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Abstract. The contribution deals with solving of contact problems with Coulomb friction for
a system of 3D elastic bodies. The iterative method of successive approximations is used in order
to find a fixed point of a certain mapping that defines the solution. In each iterative step, an
auxiliary problem with given friction is solved that is discretized by the FETI method. Then the
duality theory of convex optimization is used in order to obtain the constrained quadratic pro-
gramming problem that, in contrast to the 2D case, is subject to quadratic inequality constraints.
The solution is computed (among others) by a newly developed algorithm of constrained quadratic
programming. Numerical experiments demonstrate experiences with the algorithm.

1 Introduction

The FETI method was proposed [5] for parallel solution of problems described by elliptic partial
differential equations. The key idea is elimination of the primal variables so that the original
problem is reduced to a small, relatively well conditioned quadratic programming problem (QPP)
in terms of the Lagrange multipliers. Then an iterative solver is used to compute the solution.

In context of 2D contact problems with friction, the FETI procedure leads to a sequence of QPPs
constrained by simple inequality bounds [3, 7] so that the fast algorithm with proportioning and
gradient projection [4] can be used. The situation is not so easy in 3D since the QPPs are
subject to two types of constraints. The first one, representing nonnegativity of the normal
contact stress, are again simple inequality bounds while the second one, representing the effect
of isotropic friction, are quadratic inequalities. In our recent papers [8, 11], we have used
linear approximations of quadratic inequalities transforming them into simple inequality bounds
so that the fast algorithm mentioned above can be used again. Unfortunately, this procedure
increases considerably the size of the QPPs if we require a sufficiently accurate approximation of
quadratic inequalities. In order to overcome this drawback, we have developed a new algorithm
of quadratic programming that treats the quadratic inequalities directly [10].

In this contribution, we shall present our experiences with the algorithm for solving the contact
problems with Coulomb friction. The Coulomb’s law of friction is treated by the iterative
method of successive approximations. The problem is precoditioned by the ”natural” corse grid
so that, moreover, equality constraints are imposed and the iterative augmented Lagrangian
method is used in order to satisfy them. These two iterative procedures are connected in the
outer loop. The inner loop uses the restarted conjugate gradient method that solves the QPPs
constrained by simple inequality bounds and quadratic constraints. The performance of the
whole computational process is demonstrated on model examples.



2 Formulation of the problems

Let us consider a system of elastic bodies that occupy in the reference configuration bounded
domains Ωp ⊂ R3, p = 1, 2, . . . , s, with sufficiently smooth boundaries Γp that are split into three
disjoint parts Γp

u, Γp
t and Γp

c so that Γp = Γp
u ∪ Γp

t ∪ Γp
c . Let us suppose that zero displacements

are prescribed on Γp
u and that the surface tractions of density tp ∈ (L2(Γp

t ))
3 act on Γp

t . Along Γp
c

the body Ωp may get into unilateral contact with some other of the bodies. Finally we suppose
that the bodies Ωp are subject to volume forces of density fp ∈ (L2(Ωp))3.

To describe non-penetration of the bodies, we shall use linearized non-penetration condition
that is defined by a mapping χ : Γc −→ Γc, Γc =

⋃s
p=1 Γp

c , which assigns to each x ∈ Γp
c some

nearby point χ(x) ∈ Γq
c, p �= q. Let vp(x),vq(χ(x)) denote the displacement vectors at x, χ(x),

respectively. Assuming the small displacements, the non-penetration condition reads

vp
n(x) ≡ (vp(x) − vq(χ(x))) · np(x) ≤ δp(x),

where δp(x) = (χ(x) − x) · np(x) is the initial gap and np(x) is the critical direction defined by
np(x) = (χ(x) − x)/‖χ(x) − x‖ or, if χ(x) = x, by the outer unit normal vector to Γp

c .

We start with an auxiliary contact problem with given friction. To this end we introduce
the space of virtual displacements V and its closed convex subset of kinematically admissible
displacements K by

V = {v = (v1, . . . ,vs) ∈
s∏

p=1

(H1(Ωp))3 : vp = 0 on Γp
u},

K = {v ∈ V : vp
n(x) ≤ δp(x) for x ∈ Γp

c}.

Let us assume that the normal contact stress Tn ∈ L∞(Γc), Tn ≥ 0, is known apriori so that one
can evaluate the slip bound g on Γc by g = FTn, where F = F p > 0 is a coefficient of friction
on Γp

c . Denote gp = g|Γp
c
.

The variational formulation of the contact problem with given friction reads

minJ (v) subject to v ∈ K, (1)

where
J (v) = 1

2a(v,v) − b(v) + j(v)

is the total potential energy functional with the bilinear form a representing the inner energy
of the bodies and with the linear form b representing the work of the applied forces tp and fp,
respectively. The sublinear functional j represents the work of friction forces

j(v) =
s∑

p=1

∫
Γp

c

gp‖vp
t ‖ dΓ, (2)

where vp
t is the projection of the displacement vp on the plane tangential to the critical direction

np. Let us introduce unit tangential vectors tp
1, t

p
2 such that the triplet B = {np, tp

1, t
p
2} is an

orthonormal basis in R3 for almost all x ∈ Γp
c and denote vp

t1 = vp · tp
1, vp

t2 = vp · tp
2. Then

vp
t = (0, vp

t1 , v
p
t2) with respect to the basis B so that the norm appearing in j reduces to the

Euclidean norm in R2. More details about the formulation of contact problems can be found
in [9].

Let us point out that the solution u ≡ u(g) of (1) depends on the particular choice of g ∈ L∞(Γc),
g ≥ 0. We can define a mapping Φ which associates with every g the product FTn(u(g)), where



Tn(u(g)) ≥ 0 is the normal contact stress related to u(g). The classical Coulomb’s law of friction
corresponds to the fixed point of Φ which is defined by g = FTn(u(g)). To find it, we can use the
method of successive approximations which starts from a given g(0) and generates the iterations
g(l) by

(MSA)
g(l+1) = Φ(g(l)), l = 1, 2, . . . .

This iterative process converges provided Φ is contractive, that is guaranteed for sufficiently
small F (see [6]).

3 Domain decomposition and discretization

We divide the bodies Ωp into tetrahedral finite elements T with a maximum diameter h and
assume that the partitions are regular and consistent with the decompositions of ∂Ωp into Γp

u,
Γp

t and Γp
c . Moreover, we restrict ourselves to the geometrical conforming situation where the

intersection between the boundaries of any two different bodies ∂Ωp ∩ ∂Ωq, p �= q, is either
empty, a vertex, an entire edge, or an entire face.

Let the domains Ωp be decomposed into nonoverlapping subdomains Ωp,i, i = 1, . . . , np, each of
which is the union of finite elements of T . In Ωp,i, we introduce the finite element space V p,i

h by

V p,i
h = {vp,i ∈ (C(Ωp,i))3 : vp,i|T ∈ (P1(T ))3 for all T ⊂ Ωp,i,vp,i|∂Ωp,i∩Γp

u
= 0},

where Pm(T ) denotes the set of all polynomials on T of degree ≤ m. Finally, let us introduce
the product space Vh =

∏s
p=1

∏np

i=1 V p,i
h .

Replacing V by Vh and using the gluing condition vp,i(x) = vp,j(x) for any x in the interface
∂Ωp,i ∩ ∂Ωp,j, i �= j, we can rewrite the approximate contact problem with the given friction (1)
into the algebraic form

min
1
2
u�Ku − u�f +

m∑
k=1

gk‖((T1u)k, (T2u)k)‖

s.t. Nu ≤ d, BEu = 0.

(3)

Here, K denotes the positive semidefinite block diagonal stiffness matrix, f is the vector of nodal
forces, N,d describe the discretized non-penetration condition and BE describes the gluing
condition. The summation term in the minimized functional arises using numerical quadrature
in (2), where T1, T2 describe projections of displacements at the nodes lying on Γc to the
tangential planes and gk are the values of the slip bound g.

Let us point out that the problem (3) is non-differentiable due to the R2-norms appearing in the
summation term. Therefore we shall introduce two kinds of Lagrange multipliers λt = (λ�

t1 ,λ
�
t2)

�

and λc = (λ�
I ,λ�

E)�. While the first one removes the non-differentiability, the second one
accounts for the constraints in (3). Denote

B =

⎡
⎢⎢⎢⎣

T1

T2

N
BE

⎤
⎥⎥⎥⎦ , c =

⎡
⎢⎢⎢⎣

0
0
d
0

⎤
⎥⎥⎥⎦ , λ =

⎡
⎢⎢⎢⎣

λt1

λt2

λI

λE

⎤
⎥⎥⎥⎦

and introduce the Lagrange multiplier set

Λ(g) = {λ : ‖(λt1,k, λt2,k)‖ ≤ gk, λI,k ≥ 0 ∀k}.



It is well known that (3) is equivalent to the saddle-point problem

Find (u,λ) s.t. L(u,λ) = sup
µ∈Λ(g)

min
v

L(v,µ), (4)

where L is the Lagrangian to (3) defined by

L(u,λ) =
1
2
u�Ku− u�f + λ�(Bu − c).

From minima in (4), we obtain
Ku− f + B�λ = 0. (5)

This equality holds iff f −B�λ ∈ ImK or, equivalently, iff f −B�λ⊥KerK. Using a full rank
matrix R whose columns span the kernel of K, we can write

R�(f − B�λ) = 0. (6)

If (6) is fulfiled, then u satisfying (5) reads as follows

u = K†(f − B�λ) + Rα,

where K† denotes a generalized inverse to K. The later formula can be used to eliminate the
first unknown u from (4). After simple algebraic manipulations and changing the sign, we obtain
the minimization problem in terms of λ as

min
1
2
λ�Fλ − λ�h̃

s.t. λ ∈ Λ(g), Gλ = e,
(7)

where F = BK†B� is positive definite, h̃ = BK†f − c, G = R�B� has full row-rank and
e = R�f .

The problem (7) can be adapted by using orthogonal projectors as proposed in [5]. To this end
we define the projectors on ImG� and on KerG as

Q = G�(GG�)−1G and P = I− Q,

respectively. Since Rm = ImG� ⊕KerG, the solution λ to (7) can be uniquely decomposed by

λ = λQ + λP (8)

so that λQ = Qλ and λP = Pλ. Because of GλP = 0, the equality constraints in (7) imply
Gλ = GλQ = e and therefore λQ is known apriori by

λQ = G�(GG�)−1e.

Using the decomposition (8) in the minimized function of (7), we obtain

1
2
λ�Fλ − λ�h̃ =

1
2
λ�

QFλQ − λ�
Qh̃ + λ�

P FλQ +
1
2
λ�

P FλP − λ�
P h̃

= const. +
1
2
λ�

P FλP − λ�
P (h̃ − FλQ)

Hence, (7) is equivalent with

min
1
2
λ�

P FλP − λ�
P h

s.t. λP + λQ ∈ Λ(g), GλP = 0,
(9)



where h = h̃−FλQ. Since the solution λP to (9) belongs to KerG, it satisfies λP = PλP and
therefore it solves

min
1
2
λ�

P PFPλP − λ�
P Ph

s.t. λP + λQ ∈ Λ(g), GλP = 0.
(10)

Let us point out that the solution to (10) is unique since the Hessian PFP is positive definite
on KerG. It follows from the fact that, for all δ ∈ KerG \ {0}, it holds

δ�PFPδ = δ�Fδ > 0.

Therefore the problems (9) and (10) are equivalent in the sense that they have the same solution.

4 Algorithms

Let us denote the augmented Lagrangian to (10) by

L(λP ,β, ρ) =
1
2
λ�

P PFPλP − λ�
P Ph + β�GλP +

ρ

2
‖GλP ‖2

(GG�)−1

=
1
2
λ�

P (PFP + ρQ)λP − λ�
P Ph + β�GλP ,

where ρ > 0. It easy to show that (10) is equivalent to the saddle-point problem

Find (λP ,β) s.t. L(λP ,β, ρ) = min
µ∈Λ(g)\{λQ}

sup
δ

L(µ, δ, ρ). (11)

The iterative algorithm for solving (11) alternately minimize and maximize the augmented
Lagrangian with respect to λP and β, respectively.

Algorithm 1. Set β(0) = 0, l = 0.

repeat

λ
(l+1)
P

.= argmin L(µ,β(l), ρ), s.t. µ ∈ Λ(g) \ {λQ}

β(l+1) = β(l) + ρGλ
(l+1)
P

Update ρ and increase l by one.

until stopping criterion

Algorithms of this type have been intensively studied recently [2, 1] with the inner minimization
represented by a QPP with simple inequality bounds [4]. For 3D contact problems with friction,
the quadratic inequality constraints on λP,t are imposed so that the inner minimization must
be realized by a different way. We shall use a newly developed algorithm for minimizing strictly
quadratic functions with separable convex constraints [10].

The method of successive approximations (MSA) for solving the contact problem with Coulomb
friction can be implemented so that Algorithm 1 is used in each iterative step to evaluate the
mapping Φ. We shall present a more efficient version of this method, in which the iterative steps
of (MSA) and the loop of Algorithm 1 are connected in one loop. The resulting algorithm can
be viewed as the method of successive approximations with an inexact solving of the auxiliary
problems with given friction.



Algorithm 2. Set β(0) = 0, λ
(0)
I , l := 0.

repeat

λ
(l+1)
P

.= argmin L(µ,β(l), ρ), s.t. µ ∈ Λ(Fλ
(l)
I ) \ {λQ}

β(l+1) = β(l) + ρGλ
(l+1)
P

Update ρ and increase l by one.

until stopping criterion

We have used the fact that the Lagrange multiplier λI represents the normal contact stress so
that g = Fλ

(l)
I , λ

(l)
I = λ

(l)
P,I + λQ,I approximates the slip bound.

5 Numerical experiments and conclusions

Let us consider a model brick Ω = (0, 3)×(0, 1)×(0, 1) made of an elastic isotropic, homogeneous
material characterized by the Young modulus 2.1 · 1011 and the Poisson’s ratio 0.28 (steel). The
brick is unilaterally supported by a rigid foundation, where the non-penetration condition and
the effect of Coulomb friction is considered. The applied surface tractions and the parts of the
boundary Γu and Γc are seen in Figure 1.a. The volume forces vanish. The brick Ω is artificially
decomposed onto three parts as seen in Figure 1.b so that the resulting problem has 12 rigid
modes.

Ω

Γ
c

Γ
u

0 3 

a b

Figure 1: a) The cross-section of the brick Ω. b) Domain decomposition and discretiztion.

The algorithm is terminated by means of the stopping criterion

ERR ≤ ε,

where

ERR ≡ ‖β(l+1) − β(l)‖
‖β(l+1)‖ + 1

+
‖Fλ

(l+1)
I − Fλ

(l)
I ‖

‖Fλ
(l+1)
I ‖ + 1

.

The inner minimization uses restarted conjugate gradient method with an adaptive terminating
criterion [10]. If the norm of violation of the Karush-Kuhn-Tucker conditions to the inner
problem is less or equel to M · ERR, M > 0, then the inner loop is terminated.



We test experimentally efficiency of the algorithm for various types of problems:

Linear denotes the noncontact problem, in which the rigid foundation is shifted far enough so
that the algebraic problem is equivalent with a linear system. The augmented Lagrangian
algorithm converges after one iteration.

Nonpen omits the effect of friction, i.e. F = 0. The algebraic problem reduces to the QPP
problem with simple inequality bounds and equality constraints. The behaviour of the
algorithm is completly covered by the analysis of [1] so that the algorithm is scalable and
converges in O(1) iterative steps.

Given denotes the contact problem with given friction g = 5.25 · 104 solved by Algorithm 1.

Coulomb denotes the contact problem with the coefficient of Coulomb friction F = 0.3 that is
solved by Algorithm 2.

Table 1 summarizes results of numerical experiments, where n denotes the number of
primal unknowns (displacements) and m denotes the number of dual unknowns (stresses). The
efficiency is assessed by nouter/ninner , where nouter is the number of augmented Lagrangian
iterations and ninner is the total number of conjugate gradient steps. All numerical experiments
are made by Matlab 7, Pentium(R)4, 3GHz, 512MB RAM.

Table 1: ε = 10−6, M = 0.01.

n m Linear Nonpen Given Coulomb
243 81 1/26 3/108 6/240 7/404
1125 225 1/40 3/122 11/406 5/373
3087 441 1/47 3/274 16/651 6/591
6561 729 1/52 4/372 18/753 8/959
11979 1089 1/56 4/392 20/808 9/946
19773 1521 1/58 4/467 22/850 8/983

The numerical experiments are in agreement with the theoretical results in cases Linear
and Nonpen [1]. The computational costs for solving the contact problems with the given friction
increase since the algorithm of [10] have not the finite termination property due to the non-linear
constraints. Finally, let us point out that computational requirements in solving physically more
realistic contact problem with Coulomb friction are stabilized and even decreased.

6 Conclusion

We have presented results of numerical experiments of the algorithms for solving 3D contact
problems that are based on a newly developed algorithm of quadratic programming with sep-
arable convex constraints [10]. In contrast to the implementation used in [12], we treate here
the simple inequality bounds and the quadratic constraints together in the one loop. Therefore
we can omit Gauss-Seidel splitting used in [12] and, moreover, the rate of convergence of the
resulting quadratic programm can be proved. We prepare to present this result elsewhere.
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[3] Z. Dostál, J. Haslinger, R. Kučera: Implementation of fixed point method for duality based
solution of contact problems with friction. J. Comput. Appl. Math., 140, 2002, pp. 245–256.
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