut(x) := (u1(x), u2(x), 0) = 0 ⇒ ‖Tt(x)‖ ≤ FT3(x),

where Tt(x) := (T1(x), T2(x), 0), x ∈ Γc(α);

if ut(x) 6= 0 ⇒ Tt(x) = −FT3(x)
ut(x)

‖ut(x)‖
, x ∈ Γc(α).





(2.7)

Remark 2.1. The equations and boundary conditions (2.2)-(2.7) represent the
classical formulation of a contact problem with Coulomb friction. The meaning of
symbols is the following: σ = (σij)

3
i,j=1 stands for a symmetric stress tensor which is

related to a linearized strain tensor ǫ = (ǫij)
3
i,j=1 by means of a linear Hooke’s law

(2.3), ν is the unit outward normal vector to ∂Ω(α) and T = (T1, T2, T3) denotes the
stress vector on ∂Ω(α). Finally, ‖ ‖ is the Euclidean norm of a vector and F is a
coefficient of Coulomb friction. In what follows we shall suppose that F is a positive
constant.

To give a weak form of the state problem we introduce the following spaces and
sets:

V (α) = {v = (v1, v2, v3) ∈ (H1(Ω(α)))3 | v = 0 on Γu(α)}

K(α) = {v ∈ V (α) | v3(x
′, α(x′)) ≥ −α(x′) a.e. in R}

X = {ϕ ∈ L2(R) | ∃v ∈ V (α) : ϕ(x′) = v3(x
′, α(x′)), x′ ∈ R}

X ′ is the dual of X, X ′
+ is the cone of positive elements of X ′.

The duality pairing between X ′ and X will be denoted by 〈·, ·〉.

We start with a simpler model of friction in which the unknown component T3

in (2.7) is replaced by a given slip bound g ∈ X ′
+ (model with given friction, see [8]).

Its mathematical formulation leads to a variational inequality of the 2nd kind:

Find u : = u(g) ∈ K(α) such that

aα(u, v − u) + 〈Fg, ‖v̂t‖ − ‖ût‖〉 ≥ Lα(v − u) ∀v ∈ K(α),

}
(P(g))

where

aα(u, v) :=

∫

Ω(α)

cijklǫij(u)ǫkl(v) dx (2.8)
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Lα(v) :=

∫

Ω(α)

Fivi dx +

∫

Γp(α)

Pivi ds (2.9)

is the inner energy and the work of external forces, respectively. Further, ‖v̂t‖ denotes
the Euclidean norm of the vector v̂t : = vt ◦ α given by (v1(x

′, α(x′)), v2(x
′, α(x′)), 0),

x′ ∈ R. Next we shall suppose that F ∈ (L2(Ω̂))3, P ∈ (L2(∂Ω̂))3 and the linear
elasticity coefficients cijkl in (2.3) satisfy the usual symmetry and ellipticity conditions
[19]. It is well-known that under these assumptions problem (P(g)) has a unique
solution u(g) for every g ∈ X ′

+. To release the unilateral constraint u(g) ∈ K(α) we
use an alternative formulation of (P(g)) involving Lagrange multipliers:

Find (u, λ) := (u(g), λ(g)) ∈ V (α) × X ′
+ such that

aα(u, v − u) + 〈Fg, ‖v̂t‖ − ‖ût‖〉 ≥ Lα(v − u) + 〈λ, v̂3 − û3〉 ∀v ∈ V (α)

〈µ − λ, û3 + α〉 ≥ 0 ∀µ ∈ X ′
+,





(M(g))

where v̂3(x
′) := v3(x

′, α(x′)), x′ ∈ R. It is easy to show that problem (M(g)) has
a unique solution (u(g), λ(g)) for every g ∈ X ′

+. This makes it possible to define a
mapping Φ : X ′

+ 7−→ X ′
+ by

Φ(g) = λ(g) ∀g ∈ X ′
+, (2.10)

where λ(g) ∈ X ′
+ is the second component of the solution to (M(g)).

Definition 2.1. By a weak solution of a contact problem with Coulomb friction
we call any pair (u, λ) ∈ V (α) × X ′

+ satisfying

aα(u, v − u) + 〈Fλ, ‖v̂t‖ − ‖ût‖〉 ≥ Lα(v − u) + 〈λ, v̂3 − û3〉 ∀v ∈ V (α)

〈µ − λ, û3 + α〉 ≥ 0 ∀µ ∈ X ′
+.

}
(Q(α))

From this definition it follows that λ is a fixed-point of Φ. The existence of such
fixed-points has been analyzed in [5].

So far the function α ∈ Uad characterizing the shape of Ω(α) has been fixed. Now
we shall look at α ∈ Uad as a control variable governing state problem (Q(α)). Let S
be the respective control-to-state mapping defined by

S(α) = (u(α), λ(α)) ∀α ∈ Uad, (2.11)

where (u(α), λ(α)) is a solution to (Q(α)) and denote by G the graph of S. Since
(Q(α)) may have more than one solution, the mapping S is set-valued, in general.

Finally, let J : G 7−→ R
1 be a cost functional. Suppose that there exists a

minimizer (α∗, u(α∗), λ(α∗)) of J on G. Then Ω∗ : = Ω(α∗) will be called an op-
timal domain. Since we are interested in numerical realization of this problem, its
discretization will be necessary.

To discretize the geometry we introduce a system Uh
ad containing functions which

are uniquely determined by a finite number of degrees of freedom (e.g. Bézier surfaces).
Admissible domains will be then given by Ω(αh), where αh ∈ Uh

ad. To discretize the
state problem we use a finite element method. The classical Galerkin method together
with appropriate discretizations Vh(αh), Kh(αh), Xh and X ′

h of V (α), K(α), X and
X ′, respectively, represent an efficient tool of solving frictional contact problems.
Analogously to the continuous setting we introduce a discrete control-to-state mapping
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Sh defined on Uh
ad and its graph Gh. The discrete shape optimization is then given by

the minimization of J on Gh. In the next section we present an algebraic form of this
problem arising from a typical finite element approximation. From this the structure
of the problem to be solved will be seen.

3. Algebraic form of contact problems with Coulomb friction. The aim
of this section is to present the algebraic form of the discretized state problem and to
analyze its basic properties. We will proceed analogously to the continuous setting.

Let the discretization parameter h > 0 be fixed. Next we shall use the following
notation: ‖ · ‖s, 〈 ·, · 〉s stand for the Euclidean norm and the scalar product in R

s,
respectively. In the frequent case s = 2 the subscript will be omitted. Every αh ∈ Uh

ad

will be uniquely characterized by a discrete design variable α ∈ R
d and Uh

ad will be
identified with a set U ⊂ R

d. We shall suppose that U is a convex, compact subset of
R

d. Let {ϕi}
n
i=1 be a basis of a finite element space Vh(αh), αh ∈ Uh

ad, and suppose
that its dimension n does not depend on αh. Then

aαh
(vh, zh) = 〈A(α)v , z 〉n

Lαh
(vh) = 〈L(α), v〉n ∀vh, zh ∈ Vh(αh),

where v ∈ R
n is the vector of coordinates of vh with respect to {ϕi}

n
i=1 and A(α) ∈

R
n×n, L(α) ∈ R

n is a stiffness matrix and a load vector, respectively, both depending
on α ∈ U . The set of all A(α) ∈ R

n×n, α ∈ U , will be denoted by M . For the sake of
consistence we will denote in the sequel all finite-dimensional vectors and all matrices
by bold letters. At mappings, however, this convention will not applied strictly and
so most vector-valued and set-valued mappings are denoted by standard (nonbold)
letters. We shall suppose that the following assumptions are satisfied:

all matrices A ∈ M are symmetric and uniformly positive definite, i.e.,

there exists γ > 0 such that〈Av , v〉n ≥ γ‖v‖2
n ∀v ∈ R

n ∀A ∈ M ;

}
(3.1)

the mappings A : U 7−→ M,L : U 7−→ R
n are continuously

differentiable on an open set containing U .

}
(3.2)

We start with the algebraic form of the contact problem with given friction for
fixed α ∈ U . Let g ∈ R

p
+ (p < n) be a given discrete slip bound (p is related to the

number of all contact nodes, i.e., the nodes of a used partition of Ω̄(αh) into finite
elements which are placed on Γ̄c(αh) \ Γ̄u(αh). The discretized total potential energy
has the following form:

J (v) =
1

2
〈v ,Av〉n − 〈L, v〉n + F〈g , |Tv |〉p (3.3)

with A : = A(α), L : = L(α) for some α ∈ U (since α ∈ U is now fixed, it will be
omitted in the argument of A and L). Further T : R

n 7−→ R
2p is a linear mapping

defined by Tv : = (T1v , T2v , . . . , Tpv), v ∈ R
n, where Tiv ∈ R

2 is the tangential
nodal displacement vector at the ith contact node. The symbol |Tv | ∈ R

p denotes a
vector defined by

|Tv | : = (‖T1v‖, . . . , ‖Tpv‖) .

Let K be a closed convex subset of R
n:

K := {v ∈ R
n | Nv ≥ −α}, (3.4)

where N ∈ R
p×n has the following properties:
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a) It has full row rank.
b) Each column contains at most one non-zero element.
c) N (Rn) = N (ker T ).

From a) it follows that

∃β = const. > 0 such that sup
v∈R

n

v 6=0

〈µ,Nv〉p
‖v‖n

≥ β‖µ‖p ∀µ ∈ R
p. (3.5)

Definition 3.1. By a solution of a discrete contact problem with given friction
we mean a vector u ∈ K satisfying

〈Au, v− u〉n + F〈g, |Tv| − |Tu|〉p ≥ 〈L, v− u〉n ∀v ∈ K. (P (L, g))

Next we will analyze the dependence of u on L and g with α ∈ U being fixed.
This is why we use notation (P (L, g)).

To conduct this analysis, we introduce an equivalent formulation of (P (L, g))
which involves Lagrange multipliers releasing the constraint v ∈ K. It reads as follows:

Find (u , λ) ∈ R
n × R

p
+ such that

〈Au , v − u〉n + F〈g , |Tv | − |Tu|〉p

≥ 〈L, v − u〉n + 〈λ,Nv −Nu〉p ∀v ∈ R
n

〈µ− λ,Nu + α〉p ≥ 0 ∀µ ∈ R
p
+.





(M (L, g))

The first component u of the solution to (M (L, g)) solves (P (L, g)), the second
component λ represents the discrete normal contact stress. The following result is
easy to prove.

Proposition 3.2. Problems (P (L, g)), (M (L, g)) have a unique solution u,
(u, λ), respectively, for every L ∈ R

n and g ∈ R
p
+.

Proof. Both existence and uniqueness follow directly from (3.1) and (3.5).
Next we will establish several useful properties of the solution to (M (L, g)).
Proposition 3.3. Let (u, λ) be the solution to (M (L, g)). Then

‖u‖n ≤
1

γ
‖L‖n, (3.6)

‖λ‖m ≤
1

β

(
‖A‖

γ
+ 1

)
‖L‖n, (3.7)

where γ, β > 0 are from (3.1) and (3.5).
Proof. Inserting v = 0 ∈ K into (P (L, g)) we obtain:

γ‖u‖2
n ≤ 〈Au ,u〉n + F〈g , |Tu|〉p ≤ 〈L,u〉n

from which (3.6) follows. Further, substitutions v = 0 and v = 2u into the first
inequality in (M (L, g)) yield:

〈Au ,u〉n + F〈g , |Tu|〉p = 〈L,u〉n + 〈λ,Nu〉p.

Therefore,

〈Au , v〉n + F〈g , |Tv |〉p ≥ 〈L, v〉n + 〈λ,Nv〉p ∀v ∈ R
n. (3.8)
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From (3.8) it follows:

〈Au , v〉n = 〈L, v〉n + 〈λ,Nv〉p ∀v ∈ ker T. (3.9)

From this and (3.5) we obtain (3.7) using that N (Rn) = N (ker T ).
Remark 3.1. It is worth noticing that the bounds (3.6) and (3.7) do not depend

on F > 0 and g ∈ R
p
+.

Assume now that g is fixed and let Ψ : R
n 7−→ K×R

p
+ be a mapping defined by

Ψ(L) = (u , λ),

where (u , λ) is a solution of (M (L, g)). It is very easy to show that Ψ is Lipschitz
on R

n as follows from the next proposition.
Proposition 3.4. Let (ui, λi) be the solution of (M (Li, g)), i = 1, 2. Then

‖u1 − u2‖n ≤
1

γ
‖L1 − L2‖n, (3.10)

‖λ1 − λ2‖p ≤
1

β

(
‖A‖

γ
+ 1

)
‖L1 − L2‖n. (3.11)

Proof. It can be done in the same way as the one of Proposition 3.3.
Next, to define a solution of a discrete contact problem with Coulomb friction,

we fix L and introduce the mapping Γ : R
p
+ 7−→ R

p
+:

Γ(g) = λ, (3.12)

where λ is the second component of a solution to (M (L, g)).
Definition 3.5. As a solution of a discrete contact problem with Coulomb fric-

tion we declare any couple (u, λ) ∈ R
n × R

p
+ satisfying

〈Au, v− u〉n + F〈λ, |Tv| − |Tu|〉p

≥ 〈L, v− u〉n + 〈λ,Nv−Nu〉p ∀v ∈ R
n

〈µ− λ,Nu + α〉p ≥ 0 ∀µ ∈ R
p
+,





(P)

i.e., λ is a fixed point of Γ and (u, λ) solves (M (L, λ)).
Proposition 3.6. For any L ∈ R

n and any F > 0 there exists at least one fixed

point λ of Γ. All fixed points λ belong to R
p
+ ∩ BR, where R = 1

β

(
‖A‖

γ
+ 1

)
‖L‖n.

Proof. It is easy to show that Γ is continuous in R
p
+ and maps R

p
+ ∩BR into itself

as follows from (3.7). The existence of a fixed point follows from Brower’s fixed point
theorem.

Now we show that Γ is even contractive in R
p
+ ∩ BR, provided that F is small

enough. Indeed, denote by u i ∈ K solutions to (P (L, g i)), i = 1, 2. Then one has

〈Au i, v − u i〉n + F〈g i, |Tv | − |Tu i|〉p ≥ 〈L, v − u i〉n ∀v ∈ K. (3.13)i

Inserting v : = u2 into (2.13)1 and v : = u1 into (2.13)2 and summing up these
inequalities we obtain:

‖u1 − u2‖n ≤
F

γ
‖T‖‖g1 − g2‖p. (3.14)
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From (3.9) we know that

〈Au i, v〉n = 〈L, v〉n + 〈λi,Nv〉p ∀v ∈ ker T.

Hence

‖λ1 − λ2‖p ≤
1

β

F

γ
‖A‖‖T‖g1 − g2‖p. (3.15)

In this way we proved the following theorem.
Theorem 3.7. Let

0 < F <
βγ

‖A‖‖T‖
. (3.16)

Then Γ defined by (3.12) is contractive in R
p
+∩BR so that the discrete contact problem

with Coulomb friction has a unique solution.
Corollary 3.8. Let (3.16) be satisfied. Then the method of successive approxi-

mations

λ(0) ∈ R
p
+ given;

for k = 0, 1, . . . , set λ(k+1) = Γ(λ(k)) until a stopping criterion is fulfilled

is convergent to the unique fixed point of Γ for any choice of λ(0) ∈ R
p
+.

Indeed, it follows from Proposition 3.3 that λ(1) ∈ BR independently of the
starting value λ(0).

Remark 3.2. Let us notice that the bound (3.16) does not depend on L ∈ R
n

and it can be also chosen to be independent of α ∈ U as follows from (3.1), i.e., there
exists an F0 > 0 such that for any (F ,L, α) ∈ (0,F0)×R

n ×U there is a unique fixed
point λ of Γ.

Let α ∈ U be fixed, F ∈ (0,F0) and (u , λ) be the unique solution of the contact
problem with Coulomb friction in the sense of Definition 3.5. Now, we shall consider
the couple (u , λ) := (u(L), λ(L)) to be a function of the load vector L ∈ R

n. We
define the mapping SL : R

n 7−→ K × R
p
+ by

SL(L) = (u(L), λ(L)) ∀L ∈ R
n.

An easy consequence of (3.11) and (3.14) is the fact that SL is Lipschitz on R
n

uniformly with respect to α ∈ U .
Proposition 3.9. Let F ∈ (0,F0). Then there exists δ > 0 such that the

inequality

‖SL(L1) − SL(L2)‖n+p ≤ δ‖L1 − L2‖n

holds for all L1,L2 ∈ R
n and all α ∈ U .

So far, α ∈ U has been fixed. Next we will look at α as a control variable pa-
rameterizing our state problem. We denote by S the control-to-state mapping which
assigns α ∈ R

d the solutions (u , λ) of the contact problem with Coulomb friction in
the sense of Definition 3.5. We know that S(α) is nonempty for all α ∈ U and a
singleton if F ∈ (0,F0). Let J : GrS 7−→ R be an objective.
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The discrete optimal shape design problem reads as follows:

Find z ∗ := (α∗,u∗, λ∗) ∈ GrS such that

J(z ∗) ≤ J(z ) ∀z ∈ GrS.

}
(P)

If F ∈ (0,F0), then S is single-valued and (P) takes the form

Find α∗ ∈ U such that

Θ(α∗) ≤ Θ(α) ∀α ∈ U ,

}
(P̃)

where Θ(α) := J(α, S(α)). The following existence result is easy to prove.
Theorem 3.10. Let J be lower semicontinuous on GrS. Then (P) has a solu-

tion.
Proof. It is readily seen that GrS is a compact subset of R

d × R
n × R

m.
From now on we will suppose that F ∈ (0,F0). Our main aim is to show that the

single-valued function S is Lipschitz on U . We start with a reduction of the problem
by eliminating all components of u ∈ R

n associated with the non-contact nodes of the
finite element partition of Ω̄(αh). The resulting problem contains only the tangential
components u t ∈ R

2p and the normal components uν ∈ R
p of u at p contact nodes.

In the next step we transform this reduced problem into the following generalized
equation (GE) for the unknowns u t, uν and λ (for details see Section 3 in [2]):

0 ∈ Att(α)u t + Atν(α)uν − Lt(α) + Qt(u t, λ)

0 = Aνt(α)u t + Aνν(α)uν − Lν(α) − λ

0 ∈ uν + α + NR
p
+
(λ),





(3.17)

where Att(α) ∈ R
2p×2p, Aνν(α) ∈ R

p×p, Aνt(α) ∈ R
p×2p, Atν(α) = AT

νt(α),
Lt(α) ∈ R

2p, Lν(α) ∈ R
p.

In (3.17) NR
p
+
(·) is the normal cone mapping in the sense of convex analysis and

Qt : R
2p × R

p 7−→ R
2p is the set-valued mapping defined by

Qt(u t, λ) = ∂ut
j(u t, λ), j(u t, λ) = F

p∑

i=1

λi

∥∥u i
t

∥∥ ,

with u i
t ∈ R

2 being the tangential displacement at the ith contact node, u t =(
u1

t , . . . ,u
p
t

)
. Problem (3.17) can be written in a more compact form:

0 ∈ F (α)y − l(α) + Q(y), (3.18)

where y = (u t,uν , λ) and

F (α) =



Att(α) Atν(α) 0
Aνt(α) Aνν(α) −E

0 E 0


 ,

l(α) = (Lt(α),Lν(α),−α)
T

,

Q(y) =
(
Qt(u , λ),0, NR

p
+
(λ)

)T
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with E being the identity matrix.

In the rest of this section we prove that the GE (3.18) satisfies the strong regularity
condition (SRC) of Robinson ([23]) at (α,y(α)) for any α ∈ U , where y(α) is the
unique solution of (3.18). Let (ᾱ, ȳ) be a reference point. According to [23] we
associate with (3.18) the following perturbed model at (ᾱ, ȳ):

ξ ∈ F (ᾱ)y − l(ᾱ) + Q(y), (3.19)

where ξ = (ξt, ξν , ξλ) ∈ R
2p × R

p × R
p is a canonical perturbation. This problem

can be again interpreted as a contact problem with Coulomb friction with a variable
load vector depending on ξ but formulated on a given shape characterized by ᾱ ∈ U .
Indeed, (3.19) is equivalent to

0 ∈ Att(ᾱ)u t + Atν(ᾱ)uν − Lt(ᾱ) − ξt + Qt(u t, λ)

0 = Aνt(ᾱ)u t + Aνν(ᾱ)uν − Lν(ᾱ) − ξν − λ

0 ∈ uν + ᾱ + ξλ + NR
p
+
(λ).





(3.20)

The last inclusion in (3.20) corresponds to the non-penetration condition uν ≥ −ᾱ−
ξλ. Denote by ξ̃λ = (0, ξλ) ∈ R

2p the extension of ξλ by the zero vector and write
ũ = (u t,uν) in the form

ũ = w − ξ̃λ, (3.21)

i.e., u t = w t and uν = wν − ξλ where wν ≥ −ᾱ. Inserting (3.21) into (3.20) we
obtain a new problem for the vector w : = w(ξ):

0 ∈ Att(ᾱ)w t + Atν(ᾱ)wν − F t(ξ) + Qt(w t, λ)

0 = Aνt(ᾱ)w t + Aνν(ᾱ)wν − F ν(ξ) − λ

0 ∈ wν + NR
p
+
(λ),





(3.22)

where

F t(ξ) :=Lt(ᾱ) + ξt + Atν(ᾱ)ξλ

F ν(ξ) :=Lν(ᾱ) + ξν + Aνν(ᾱ)ξλ

represent a perturbation of the original load vector depending on ξ. From Remark
3.2 we know that there exists a unique solution of (3.22) for any ξ and Proposition 3.9
says that this solution as a function of load vectors is Lipschitz on R

n. Hence, we
proved the following result.

Theorem 3.11. Let F ∈ (0,F0) with F0 > 0 sufficiently small. Then the
respective GE (3.18) is strongly regular at each triple (α,u, λ) with α ∈ U and
(u, λ) = S(α). Consequently, the control-to-state mapping S is Lipschitz on U .

Proof. Follows from Theorem 2.1 in [23].
On the basis of the results of this section the Lipschitz continuity of S could be

proved in a direct way, without using the mentioned Robinson’s result. The strong
regularity of (3.18) will play, however, an important role in the next section.

4. Implicit programming approach (ImP) and sensitivity analysis. In
this section the scalar product in R

n will be denoted by 〈·, ·〉 without any subscript
related to the dimension. Consider the problem (P̃) and assume that the objective J
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is continuously differentiable. By virtue of the assumptions and Theorem 3.11, Θ is
locally Lipschitz on an open set containing U . It follows that (P̃) can be solved by a
suitable bundle method of nondifferentiable optimization, provided the structure of U
is not too complicated. To this end we have to be able to compute for each admissible
design variable ᾱ

(i) the solution ȳ = S(ᾱ) of the respective contact problem, and
(ii) an arbitrary subgradient ξ from the Clarke subdifferential ∂̄Θ(ᾱ).

This section is devoted to task (ii). We start with the observation that

∂̄Θ(ᾱ) = ∇αJ(ᾱ, ȳ) + conv {C T∇yJ(ᾱ, ȳ) | C ∈ ∂̄S(ᾱ)}

which follows directly from the Chain Rule 2.6.6 in [3]. Since ∅ 6= D∗S(α)(y∗) ⊂
conv {C Ty∗ | C ∈ ∂̄S(ᾱ)} for all y∗, it suffices for our purposes to compute just one
element from the set

D∗S(ᾱ)(∇yJ(ᾱ, ȳ)),

and we are done. To be able to express the coderivative D∗S(ᾱ) in terms of the data
of the GE (3.18), we re-order this GE in such a way that the multivalued part

Q(y) =




Φ(y1)
Φ(y2)

...
Φ(yp)


 ,

where the subvector y i = (u i
t, u

i
ν , λi) ∈ R

2 × R × R+ comprises all state variables
associated with the ith contact node, and

Φ(y i) =



Fλi∂‖u

i
t‖2

0
NR+

(λi)


 ,

i = 1, 2, . . . , p. Let d̄ = (d̄1, d̄2, . . . , d̄p) ∈ (R4)p belong to the image set Q(ȳ) so that

d̄
i
∈ Φ(ȳ i); i = 1, 2, . . . , p.

Due to the above re-ordering, y∗ = (y∗1,y∗2, . . . ,y∗p) ∈ (R4)p belongs to
D∗Q(ȳ , d̄)(d∗) with d∗ = (d∗1,d∗2, . . . ,d∗p) ∈ (R4)p whenever

y∗i ∈ D∗Φ(ȳ i, d̄
i
)(d̄

∗i
), i = 1, 2, . . . , p.

This facilitates the computation of the coderivatives D̂∗Q and D∗Q conducted in the
subsequent analysis. Put m := 4p.

Theorem 4.1. Consider the reference pair (ᾱ, ȳ) with ᾱ ∈ U , ȳ = S(ᾱ). Then
for each y∗ ∈ R

m

(∇α(F (ᾱ)ȳ))T z ⊂ D∗S(ᾱ)(y∗) ⊂ (∇α(F (ᾱ)ȳ))TV, (4.1)

provided z is a solution of the regular adjoint GE (RAGE)

0 ∈ y∗ + (F (ᾱ))T z + D̂∗Q(ȳ,−F (ᾱ)ȳ)(z), (4.2)
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and V is the set of solutions v to the (limiting) adjoint GE (AGE)

0 ∈ y∗ + (F (ᾱ))Tv + D∗Q(ȳ,−F (ᾱ)ȳ)(v). (4.3)

Proof. By Theorem 3.11 the GE (3.18) satisfies SRC at (ᾱ, ȳ). It follows from
[22, Proposition 3.2] that the qualification condition

0 = (∇α(F (ᾱ)ȳ))Tv

0 ∈ (F (ᾱ))Tv + D∗Q(ȳ ,−F (ᾱ)ȳ)(v)

}
⇒ v = 0,

is fulfilled as well. Thus, the result holds true by virtue of [12, Theorem 2].

Corollary 4.2. If GrQ is normally regular at (ȳ,−F (ᾱ)ȳ), then the second
inclusion in (4.1) becomes equality.

Let y∗ be an arbitrary vector from R
m. The set {C Ty∗ | C ∈ ∂̄S(ᾱ)} is

nonempty by the Lipschitz continuity of S and amounts to conv D∗S(ᾱ)(y∗), see [17,
Eq.2.23]. From this we conclude that AGE possesses a solution ṽ for each y∗ ∈ R

m.
Further, again by the Lipschitz continuity of S, AGE has among its solutions at least
one which is the image of y∗ in the linear mapping ( lim

i→∞
(∇S(α(i)))T (·) for some

sequence α(i) → ᾱ). Hence, at least one solution of AGE can be computed relatively
easily. Under the normal regularity assumption of the corollary, RAGE and AGE
coincide and so the above conclusions hold also for RAGE. In the nonregular case,
however, RAGE may be difficult to solve or may even not be solvable at all. From
these reasons we will use in the computation of the desired subgradient ξ ∈ ∂̄Θ(ᾱ)
preferably the way via the AGE (4.3) and accept that in the nonregular case the
computed vector ξ may be outside of ∂̄Θ(ᾱ). If this happens, the used bundle method
need not inevitably collapse. If it does, however, ξ must be replaced by a correct
subgradient.

In the next part of this section we will concentrate on the solution of AGE in the
case of the GE (3.18) (after the performed re-ordering). Our main task consists in the
specification of a linear subspace L ⊂ NGr Q(ȳ ,−F (ᾱ)ȳ) such that the linear system

0 = y∗ + (F (ᾱ))Tv + w , (w ,−v) ∈ L

is as simple as possible. This linear subspace depends clearly on the position of the
point (ȳ ,−F (ᾱ)ȳ) on GrQ or, more precisely, on the positions of (ȳ i,−F i(ᾱ)ȳ) on
Gr Φ, i = 1, 2, . . . , p, where F i(ᾱ)ȳ is the subvector of F (ᾱ)ȳ associated with the ith
contact node.

To facilitate the notation, let us consider instead of (y i,−F i(α)y) a pair of vectors
(a , b) ∈ GrΦ ⊂ R

4 × R
4 (so that, necessarily, b3 = 0) and let us denote by a12, b12

the two-dimensional vectors (a1, a2)
T , (b1, b2)

T , respectively.

Clearly, Gr Φ admits the partition

Gr Φ = L ∪ M1 ∪ M2 ∪ M+
3 ∪ M−

3 ∪ M4,

where
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L = {(a , b) ∈ Gr Φ | b4 < 0}

M1 = {(a , b) ∈ Gr Φ | a12 6= 0, a4 > 0}

M2 = {(a , b) ∈ Gr Φ | a12 6= 0, a4 = 0, b4 = 0}

M+
3 = {(a , b) ∈ Gr Φ | a12 = 0, a4 > 0, ‖b12‖ < Fa4}

M−
3 = {(a , b) ∈ Gr Φ | a12 = 0, a4 > 0, ‖b12‖ = Fa4}

M4 = {(a , b) ∈ Gr Φ | a12 = 0, a4 = 0, ‖b12‖ = Fa4, b4 = 0}.

The nature of these sets can be explained in mechanical terms. So, L refers to the
absence of contact (and hence also the absence of friction). When a12 6= 0, we speak
about sliding in contrast to the case a12 = 0 which is called sticking. The adjective
“weak” is used as in complementarity [20] to indicate an instable situation on a
boundary between two stable states. All in all, M1 amounts to sliding with contact,
M2 to sliding with weak contact, M+

3 to sticking with contact, M−
3 to weak sticking

with contact and M4 to weak sticking with weak contact. This partition of Gr Φ can
be presented also in form of a table with “impossible” fields being crossed out (see
Table 4.1).

Table 4.1

no contact: weak contact: strong contact:
a4 = 0, b4 < 0 a4 = 0, b4 = 0 a4 > 0, b4 = 0

sliding:
M2 M1

a12 6= 0
weak sticking: L

a12 = 0 M4 M−
3

‖b12‖ = Fa4

strong sticking:
a12 = 0 - - - - - - - - - - - - - - M+

3

‖b12‖ < Fa4

The sets L,M1 and M+
3 exhibit a stable behavior in the sense that the implication

(ā , b̄) ∈ L( or M1 or M+
3 )

(a , b) ∈ Gr Φ

(a , b) is sufficiently close to (ā , b̄)





⇒ (a , b) ∈ L( or M1 or M+
3 )

is fulfilled. On the other hand, if (ā , b̄) ∈ M2, then in each neighborhood O of (ā , b̄)
there are points from L and M1. Similarly, in each neighborhood V of (ā , b̄) ∈ M−

3

there are points from M1 and M+
3 and in each neighborhood W of (ā , b̄) ∈ M4 there

are points from all remaining sets. It follows that for the purpose of providing a
subgradient information to the used bundle method it suffices to compute D∗Φ(ā , b̄)
in the case of sets L,M1,M

+
1 , and exploit the outer semicontinuity

a∗(i) ∈ D∗Φ(a (i), b(i))(b∗(i))

(a (i), b(i)) → (ā , b̄), b∗(i) → b∗,a∗(i) → a∗

}
⇒ a∗ ∈ D∗Φ(ā , b̄)(b∗). (4.4)

14



Proposition 4.3. Let (ā, b̄) ∈ L. Then one has

D∗Φ(ā, b̄)(b∗) =

〈
{a∗ ∈ R

4 | a∗
1 = a∗

2 = a∗
3 = 0} provided b∗4 = 0

∅ otherwise .
(4.5)

Proof. There is a neighborhood O of (ā , b̄) such that for all (a , b) ∈ Gr Φ ∩O it
holds

b ∈




0
0
0

NR+
(0)


 , b4 < 0.

The rest follows from the formula for the coderivative of the normal cone mapping
NR+

(·) given in [21, Lemma 2.2].
Proposition 4.4. Let (ā, b̄) ∈ M1. Then one has

D∗Φ(ā, b̄)(b∗) =




0 0

CT 0 0
0 0 0 0

‖a12‖
−1Fa1 ‖a12‖

−1Fa2 0 0


 b∗, (4.6)

where

C =
Fa4

‖a12‖3




(a2)
2 −a1a2

−a1a2 (a1)
2


 .

Proof. There is a neighborhood Õ of (ā , b̄) such that for all (a , b) ∈ Gr Φ ∩ Õ it
holds

b = F




‖a12‖−1a4a1

‖a12‖
−1a4a2

0
0


 ,

and so it suffices to compute the adjoint Jacobian of this operator.
In the case of M+

3 we will make use of the next auxiliary result.
Lemma 4.5. Consider a closed-graph multifunction G : R

n
⇉ R

m and define

H(x, v) = vG(x),

where v ∈ R+. Let v̄ > 0, (x̄, v̄, b̄) ∈ GrH and put d̄ = (v̄)−1b̄. Then for all b∗ ∈ R
m

it holds

x∗ ∈ D̂∗G(x̄, d̄)(v̄b∗)

v∗ = 〈d̄, b∗〉

}
⇒ (x∗, v∗) ∈ D̂∗H(x̄, v̄, b̄)(b∗).

Proof. By the definition of the Fréchet normal cone we have to show the existence
of a function o : R+ → R with lim

λ↓0
λ−1o(λ) = 0 such that

〈x ∗,x − x̄ 〉 + 〈d̄ , b∗〉(v − v̄) + 〈−b∗, b − b̄〉 ≤ o(‖x − x̄‖ + |v − v̄| + ‖b − b̄‖) (4.7)
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for all (x , v, b) ∈ GrH, i.e., for all (x , v, vd) with d ∈ G(x ). The expression on the
left-hand side of the above inequality amounts thus to

〈x ∗,x − x̄ 〉 + 〈b∗, (v − v̄)d̄ + v̄d̄ − vd〉 = 〈x ∗,x − x̄ 〉 + 〈b∗, v(d̄ − d)〉

= 〈x ∗,x − x̄ 〉 + 〈−v̄b∗,d − d̄〉 + 〈(v̄ − v)b∗,d − d̄〉. (4.8)

By the assumptions one has for the first two terms in (4.8) the estimate

〈x ∗,x − x̄ 〉 + 〈−v̄b∗,d − d̄〉 ≤ o1(‖x − x̄‖ + ‖d − d̄‖) for all (x ,d) ∈ GrG ,

where o1 : R+ → R is a nondecreasing function with lim
λ↓0

λ−1o1(λ) = 0. Since

‖d − d̄‖ = ‖
b

v
−

b̄

v̄
‖ ≤ ‖

b

v
−

b̄

v
‖ + ‖

b̄

v
−

b̄

v̄
‖ =

1

v
‖b − b̄‖ + ‖

b̄

vv̄
‖ |v − v̄|,

we can find for a given 0 < ε < |v̄| positive constants c1, c2 such that

‖d − d̄‖ ≤ c1‖b − b̄‖ + c2|v − v̄| whenever |v − v̄| ≤ ε.

It follows that

〈x ∗,x − x̄ 〉 + 〈−v̄b∗,d − d̄〉 ≤ o1(‖x − x̄‖ + c2|v − v̄| + c1‖b − b̄‖)

whenever d = v−1b ∈ G(x ) and |v − v̄| ≤ ε.
Using the same idea, for the 3rd term in (4.8) one has

|〈(v̄ − v)b∗,d − d̄〉| ≤ |v − v̄| ‖b∗‖(c1‖b − b̄‖ + c2|v − v̄|)

whenever d = v−1b, |v − v̄| ≤ ε. So a suitable function o for the inequality (4.7) can
easily be constructed and we are done.

On the basis of the above result we are now able to handle the set M+
3 .

Proposition 4.6. Let (ā, b̄) ∈ M+
3 . Then one has

D∗Φ(ā, b̄)(b∗) ⊃




R
2

0
0


 if b∗1 = b∗2 = 0. (4.9)

Proof. It suffices to observe that there is a neighborhood Ô of (ā , b̄) such that

for all (a , b) ∈ Gr Φ ∩ Ô one has a12 = 0,

Φ(a , b) =



Fa4∂‖a12‖

0
0


 ,

and that for any κ > 0

D̂∗(κ∂‖ · ‖)(a12, b12)(b
∗
1, b

∗
2) =

〈
R

2 if b∗1 = b∗2 = 0

∅ otherwise .

The result follows then from the preceding lemma.
Since Gr Φ is normally regular at all points of L∪M1 ∪M+

3 , formulas (4.5)–(4.9)
lead to a correct subgradient ξ whenever all points (ȳ i,−F i(ᾱ)ȳ), i = 1, 2, . . . , p,
belong to this union.
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In the sense of the considerations preceding Proposition 4.3, formula (4.5) can be
used also in the case of M2,M4 and formula (4.9) can be used in the case of M−

3 and
M4. Since (4.9) leads to the greatest simplification of the respective AGE, we use in
our computer program formula (4.5) in the case of L and M2 and formula (4.9) in
the case of M+

3 ,M−
3 and M4. Nevertheless, since Gr Φ is not normally regular at the

points from M2 ∪ M−
3 ∪ M4, the subgradient ξ computed in this way may be false.

This happens, for instance, if there does not exist any sequence α(j) → ᾱ which,
together with the respective state variable y (j), would satisfy the conditions

(y i(j),−F i(α(j))y (j)) ∈ L for all j

y (j) → ȳ

(ȳ i,−F i(ᾱ)ȳ) ∈ M2.

In such a case one can approach the reference point in a different way and the re-
spective formulas come from (4.5), (4.6) and (4.9) by passing to limits in the sense of
(4.4). This derivation is not difficult and will be omitted. Instead, we will illustrate
in the case of M2 and M−

3 the potential of the other approach based on the RAGE
(4.2). Let H : R

4
⇉ R

3 be defined by

H(a) :=

[
Fa4∂‖a12‖

0

]
.

From [24, Theorem 10.40] we immediately obtain the inclusion

D̂∗Φ(ā , b̄)(b∗) ⊃








a∗
1

a∗
2

0
µ + ν




∣∣∣∣∣∣∣∣




a∗
1

a∗
2

0
µ


 ∈ D̂∗H(ā , b̄1, b̄2, 0)(b∗1, b

∗
2, b

∗
3),

ν ∈ D̂∗NR+
(ā4, b̄4)(b

∗
4)} (4.10)

for all b∗ ∈ R
4. Since D̂∗NR+

can easily be computed (see, e.g., [27]), it remains to

derive a suitable inner estimate of D̂∗H in the case when ā12 6= 0, ā4 = 0, b̄4 = 0 (i.e.
in the case of M2) and ā12 = 0, ā4 > 0, ‖b̄12‖ = F ā4 (i.e. in the case of M−

3 ). In the
former case we immediately obtain from (4.6) that

D̂∗H(ā , b̄1, b̄2, 0)(b∗1, b
∗
2, b

∗
3) =




0 0 0
0 0 0
0 0 0

‖ā12‖
−1Fa1 ‖ā12‖

−1Fa2 0







b∗1
b∗2
b∗3


 (4.11)

and we are done. In the case of M−
3 we make use of the results below.

Proposition 4.7. Let (c̄, d̄) ∈ R
2 × R

2 with c̄ = 0 and ‖d̄‖ = F . Then one has

D̂∗(F∂‖ · ‖)(c̄, d̄)(d∗) =

〈
{c∗ ∈ R

2|〈c∗, d̄〉 ≤ 0} provided d∗ ∈ R−d̄

∅ otherwise .
(4.12)

Proof. Clearly, Gr (F∂‖·‖) = G1+G2, where G1 = {0}×FB1 and G2 = {(c,d) ∈
R2 × R2|c 6= 0,d = ‖c‖−1Fc}. One immediately sees that the contingent cone

TG1
(c̄, d̄) = {(h , k) ∈ R

2 × R
2|h = 0, 〈k , d̄〉 ≤ 0}
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and, consequently,

N̂G1
(c̄, d̄) = {(h∗, k∗) ∈ R

2 × R
2|k∗ ∈ R+d̄}.

On the other hand, by the definition of the contingent cone,

TG2
(c̄, d̄) = {(h , k) ∈ R

2 × R
2 | ∃h (i) → h ,∃k (i) → k ,∃ν(i) ↓ 0 such that

Fν(i)h (i)

‖ν(i)h (i)‖
= d̄ + ν(i)k (i) ∀ i} = {(h , k) ∈ R

2 × R
2|h ∈ R+d̄ , 〈k , d̄〉 = 0}.

We readily compute that

N̂G2
(c̄, d̄) = {(h∗, k∗) ∈ R

2 × R
2|〈h∗, d̄〉 ≤ 0, k∗ ∈ Rd̄}.

Since the Fréchet normal cone to a union of sets is the intersection of Fréchet normal
cones to the single sets, we obtain that

N̂Gr (F∂‖·‖)(c̄, d̄) = {(h∗, k∗) ∈ R
2 × R

2|〈h∗, d̄〉 ≤ 0, k∗ ∈ R+d̄}

and formula (4.12) follows.
By a combination of Lemma 4.5 and Proposition 4.7 we arrive at
Proposition 4.8. Let ā12 = 0, a4 > 0, ‖b̄12‖ = F ā4 and d̄ = (ā4)

−1b̄12. Then
one has

D̂∗H(ā, b̄1, b̄2, 0)(b∗1, b
∗
2, b

∗
3) ⊃ {(u∗, 0, v∗) ∈ R

2 × R × R | 〈u∗, d̄〉 ≤ 0,

v∗ = 〈d̄, (b∗1, b
∗
2)

T 〉} (4.13)

provided (b∗1, b
∗
2)

T ∈ R−d̄.
We observe that in both cases of the sets M2 and M−

3 the respective RAGEs (4.2)
amount to systems of linear equations and inequalities. In the case of M2 the inequal-
ities arise from the Fréchet normal cone to the graph of NR+

at zero, whereas in the
case of M−

3 they come directly from formula (4.13). This is a typical phenomenon
arising in connection with RAGEs and it causes a substantial complication in compar-
ison with AGEs (4.3) derived on the basis of Propositions 4.3, 4.4 and 4.6. Therefore
we recommend the usage of this approach only if all other available formulas do not
lead to a correct subgradient.

5. Numerical results. The results of the previous sections will now be used
for construction of a numerical method for the solution of (P̃). We assume that the
friction coefficient F is small enough in the sense of Theorem 3.7 so that the solution
of the contact problem with Coulomb friction is unique. Further, as in Section 4, we
assume that the cost functional J is continuously differentiable. For the minimization
of Θ we use the BT code [28] based on the bundle-truss algorithm of Schramm and
Zowe [25]. In every step of the iteration process, this code needs the function value
Θ(α) and one (arbitrary) Clarke’s subgradient of Θ at α.

5.1. Solving the state problem. To compute a function value J(α, S(α)), we
have to evaluate S(α), i.e., to solve the fixed-point problem (P). For that, we use
the method of successive approximations introduced in Corollary 3.8. Each iterative
step requires to solve the contact problem with given friction (M (L, g)), in which the
slip bound g is updated by the result of the previous iteration, i.e., g ≡ λ(k). The
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problem (M (L, g)) is solved using the so-called reciprocal variational formulation (see
[7, 10, 11]). As in the previous sections, we denote by λ ∈ R

p the vector of normal
contact stresses. Further, let τ ∈ R

2p be the vector of tangential contact stresses.
Notice that with each contact node we associate one component λi of λ and two
components τ2i−1, τ2i of τ . After eliminating the first variable u from (M (L, g)),
we arrive at the problem formulated in terms of contact stresses:

min
σ∈S

f(σ) :=
1

2
σTQσ − σTh (5.1)

with

S = {σ = (λ, τ) ∈ R
3p | λi ≥ 0, τ2

2i−1 + τ2
2i ≤ gi, i = 1, 2, . . . , p},

where Q = BA−1BT , h = BA−1L + c, B = (N T ,TT )T , c = (αT , 0T )T and
T ∈ R

2p×n stands for a matrix representation of the linear mapping T used in (3.3).
After computing λ, τ from (5.1), one obtains the eliminated variable u by

u = A−1(L−Nλ−Tτ).

As (5.1) is a strictly convex problem with quadratic objective and separable quadratic
constraints, it can be solved by the algorithm proposed by Kučera in [13] and analyzed
in [14]. The algorithm generalizes ideas of Dostál and Schöberl [4] originally proposed
for convex quadratic problems with simple bounds. Because an efficient solution
procedure for (5.1) is essential for the overall efficiency of our numerical approach, we
give a brief description of the algorithm.

Let N = {1, . . . , 3p} be the set of all indices. At a point σ ∈ S, we denote the
gradient of f by r = r(σ) = Qσ − h and introduce an active set A ⊆ N by

A := A(σ) = {i | λi = 0} ∪ {j | j = 2i − 1 + p : τ2
2i−1 + τ2

2i = gi}

∪ {j | j = 2i + p : τ2
2i−1 + τ2

2i = gi}.

Using the orthogonal projection PS : R
3p 7→ S, we define the projected gradient for a

fixed α̃ ≥ 0 as

r̃ = r̃(σ) =
1

α̃
(σ − PS(σ − α̃r(σ))).

Notice that the projected gradient enables us to write down the optimality criterion
characterizing the solution σ∗ of (5.1) in the form r̃(σ∗) = 0. Our algorithm is based
on the observation that non-zero components of r̃(σ) at σ 6= σ∗ determine descent
directions changing appropriately the active set. To this end, we introduce compo-
nents of r̃(σ) and r(σ) called the projected free gradient ϕ̃ = ϕ̃(σ), the projected

boundary gradient β̃ = β̃(σ), and the free gradient ϕ = ϕ(σ), respectively, defined
by

ϕ̃A = 0, ϕ̃N\A = r̃N\A,

β̃A = r̃A, β̃N\A = 0,

ϕA = 0, ϕN\A = rN\A.

We combine three steps to generate a sequence of iterates {σ(l)} that approxi-
mates the solution to (5.1):
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• the expansion step: σ(l+1) = σ(l) − α̃ϕ̃(σ(l)),

• the proportioning step: σ(l+1) = σ(l) − α̃β̃(σ(l)),

• the conjugate gradient step: σ(l+1) = σ(l) − α
(l)
cg p(l), where the stepsize α

(l)
cg

and the conjugate gradient directions p(l) are computed recurrently (see [6])
so that the recurrence starts from σ(s) generated by the last expansion or
proportioning step and A(σ(l+1)) = A(σ(s)).

The expansion step may add indices while the proportioning step may release indices
to/from the current active set. The conjugate gradient step is used to carry out
efficiently minimization of the objective f on the interior of the set W (σ(s)) = {σ ∈

S | σA = σ
(s)
A ,A = A(σ(s))}. Moreover, the algorithm exploits a given constant Γ̃ > 0

and the releasing criterion

β̃(σ(l))T r(σ(l)) ≤ Γ̃ ϕ̃(σ(l))T r(σ(l)) (5.2)

to decide which of the steps will be performed.

Algorithm 5.1 Let σ(0) ∈ S, Γ̃ > 0, α̃ ∈ (0, ‖Q‖−1] and ε ≥ 0 be given. For
σ(l), σ(s) known, 0 ≤ s ≤ l, where σ(s) is computed by the last step expansion or
proportioning, choose σ(l+1) by the following rules:

(i) If ‖r̃(σ(l))‖ ≤ ε, return σ = σ(l).
(ii) If σ(l) fulfills (5.2), try to generate σ(l+1) by the conjugate gradient step. If

σ(l+1) ∈ IntW (σ(s)), accept it, else generate σ(l+1) by the expansion step.
(iii) If σ(l) does not fulfil (5.2), generate σ(l+1) by the proportioning step.

Contrary to the simple bound problem analyzed in [4], the algorithm does not ex-
hibit the finite terminating property; the same convergence rate is, however, achieved.
In [14] one can find the following statement.

Theorem 5.1. Let σ∗ ∈ S denote the solution to (5.1), αmin denote the smallest

eigenvalue of Q and Γ̂ = max{Γ̃, Γ̃−1}. Let {σ(l)} be the sequence generated by
Algorithm 5.1 with ε = 0. Then

f(σ(l+1)) − f(σ∗) ≤ η
(
f(σ(l)) − f(σ∗)

)
,

where

η = 1 −
α̃αmin

2 + 2Γ̂
< 1.

The error in the Q-energy norm is bounded by

‖σ(l) − σ∗‖2
Q ≤ 2ηl

(
f(σ(0)) − f(σ∗)

)
.

Theorem 5.1 yields the best value of the convergence rate factor η for the choice
Γ = Γ̂ = 1 and α̃ = ‖Q‖−1. Then

η = 1 −
1

4
κ(Q),

where κ(Q) is the spectral condition number of Q .
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5.2. Numerical examples. In order to work with a relatively small number
of control variables and, at the same time, to get a smooth shape of the optimal
boundary, we will model the contact boundary Γc by a Bézier surface of order d. The
design variable α is thus a vector of its control points. The Bézier surface ϑα of order
(d1, d2) in R(= [0, a] × [0, b]) is generated by a d1 × d2 matrix α as

ϑα(x1, x2) =

d1∑

i=0

d2∑

j=0

α(i,j)βi
d1

(x1)β
j
d2

(x2), (x1, x2) ∈ R,

where

βℓ
d1

(x1) =
1

ad1

(
d1

ℓ

)
xℓ

1(a − x1)
d1−ℓ, βℓ

d2
(x2) =

1

bd2

(
d2

ℓ

)
xℓ

2(b − x2)
d2−ℓ.

The corner points of ϑα are identical with the “corner elements” of the control
matrix. The surface itself lies in the convex hull of the control points. This means
that any upper and lower bounds on the control points hold for the whole surface in
R, too.

The discrete shape optimization problem is defined as follows:

minimize J(α, S(α))

subject to α ∈ U ,

}
(P̃B)

where U is given by

U =

{
α ∈ R

d1×d2 | 0 ≤ α(i,j) ≤ C0, i = 0, 1, . . . , d1, j = 0, 1, . . . , d2;

|α(i+1,j) − α(i,j)| ≤ C1
a

d1
, i = 0, 1, . . . , d1 − 1, j = 0, 1, . . . , d2;

|α(i,j+1) − α(i,j)| ≤ C1
b

d2
, i = 0, 1, . . . , d1, j = 0, 1, . . . , d2 − 1;

d1∑

i=0

d2∑

j=0

α(i,j) = C2(d1 + 1)(d2 + 1)





and C0, C1, C2 are given positive constants. The first set of constraints guarantees
that |Fα(x)| ≤ C0 for all x ∈ R. The second and third constraint sets take care of the
slopes of ϑα in the direction of axes x1, x2. It is well known that if the control points

satisfy these conditions, then |
∂

∂xk

ϑα(x1, x2)| ≤ C1 for all (x1, x2) ∈ R, k = 1, 2.

The equality constraint is added to control the volume of the domain by the
control points of the Bézier surface. The number (c − C2)ab equals the volume of
Ω(α) defined by

Ω(α) = {(x1, x2, x3) ∈ R
3 | (x1, x2) ∈ (0, a) × (0, b), Fα(x1, x2) < x3 < c}; (5.3)

see Figure 5.1 which shows the body in 3D and 2D view. Thus the equality constraint
has a physical meaning of preserving the weight of the structure.

Both test examples solved below differ only in the cost function. The shape of
the elastic body Ω(α), α ∈ U , is given by (5.3) with a = 2, b = 1, c = 1. The set of
admissible designs U is determined by the choice C0 = 0.75, C1 = 0.5, C2 = 0.01.
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Fig. 5.1. The elastic body and applied loads.

The left-hand face Γu = {x ∈ Ω(α) | x1 = 0} is the part of the boundary with the
prescribed Dirichlet condition where all displacements are fixed to zero. The non-zero
external loads are defined as follows. The top face ΓP1 = {x ∈ Ω(α) | x3 = 1} is

subjected to the constant pressure P1 = −8 · 10−2 N
m2 . The right-hand face ΓP2 =

{x ∈ Ω(α) | x1 = 1} is subjected to the constant pressure P2 = 5 · 10−2 N
m2 . The

bottom face Γc represented by the graph of ϑ(α) is supported by a rigid half-space
R

2×R−. The examples were solved with the Young modulus E = 21.19 Pa, Poisson’s
constant σ = 0.277, and the friction coefficient F = 0.3.

The reference body, a prism of size 2× 1× 1, was uniformly carved into 24× 11×
11 = 2904 bricks. The finite element discretization was constructed by using tri-linear
elements. The total number of nodal displacements was 10398 including 864 contact
displacements. The partition of the each Ω(α) was constructed from the partition
of the reference body Ω̂ by a suitable coordinate transformation in the x3 direction.
The total number of design variables (control points of the Bézier surface) was 32
(d1 = 8, d2 = 4).

Example 5.1. We try to find a shape of the contact surface for which the normal
stress is as close as possible to a prescribed function. The corresponding problem (P̃)
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can be formulated as

minimize ‖λν − λν‖
2
2

subject to α ∈ U ,

where λν is a vector of desired normal stresses. This target function is a step function,
depicted in Figure 5.2 (left). Figure 5.2 (right) shows the distribution of the contact
normal stresses for the initial shape, given by the constant vector α0 = [0.01, . . . , 0.01].
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Fig. 5.2. Example 5.2, target normal stress (left) and normal stress for initial design (right).

The objective function value for the initial design was equal to J(α0) = 3.1583304·
10−5. The stopping parameter for the code BT was set to ε = 1 · 10−4. This required
precision was reached after 114 iterations. (With a stopping tolerance decreased to
ε = 1 · 10−3, the code finished already after 21 iterations.) Figure 5.3 presents the
optimal solution, i.e., the optimal shape of the contact boundary, while Figure 5.4
compares the contact normal stresses with the prescribed values. We see that the
stresses for the optimal shape follow the step function rather closely.
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Fig. 5.3. Example 5.2, optimal design.
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Fig. 5.4. Example 5.2, target normal stress (left) and normal stress for optimal design (right).

Finally, we present the optimal shape in terms of the matrix of the respective
control points:

αopt =




0.0107 0.0107 0.0107 0.0107
0.0074 0.0073 0.0073 0.0074
0.0036 0.0035 0.0036 0.0036
0.0042 0.0042 0.0043 0.0042
0.0093 0.0093 0.0093 0.0092
0.0128 0.0127 0.0127 0.0129
0.0141 0.0138 0.0138 0.0141
0.0181 0.0182 0.0182 0.0181




.

The optimal value of the objective function was Jopt = 1.6045224 · 10−6.
Example 5.2. We will now minimize the Euclidean norm of the contact stresses.

The shape optimization problem reads as follows:

minimize ‖λν‖
2
2

subject to α ∈ U .

The initial shape is given as in the previous example. The stopping parameter for
the code BT was set to ε = 8 · 10−4. This criterion was reached after 640 iterations.
The objective function value for the initial shape was equal to J(α0) = 0.61121816
and for the optimal shape Jopt = 0.34117444. Below we present the optimal shape in
terms of the matrix of the respective control points:

αopt =




0.0002 0.0003 0.0000 0.0003
0.0012 0.0017 0.0023 0.0009
0.0060 0.0063 0.0053 0.0063
0.0067 0.0071 0.0084 0.0061
0.0141 0.0144 0.0133 0.0146
0.0120 0.0129 0.0135 0.0118
0.0182 0.0181 0.0181 0.0183
0.0199 0.0208 0.0208 0.0199




.

Figure 5.5 shows the optimal design of the contact surface. In Figure 5.6 we
present the normal stress for the initial design (left) and for the optimal design (right).
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Fig. 5.5. Example 5.2, optimal design.
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Fig. 5.6. Example 5.2, normal stress for the initial (left) and optimal (right) design.
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