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Abstract. The paper deals with an iterative method for numerical solving frictionless contact
problems for two elastic bodies. Each iterative step consists of a Dirichlet problem for the one body,
a contact problem for the other one and two Neumann problems to coordinate contact stresses.
Convergence is proved by the Banach fixed point theorem in both continuous and discrete case.
Numerical experiments indicate scalability of the algorithm for some choices of the relaxation
parameter.
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1. Introduction
Contact problems take an important place in the computational mechanics (see [8], [10], [5], [1],
[13], [14] and references therein). Many numerical procedures have been proposed in engineering
literature. The discretization of such problems leads to very large and ill-conditioned systems.
Domain decomposition methods represent a possible remedy how to overcome this difficulty. Re-
cently, a Neumann-Dirichlet algorithm for solving frictionless Signorini contact problems between
two elastic bodies has been proposed and studied in the continuous and discrete setting [15], [7],
[2]. Bayada, Sabil and Sassi proposed another approach in [3] and proved its convergence in the
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continuous setting. Each iterative step of their algorithm is given by a linear elasticity problem
with prescribed displacements for one body and a contact problem with a prescribed gap function
for the second one. Then two Neumann problems are used to ensure continuity of contact stresses
along a common part of the boundary.

The purpose of this contribution is to present a modified version of the previous algorithm and
to compare the resulting iterative schemes. This method is an extension of the one analyzed in [16]
to variational inequalities.

The paper is organized as follows. Firstly in Section 2, we introduce the variational formulation
of frictionless Signorini problems. In Section 3 we propose a modified version of the algorithm
from [3] (see also [12]). Convergence in the continuous and discrete setting is established in next
two sections. Finally, in Section 6 we present implementations of the modified and the original
algorithm both based on dual formulations. Results of model examples will be shown in Section 7.

2. Formulation of the Problem
Let us consider two elastic bodies occupying bounded domains Ωα ∈ R2, α = 1, 2 with sufficiently
smooth boundaries, see Fig. 1. The boundary Γα of Ωα consists of three non-empty disjoint parts
Γα

u , Γα
p , Γα

c so that Γα = Γ̄α
u ∪ Γ̄α

p ∪ Γ̄α
c . The zero displacements will be prescribed on Γα

u and
surface tractions of density pα ∈ (L2(Γα

p ))2 act on Γα
p . On the contact interface represented by Γ1

c

and Γ2
c , we consider the contact conditions: the non-penetration of the bodies and the transmission

of forces. Friction will be neglected. The contact conditions are prescribed by a predefined unit
critical vector ν ∈ (L2(Γ1

c))
2 (e.g. the outward unit normal vector to Γ1

c). The initial gap between
the bodies in the direction of ν is given by a function g ∈ L2(Γ1

c). Let χ : Γ1
c → Γ2

c , χ(x) =
x + g(x)ν(x), x ∈ Γ1

c , be a one-to-one transfer mapping so that we can define ν1 := ν on Γ1
c and

ν2 := ν ◦χ−1 on Γ2
c . Finally, we suppose that the bodies Ωα are subject to volume forces of density

fα ∈ (L2(Ωα))2, α = 1, 2.
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Figure 1: Geometry of the contact problem.

124



J. Haslinger et al. A domain decomposition algorithm for contact problems

Before giving the weak formulation of the contact problem, we introduce notation. Let us
define the following spaces (α = 1, 2):

V α = {vα ∈ H1(Ωα)| vα = 0 on Γα
u},

Vα = V α × V α,

Vα
0 = {vα ∈ Vα| vα · να = 0 on Γα

c },
and

V = V1 × V2, V0 = V1
0 × V2

0.

The standard norm in V α, Vα will be denoted by ‖ · ‖1,Ωα in what follows. The bilinear form
a : V× V 7→ R representing the inner energy of the system is given by:

a(v, w) = a1(v1, w1) + a2(v2, w2), v, w ∈ V,

with
aα(vα, wα) =

∫

Ωα

aα
ijkleij(v

α)ekl(w
α) dx, α = 1, 2,

where aα
ijkl ∈ L∞(Ωα) are coefficients of a symmetric, positive definite tensor of the fourth order

defining the linear Hook law, v = (v1, v2), w = (w1, w2) and eij(v
α) = (∂iv

α
j +∂jv

α
i )/2, i, j, k, l =

1, 2. By b : V 7→ R we denote the work of applied forces:

b(v) = b1(v1) + b2(v2), v ∈ V,

where
bα(vα) =

∫

Ωα

fα · vα dx +

∫

Γα
p

pα · vα ds, α = 1, 2.

The weak formulation of the contact problem reads as follows:

Find u ∈ K such that

a(u, v − u) ≥ b(v − u) ∀v ∈ K,

}
(P)

where K is the convex set of kinematically admissible displacements,

K = {v ∈ V| v1
ν − v2

ν ≤ g on Γ1
c}

with v1
ν := v1 · ν1 and v2

ν := (v2 ◦χ) · (ν2 ◦χ). It is well-known that (P) has a unique solution [13,
11].

The symbol σ(vα), vα ∈ Vα, α = 1, 2 stands for the stress field in Ωα:

σij(v
α) = aα

ijklekl(v
α), i, j = 1, 2.

The normal and tangential components of σ(vα) on Γα
c are given by:

σν(v
α) := σij(v

α)να
i να

j , σt(v
α) := σij(v

α)να
j − σν(v

α)να.
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3. Algorithm
For the sake of simplicity of our presentation we shall suppose that there is no gap between Ω1 and
Ω2 in the undeformed state. Then Γ1

c = Γ2
c =: Γc, g = 0 and χ = id on Γc. In what follows the

symbol ν denotes the outward unit normal vector on Γc with respect to Ω1, while να stands for the
outward unit normal vector to Ωα on the remaining parts of Γα.

Next we shall suppose that Γc is of the class C1,1 and Γ̄1
u∩Γ̄c = Γ̄2

u∩Γ̄c, i.e., either dist(Γα
u , Γc) >

0, α = 1, 2 or Γ̄1
u, Γ̄2

u meet Γ̄c at the same points. Let

H1/2(Γc) = {ϕ ∈ L2(Γc)| ∃vα ∈ V α, vα = ϕ on Γc},
H−1/2(Γc) = (H1/2(Γc))

′ (dual of H1/2(Γc)),

H1/2(Γc) = H1/2(Γc)×H1/2(Γc).

In view of the assumption on the mutual position of Γα
u and Γc it is easy to see that the definition

of H1/2(Γc) does not depend on the choice of V α, α = 1, 2. It is also well-known that H1/2(Γc) is
the Banach space with the norm

‖ϕ‖2
1
2

:=

∫

Γc

ϕ2 ds +

∫

Γc

∫

Γc

|ϕ(x)− ϕ(y)|2
|x− y|2 dsxdsy. (3.1)

In addition, if vα ∈ Vα then vα
ν ∈ H1/2(Γc) as follows from the smoothness assumption on Γc.

The duality pairing between H−1/2(Γc) and H1/2(Γc) will be denoted by 〈, 〉 in what follows.
In order to split problem (P) into two subproblems coupled through the contact interface, we

introduce the mapping that builts functions in Ωα from their values on Γc. Let Pα : H1/2(Γc) 7→ Vα

be the extension operator defined by Pαϕ = vα, ϕ ∈ H1/2(Γc), where vα ∈ Vα, α = 1, 2 satisfies:

aα(vα, zα) = 0 ∀zα ∈ Vα
0 ,

vα
ν = ϕ on Γc,

}
(3.2)

or, equivalently,
div σ(vα) = 0 in Ωα,

vα = 0 on Γα
u ,

σ(vα) · να = 0 on Γα
p ,

σt(v
α) = 0 on Γc,

vα
ν = ϕ on Γc.





(3.3)

With any ϕ ∈ H1/2(Γc) we associate the closed convex set

K2(ϕ) = {v2 ∈ V2| ϕ− v2
ν ≤ 0 on Γc}.

Our algorithm is motivated by the following observation. Let λ ∈ H1/2(Γc) be given and let
u1, u2 be solutions of:

Find u1 := u1(λ) ∈ V1 such that

a1(u1, v1) = b1(v1) ∀v1 ∈ V1
0,

u1
ν = λ on Γc,





(3.4)
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and
Find u2 := u2(λ) ∈ K2(λ) such that

a2(u2, v2 − u2) ≥ b2(v2 − u2) ∀v2 ∈ K2(λ).

}
(3.5)

Then u = (u1, u2) solves the original contact problem if and only if the contact stresses are con-
tinuously transmitted through Γc (the law of action and reaction). Since σt(u

1) = σt(u
2) = 0 on

Γc as follows from (3.4) and (3.5), one needs only to guarantee that

σν(u
1) = σν(u

2) on Γc. (3.6)

Suppose that λ is chosen in such a way that w1
ν = w2

ν on Γc, where w1 ∈ V1, w2 ∈ V2 solve the
following problems:

a1(w1, v1) =
1

2
(−a1(u1, v1) + b1(v1)− a2(u2, P2v

1) + b2(P2v
1)) ∀v1 ∈ V1,

a2(w2, v2) =
1

2
(a2(u2, v2)− b2(v2) + a1(u1, P1v

2)− b1(P1v
2)) ∀v2 ∈ V2.

If w1
ν = w2

ν on Γc then a1(w1, w1) + a2(w2, w2) = 0. Therefore wα = 0 in Ωα, α = 1, 2, implying
(3.6).

We propose the following algorithm.

ALGORITHM 3.1 Let λ0 ∈ H1/2(Γc) and θ > 0 be given. For k ≥ 1 compute uα
k , wα

k , α = 1, 2,
and λk as follows:
(Step 1)

Find u1
k ∈ V1 such that

a1(u1
k, v

1) = b1(v1) ∀v1 ∈ V1
0,

u1
k,ν = λk−1 on Γc.





(3.7)

(Step 2)
Find u2

k ∈ K2(λk−1) such that

a2(u2
k, v

2 − u2
k) ≥ b2(v2 − u2

k) ∀v2 ∈ K2(λk−1).

}
(3.8)

(Step 3)

Find w1
k ∈ V1 such that

a1(w1
k, v

1) = 1
2
(−a1(u1

k, v
1) + b1(v1)− a2(u2

k, P2v
1) + b2(P2v

1)) ∀v1 ∈ V1.

}
(3.9)

(Step 4)

Find w2
k ∈ V2 such that

a2(w2
k, v

2) = 1
2
(a2(u2

k, v
2)− b2(v2) + a1(u1

k, P1v
2)− b1(P1v

2)) ∀v2 ∈ V2.

}
(3.10)

(Step 5)
λk = λk−1 + θ(w1

k,ν − w2
k,ν).
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Remark 1. Let us note that our algorithm is the modification of the one analyzed in [2, 17],
where Bayada, Sabil and Sassi used the extension operator Rα : H1/2(Γc) 7→ Vα defined by
Rαϕ = vα, ϕ ∈ H1/2(Γc) with vα ∈ Vα such that:

aα(vα, wα) = 0 ∀wα ∈ Vα, wα = 0 on Γc,

vα = ϕ on Γc.

}

This choice of the extension operator gives a procedure in which continuity not only of the normal
but also of the tangential component of the contact stress has to be ensured.

4. Convergence analysis
The aim of this section is to prove convergence of ALGORITHM 3.1. We shall use the Banach
fixed point theorem for a suitably defined operator. First we reformulate the steps of the previous
algorithm in terms of operators acting on Γc.

Let Sα : H1/2(Γc) 7→ H−1/2(Γc) be the following Poincaré-Steklov operator: for any ϕ ∈
H1/2(Γc)

Sαϕ = σν(u
α) on Γc, α = 1, 2, (4.1)

where uα solves
div σ(uα) = 0 in Ωα,

uα = 0 on Γα
u ,

σ(uα) · να = 0 on Γα
p ,

σt(u
α) = 0 on Γc,

uα
ν = ϕ on Γc,





(4.2)

i.e., uα = Pαϕ, α = 1, 2. From this and (4.1) we obtain the equivalent definition of Sα:

〈Sαϕ, ψ〉 = aα(Pαϕ, vα) ∀vα ∈ Vα, vα
ν = (−1)α−1ψ on Γc,

where the sign of ψ is due to the orientation of ν on Γc.
In order to decouple the influence of the applied and contact forces, we introduce U1 ∈ V1

0 as
the solution of

a1(U1, v1) = b1(v1) ∀v1 ∈ V1
0, (4.3)

which is the weak formulation of

−div σ(U1) = f 1 in Ω1,

U1 = 0 on Γ1
u,

σ(U1) · ν1 = p1 on Γ1
p,

σt(U
1) = 0 on Γc,

U1
ν = 0 on Γc.





(4.4)
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Thus u1
k solving (3.7) can be written as:

u1
k = U1 + P1λk−1. (4.5)

The function u2
k from (3.8) solves the following unilateral problem :

−div σ(u2
k) = f 2 in Ω2,

u2
k = 0 on Γ2

u,

σ(u2
k) · ν2 = p2 on Γ2

p,

σν(u
2
k) ≤ 0 on Γc,

λk−1 − u2
k,ν ≤ 0 on Γc,

σν(u
2
k)(λk−1 − u2

k,ν) = 0 on Γc,

σt(u
2
k) = 0 on Γc.





(4.6)

As before, we decouple u2
k. Let U2 be the solution of:

−div σ(U2) = f 2 in Ω2,

U2 = 0 on Γ2
u,

σ(U2) · ν2 = p2 on Γ2
p,

σν(U
2) = 0 on Γc,

σt(U
2) = 0 on Γc.





(4.7)

Then
u2

k = U2 + ũ2
k, (4.8)

where ũ2
k solves:

div σ(ũ2
k) = 0 in Ω2,

ũ2
k = 0 on Γ2

u,

σ(ũ2
k) · ν2 = 0 on Γ2

p,

σν(ũ
2
k) ≤ 0 on Γc,

λk−1 − U2
ν − ũ2

k,ν ≤ 0 on Γc,

σν(ũ
2
k)(λk−1 − U2

ν − ũ2
k,ν) = 0 on Γc,

σt(ũ
2
k) = 0 on Γc.





(4.9)

The weak formulation of (4.9) is given by:

Find ũ2
k ∈ K2(λk−1 − U2

ν ) such that

a2(ũ2
k, v

2 − ũ2
k) ≥ 0 ∀v2 ∈ K2(λk−1 − U2

ν ).

}
(4.10)
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Let Q2 : H1/2(Γc) 7→ H1/2(Γc) be defined by:

Q2λ = v2
ν ∀λ ∈ H1/2(Γc),

where v2 ∈ K2(λ− U2
ν ) solves

a2(v2, z2 − v2) ≥ 0 ∀z2 ∈ K2(λ− U2
ν ).

Then ũ2
k,ν = Q2λk−1 and

u2
k = U2 + P2Q2λk−1. (4.11)

The solutions to (3.9) and (3.10) can be written by means of the Green formula and the
Poincaré-Steklov operators S1 and S2 as follows:

〈S1w
1
k,ν , v

1
ν〉 = a1(w1

k, v
1) =

1

2
〈σν(u

2
k)− σν(u

1
k), v

1
ν〉,

−〈S2w
2
k,ν , v

2
ν〉 = a2(w2

k, v
2) =

1

2
〈−σν(u

2
k) + σν(u

1
k), v

2
ν〉.

Therefore

w1
k,ν =

1

2
S−1

1 (σν(u
2
k)− σν(u

1
k)),

w2
k,ν =

1

2
S−1

2 (σν(u
2
k)− σν(u

1
k)).

Using these representations we can express Step 5. of the algorithm as follows:

λk = λk−1 − θ

2
(S−1

1 − S−1
2 )(σν(u

1
k)− σν(u

2
k))

= λk−1 − θ

2
M(S1u

1
k,ν − S2u

2
k,ν),

where M := S−1
1 − S−1

2 . Since u1
k,ν = λk−1 and u2

k,ν = U2
ν + Q2λk−1, it follows that

λk = λk−1 − θ

2
M(S1λk−1 − S2U

2
ν − S2Q2λk−1). (4.12)

To simplify notation, let Tθ : H1/2(Γc) 7→ H1/2(Γc) be defined by:

Tθλ := λ− θ

2
M(S1λ− S2Q2λ + g0), λ ∈ H1/2(Γc),

where g0 = −S2U
2
ν . Then (4.12) is equivalent to

λk = Tθλk−1. (4.13)

From the properties of S−1
α , α = 1, 2 formulated in the next lemma it follows that M is a one-to-

one mapping. Thus if λ̄ ∈ H1/2(Γc) is a fixed point of Tθ then λ̄ is the searched u1
ν on Γc which

guarantees the satisfaction of (3.6).
To prove the existence (and uniqueness) of the fixed point and convergence of the iterative

scheme (4.13), we shall need the following results.
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Lemma 2. (i) The mappings Sα : H1/2(Γc) 7→ H−1/2(Γc), α = 1, 2 are bounded, bijective,
self-adjoint and the bilinear forms generated by Sα, S−1

α are elliptic in the corresponding spaces:

∃c̄α > 0 : (−1)α−1〈Sαϕ, ϕ〉 ≥ c̄α‖ϕ‖2
1
2
∀ϕ ∈ H1/2(Γc), (4.14)

∃d̄α > 0 : (−1)α−1〈µ, S−1
α µ〉 ≥ d̄α‖µ‖2

− 1
2
∀µ ∈ H−1/2(Γc). (4.15)

(ii) The mapping S2Q2 : H1/2(Γc) 7→ H−1/2(Γc) is Lipschitz continuous and monotone:

∃ L̄ > 0 : ‖S2Q2ψ − S2Q2ϕ‖− 1
2
≤ L̄ ‖ψ − ϕ‖ 1

2
∀ψ, ϕ ∈ H1/2(Γc), (4.16)

〈S2Q2ψ − S2Q2ϕ, ψ − ϕ〉 ≤ 0 ∀ψ, ϕ ∈ H1/2(Γc). (4.17)

Proof. (i) are the standard properties of the Poincaré-Steklov operator. For the proof of (ii) we
refer to [7] and also to the next section, where it will be done in the discrete case.

To apply the Banach fixed point theorem, the space H1/2(Γc) will be equipped with the scalar
product 〈ψ, ϕ〉M−1 := 〈M−1ψ, ϕ〉 and the norm ‖ϕ‖M−1 := 〈ϕ, ϕ〉1/2

M−1 . From the definition of M
and (4.14), (4.15) it follows that ‖ · ‖M−1 is an equivalent norm to ‖ · ‖ 1

2
in H1/2(Γc). Using this

new norm, (4.14) and (4.16) read as follows:

∃cα > 0 : (−1)α−1〈Sαϕ, ϕ〉 ≥ cα‖ϕ‖2
M−1 ∀ϕ ∈ H1/2(Γc), (4.18)

∃L > 0 : ‖S2Q2ψ − S2Q2ϕ‖− 1
2
≤ L ‖ψ − ϕ‖M−1 ∀ψ, ϕ ∈ H1/2(Γc). (4.19)

Finally, the norm of a linear mapping F into H1/2(Γc) will be denoted by ‖F‖ and |||F||| if
H1/2(Γc) is equipped with the norm ‖ · ‖ 1

2
and ‖ · ‖M−1 , respectively.

Theorem 3. There exists θ0 > 0 such that the mapping Tθ is contractive for any θ ∈ (0, θ0).

Proof. From the definition of Tθ we have:

‖Tθψ − Tθϕ‖2
M−1 = ‖ψ − ϕ‖2

M−1 +
θ2

4
‖MS1(ψ − ϕ)‖2

M−1 +
θ2

4
‖MS2Q2ψ −MS2Q2ϕ‖2

M−1

−θ〈MS1(ψ − ϕ), ψ − ϕ〉M−1 + θ〈MS2Q2ψ −MS2Q2ϕ, ψ − ϕ〉M−1

−θ2

2
〈MS2Q2ψ −MS2Q2ϕ,MS1(ψ − ϕ)〉M−1 . (4.20)

We shall estimate each term on the right hand-side of (4.20). It holds:

‖MS1(ψ − ϕ)‖2
M−1 ≤ |||MS1|||2‖ψ − ϕ‖2

M−1 . (4.21)
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From (4.19) we obtain:

‖MS2Q2ψ −MS2Q2‖2
M−1 = 〈S2Q2ψ − S2Q2ϕ,MS2Q2ψ −MS2Q2ϕ〉

≤ ‖S2Q2ψ − S2Q2ϕ‖− 1
2
‖M(S2Q2ψ − S2Q2ϕ)‖ 1

2

≤ ||M ||L2‖ψ − ϕ‖2
M−1 . (4.22)

Further, (4.18) yields:

〈MS1(ψ − ϕ), ψ − ϕ〉M−1 = 〈S1(ψ − ϕ), ψ − ϕ〉 ≥ c1‖ψ − ϕ‖2
M−1 . (4.23)

The last but one term in (4.20) will be neglected since

〈MS2Q2ψ −MS2Q2ϕ, ψ − ϕ〉M−1 = 〈S2Q2ψ − S2Q2ϕ, ψ − ϕ〉 ≤ 0 (4.24)

as follows from (4.17). Finally,

|〈MS2Q2ψ −MS2Q2ϕ,MS1(ψ − ϕ)〉M−1| = |〈S2Q2ψ − S2Q2ϕ,MS1(ψ − ϕ)〉|
≤ L|||MS1|||·‖ψ − ϕ‖2

M−1 . (4.25)

From (4.21)-(4.25) we see that

‖Tθψ − Tθϕ‖2
M−1 ≤ (1 +

θ2

4
|||MS1|||2 +

θ2

4
||M ||L2 +

θ2

2
L|||MS1||| − θc1)‖ψ − ϕ‖2

M−1 .

Thus θ0 = 4c1/(|||MS1|||2 + ||M ||L2 + 2L|||MS1|||) has the required property.

5. Convergence in Discrete Setting
In this section we shall suppose that both Ω1, Ω2 are polygonal domains with triangulations T α

h

which are consistent with the decomposition of the boundary Γα into Γα
u , Γα

p and Γc, α = 1, 2.
Moreover, let Γc be represented by a straight segment. We restrict ourselves to the geometrical
conforming situation with matching grids on Γc. On Ωα, α = 1, 2 we construct the finite element
space V α

h of piecewise linear functions:

V α
h = {vα ∈ C(Ω̄α)| vα

|T ∈ P 1(T ) for all T ∈ T α
h } ∩ V α.

The restriction of V α
h on the interface Γc is denoted by Wα

h :

Wα
h = V α

h |Γc
.

In view of our assumptions on T α
h and the decomposition of Γα, W 1

h = W 2
h =: Wh. Finally, let

Vα
h = V α

h × V α
h , α = 1, 2, and Vh = V1

h × V2
h. By Vα

0,h we denote the finite element subspace of
Vα

0 :
Vα

0,h =
{
vα

h ∈ Vα
h | vα

h,ν = 0 on Γc

}
.
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Let Pα,h : Wh 7→ Vα
h , α = 1, 2 be the extension operator defined by:

Pα,hϕh = vα
h , ϕh ∈ Wh,

where vα
h ∈ Vα

h solves
aα(vα

h , wα
h ) = 0 ∀wα

h ∈ Vα
0,h,

vα
h,ν = ϕh on Γc.

We define the discrete Poincaré-Steklov operator Sα,h : Wh 7→ (Wh)
′ (the dual space of Wh) by

〈Sα,hϕh, ψh〉 = aα(Pα,hϕh, v
α
h ) ∀vα

h ∈ Vα
h , vα

h,ν = (−1)α−1ψh on Γc.

Finally, we introduce the mapping Q2,h : Wh 7→ Wh, λh 7→ Q2,hλh = v2
h,ν , where v2

h ∈ K2
h(λh −

U2
h,ν) solves

a2(v2
h, z

2
h − v2

h) ≥ 0 ∀z2
h ∈ K2

h(λh − U2
h,ν).

Here U2
h ∈ V2

h is the finite element solution of (4.7) and for any ϕh ∈ Wh

K2
h(ϕh) = {v2

h ∈ V2
h|ϕh − v2

h,ν ≤ 0 on Γc}, λh ∈ Wh.

To prove convergence in the discrete case, we shall suppose that the extension operators Pα,h :
Wh 7→ Vα

h enjoy the following property:

‖Pα,hϕh‖1,Ωα ≤ C‖ϕh‖ 1
2
∀ϕh ∈ Wh (A)

with C > 0 independent of h. From this we obtain the following statement.

Lemma 4. Let (A) be satisfied. Then

|〈Sα,hqh, ϕh〉| ≤ C1‖qh‖ 1
2
‖ϕh‖ 1

2
, (5.1)

(−1)α−1〈Sα,hqh, qh〉 ≥ C2‖qh‖2
1
2

(5.2)

hold for every qh, ϕh ∈ Wh, where C1 > 0 and C2 > 0 are independent of h, α = 1, 2.

Proof. Let qh, ϕh ∈ Wh be given and vα
h = Pα,hϕh ∈ Vα

h . From the definition of Sα,h and (A) we
have:

|〈Sα,hqh, ϕh〉| = |aα(Pα,hqh, Pα,hϕh)|
≤ ‖aα‖‖Pα,hqh‖1,Ωα‖Pα,hϕh‖1,Ωα

≤ C1‖qh‖ 1
2
‖ϕh‖ 1

2
(5.3)

proving (5.1). Further

〈Sα,hϕh, ϕh〉 = aα(Pα,hϕh, (−1)α−1Pα,hϕh) ∀ϕh ∈ Wh

using that (−1)α−1(Pα,hϕh) · ν = (−1)α−1ϕh on Γc. From this we arrive at (5.2).
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Remark 5. Analogous results hold for the operators S−1
α,h, α = 1, 2.

Theorem 6. The discrete operator S2,hQ2,h : Wh 7→ Wh is Lipschitz and monotone:

∃ l > 0 : ‖S2,hQ2,hϕh − S2,hQ2,hψh‖− 1
2
≤ l‖ϕh − ψh‖ 1

2
, (5.4)

〈S2,hQ2,hϕh − S2,hQ2,hψh, ϕh − ψh〉 ≤ 0 (5.5)

hold for every ϕh, ψh ∈ Wh. In addition, if (A) is satisfied then l in (5.4) does not depend on h.

Proof. Let ϕh, ψh ∈ Wh be given and u2
h ∈ K2

h(ϕh − U2
h,ν), v2

h ∈ K2
h(ψh − U2

h,ν) be the unique
solutions of

a2(u2
h, z

2
h − u2

h) ≥ 0 ∀z2
h ∈ K2

h(ϕh − U2
h,ν) (5.6)

and
a2(v2

h, z
2
h − v2

h) ≥ 0 ∀z2
h ∈ K2

h(ψh − U2
h,ν). (5.7)

It is easily seen that the convex sets K2
h(ϕh − U2

h,ν) and K2
h(ψh − U2

h,ν) can be written as

K2
h(ϕh − U2

h,ν) = Φh − U2
h +K2

h(0),

K2
h(ψh − U2

h,ν) = Ψh − U2
h +K2

h(0),

respectively, where Φh = P2,hϕh, Ψh = P2,hψh. In other words: any z2
h ∈ K2

h(ϕh − U2
h,ν) can be

written in the form
z2

h = Φh − U2
h + z̄2

h (5.8)

for an appropriate z̄2
h ∈ K2

h(0) (analogously for elements of K2
h(ψh − U2

h,ν)). Hence the solutions
u2

h, v2
h of (5.6) and (5.7), respectively, can be expressed as

u2
h = Φh − U2

h + ū2
h,

v2
h = Ψh − U2

h + v̄2
h,

}
(5.9)

where ū2
h, v̄

2
h ∈ K2

h(0) are the solutions of

a2(ū2
h, z̄

2
h − ū2

h) ≥ a2(U2
h − Φh, z̄

2
h − ū2

h), (5.10)

a2(v̄2
h, z̄

2
h − v̄2

h) ≥ a2(U2
h −Ψh, z̄

2
h − v̄2

h) (5.11)

for every z̄2
h ∈ K2

h(0). Inserting z̄2
h := v̄2

h into (5.10) and z̄2
h := ū2

h into (5.11) and summing both
inequalities, we obtain

γ‖ū2
h − v̄2

h‖2
1,Ω2 ≤ a2(ū2

h − v̄2
h, ū

2
h − v̄2

h) ≤ a2(Ψh − Φh, ū
2
h − v̄2

h)

≤ c‖Ψh − Φh‖1,Ω2‖ū2
h − v̄2

h‖1,Ω2 .
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From this and (5.9) we have:

‖u2
h − v2

h‖1,Ω2 ≤ c‖Ψh − Φh‖1,Ω2 ,

where c := const. > 0 does not depend on h. The definition of Q2,h and the trace theorem yield:

‖Q2,hϕh −Q2,hψh‖ 1
2

= ‖u2
h,ν − v2

h,ν‖ 1
2
≤ c‖u2

h − v2
h‖1,Ω2

≤ c‖Ψh − Φh‖1,Ω2 = c‖P2,h(ψh − ϕh)‖1,Ω2

with c > 0 independent of h, again. Finally,

‖S2,hQ2,hϕh − S2,hQ2,hψh‖− 1
2
≤ ‖S2,h‖‖Q2,hϕh −Q2,hψh‖ 1

2
≤ c‖S1,h‖‖P2,h(ϕh − ψh)‖1,Ω2

≤ l‖ϕh − ψh‖ 1
2

for some l > 0. If (A) is satisfied then l does not depend on h as follows from Lemma 4.
To prove (5.5) let us observe first that from (5.10) it follows:

a2(u2
h, Φh − U2

h − u2
h) = 0, a2(u2

h, z̄
2
h) ≥ 0 ∀z̄2

h ∈ K2
h(0) (5.12)

(analogously for v2
h). Let ϕh, ψh ∈ Wh be arbitrary. Then

〈S2,hQ2,hϕh − S2,hQ2,hψh, ϕh − ψh〉 = a2(P2,hQ2,hϕh − P2,hQ2,hψh, P2,hψh − P2,hϕh)

= a2(u2
h − v2

h, Ψh − Φh), (5.13)

where u2
h, v2

h are the solutions of (5.6) and (5.7), respectively. The last term in (5.13) is non-
positive. Indeed,

a2(u2
h − v2

h, Ψh − Φh) = a2(u2
h − v2

h, Ψh − v2
h − U2

h) + a2(u2
h − v2

h, U
2
h − Φh + u2

h)

+ a2(u2
h − v2

h, v
2
h − u2

h)

≤ a2(u2
h, Ψh − v2

h − U2
h)− a2(v2

h, U
2
h − Φh + u2

h)

= −a2(u2
h, v̄

2
h)− a2(v2

h, ū
2
h) ≤ 0,

where ū2
h, v̄

2
h ∈ K2

h(0) are defined by (5.9). Here we used (5.12) and the ellipticity of the bilinear
form a2.

Let Tθ,h : Wh 7→ Wh be the mapping defined by

Tθ,hλh := λh − θ

2
Mh(S1,hλh − S2,hQ2,hλh + g0,h),

where Mh := S−1
1,h − S−1

2,h, g0,h := −S2,hU
2
h,ν and θ > 0. This mapping can be viewed to be a

discretization of Tθ introduced in Section 4.
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Theorem 7. Let (A) be satisfied. Then there exists θ0 > 0 which does not depend on h such that
Tθ,h is contractive for any θ ∈ (0, θ0).

Proof. It can be done in the same way as the one of Theorem 3 using (5.4) and (5.5).

Corollary 8. There exists a unique fixed point λ̄h of Tθ,h in Wh, θ ∈ (0, θ0), and the method of
successive approximations is convergent for any choice of the initial approximation λh,0 ∈ Wh.

Let us comment on the satisfaction of (A) (see also [4]). Recall that the extension mapping
Pα : H1/2(Γc) 7→ Wα, α = 1, 2 is defined by (3.2) and Pα,h : Wh 7→ Vα

h by the finite element
approximation of (3.2): ϕh ∈ Wh given, the extension uα

h := Pα,hϕh ∈ Vα
h solves

aα(uα
h , wα

h ) = 0 ∀wα
h ∈ Vα

0,h,

uα
h,ν = ϕh on Γc.

}
(5.14)

Next we shall suppose that the following assumptions are satisfied:

(i) (regularity assumption)
there exists ε ∈ (0, 1/2) such that for any ϕ ∈ H1/2+ε(Γc) the solution uα of (3.2) belongs
to (H1+ε(Ωα))2 and

∃ c := c(ε) > 0 : ‖uα‖1+ε,Ωα ≤ c‖ϕ‖1/2+ε,Γc ∀ϕ ∈ H1/2+ε(Γc);

(ii) (inverse inequality in Wh)

∃ c > 0 : ‖ϕh‖1/2+ε ≤ ch−ε‖ϕh‖1/2 ∀ϕh ∈ Wh ∀h > 0.

Proposition 9. Under (i) and (ii), the assumption (A) is satisfied.

Proof. Let ϕh ∈ Wh be given and uα
h = Pα,hϕh. Then

‖uα
h‖1,Ωα ≤ ‖uα‖1,Ωα + ‖uα

h − uα‖1,Ωα ≤ c{‖ϕh‖1/2 + inf
wα

h∈eVα
h

‖uα − wα
h‖1,Ωα}, (5.15)

where c > 0 does not depend on h > 0 and

Ṽα
h = {wα

h ∈ V α
h | wα

h,ν = ϕh on Γc}.
Denote rα

h : (H1+ε(Ωα))2∩Vα :7→ Vα
h the piecewise linear Lagrange interpolation operator. Since

rα
huα ∈ Ṽα

h , we can use wα
h := rα

huα on the right of (5.15). Then

‖uα − rhu
α
h‖1,Ωα ≤ chε‖u‖1+ε,Ωα ≤ chε‖ϕh‖1/2+ε.
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6. Implementation
In this section we describe in more details the finite element approximation of the problem and its
implementation. We start with the algebraic formulation of the original non-decomposed problem.

Let nα := dimVα
0,h, α = 1, 2 and n := n1 + n2. Further, let m be the number of the contact

nodes of Ω1, i.e., the nodes of T 1
h lying on Γ̄1

c \ Γ̄1
u. As we consider the matching grids, the contact

nodes of Ω1 and Ω2 coincide when Γ1
c = Γ2

c . If Γ1
c 6= Γ2

c , the contact nodes of Ω1 are bijectively
mapped onto the ones of Ω2 by the transfer mapping χ as mentioned in Section 2.

By A ∈ Rn×n and b ∈ Rn we denote the stiffness matrix and the load vector, respectively, of
the whole structure. Let us note that A, b can be naturally decomposed into blocks corresponding to
Ω1 and Ω2 so that A = diag(A1, A2), b = (b>1 , b>2 )>, where Aα ∈ Rnα×nα are symmetric, positive
definite and bα ∈ Rnα , α = 1, 2. We introduce the (Dirichlet) trace matrices Bα ∈ R2m×nα ,
α = 1, 2 having only one non-zero component in each row, namely ”1” on the position of a contact
displacement component. Moreover, we denote by N ∈ Rm×2m the matrix projecting contact
displacements to the direction of ν, i.e., each row of N has at most two non-zero entries given by
the coordinates of ν in the positions of contact displacement components. Let us note that B1, B2

and N have full row-ranks. Finally, suppose that g ∈ Rm collects the values of the initial gap at the
contact nodes.

The finite element approximation of (P) leads to the following quadratic programming prob-
lem:

minimize
1

2
u>Au− u>b

subject to NB1u1 − NB2u2 ≤ g,
(6.1)

where u = (u>1 , u>2 )>, uα ∈ Rnα , α = 1, 2.
The problem (6.1) can be solved by the following discrete counterpart of ALGORITHM 3.1.

ALGORITHM 6.1 Let λ(0) ∈ Rm and θ > 0 be given. For k ≥ 1 compute u(k)
α , w(k)

α ∈ Rnα ,
α = 1, 2 and λ(k) ∈ Rm as follows:

(Step 1) u(k)
1 := argmin 1

2
u>1 A1u1 − u>1 b1 subject to NB1u1 = λ(k−1);

(Step 2) u(k)
2 := argmin 1

2
u>2 A2u2 − u>2 b2 subject to λ(k−1) − NB2u2 ≤ g;

(Step 3) Solve A1w(k)
1 = 1

2
B>1 (B1(b1 − A1u(k)

1 )− B2(A2u(k)
2 − b2));

(Step 4) Solve A2w(k)
2 = −1

2
B>2 (B1(b1 − A1u(k)

1 )− B2(A2u(k)
2 − b2));

(Step 5) λ(k) = λ(k−1) + θ(NB1w(k)
1 − NB2w(k)

2 ).

We shall show that the dual formulation simplifies considerably the implementation of the
algorithm. The minimization problem in Step 1 is equivalent to solving the following saddle-point
system: (

A1 B>1 N>

NB1 O

)(
u1

s1

)
=

(
b1

λ(k−1)

)
.
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Eliminating the first unknown u1, we obtain:

C1s1 = d1, (6.2)

where C1 := NB1A−1
1 B>1 N> and d1 := NB1A−1

1 b1 − λ(k−1). Since C1 is symmetric, positive
definite, the system (6.2) can be solved by the conjugate gradient method [9].

The constrained minimization in Step 2 is equivalent to the saddle-point problem:

Find (u2, s2) ∈ Rn2 × Rm
+ : L(u2, s2) = min

v2∈Rn2
max

r2∈Rm
+

L(v2, r2) = max
r2∈Rm

+

min
v2∈Rn2

L(v2, r2),

where L : Rn2 × Rm
+ 7→ R is the Lagrangian defined by

L(v2, r2) :=
1

2
v>2 A2v2 − v>2 b2 + r>2 (λ(k−1) − NB2v2 − g)

and Rm
+ := {r2 ∈ Rm : r2 ≥ 0}. The max-min problem leads to the quadratic programming

problem with the simple constraints:

minimize
1

2
s>2 C2s2 − s>2 d2 subject to s2 ≥ 0, (6.3)

where C2 := NB2A−1
2 B>2 N> is again symmetric, positive definite and d2 := λ(k−1)−NB2A−1

2 b2−
g. To solve (6.3) one can use the conjugate gradient method combined with the projected gradient
technique [6].

Let s(k)
1 , s(k)

2 be the solutions to (6.2), (6.3), respectively. Then the linear systems in Step 3 and
Step 4 read as follows:

A1w(k)
1 =

1

2
B>1 N>(s(k)

1 − s(k)
2 ) and A2w(k)

2 = −1

2
B>2 N>(s(k)

1 − s(k)
2 ).

Let us note that the actions of A−1
1 and A−1

2 are evaluated by the backward substitutions based on
the Cholesky factorization of A1 and A2, respectively.

Let us denote the relative precision of the k-th iterative step of ALGORITHM 6.1 by

ε
(k)
λ := ‖λ(k) − λ(k−1)‖Rm/‖λ(k)‖Rm ,

where ‖ · ‖Rm is the Euclidean norm in Rm. We terminate if

ε
(k)
λ ≤ tol

for a prescribed tolerance tol > 0. In order to increase the efficiency of the algorithm, we initialize
the inner iterative solvers in Step 1 and Step 2 by the respective results from the previous outer
iterate, i.e. by s(k−1)

1 and s(k−1)
2 , and we terminate them by an adaptive (inner) terminating tolerance

tol (k)
in > 0. The idea is to choose tol (k)

in in such a way that it respects the precision ε
(k−1)
λ achieved

in the outer loop:
tol (k)

in := rtol × ε
(k−1)
λ ,
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where 0 < rtol < 1, ε
(0)
λ := 1.

As we shall compare ALGORITHM 6.1 with the original one proposed in [3], we recall its
implementation.

ALGORITHM 6.2 Let λ(0) ∈ R2m and θ > 0 be given. For k ≥ 1 compute u(k)
α , w(k)

α ∈ Rnα ,
α = 1, 2 and λ(k) ∈ R2m as follows:

(Step 1) u(k)
1 := argmin 1

2
u>1 A1u1 − u>1 b1 subject to B1u1 = λ(k−1);

(Step 2) u(k)
2 := argmin 1

2
u>2 A2u2 − u>2 b2 subject to Nλ(k−1) − NB2u2 ≤ g;

(Step 3) Solve A1w(k)
1 = 1

2
B>1 (B1(b1 − A1u(k)

1 )− B2(A2u(k)
2 − b2));

(Step 4) Solve A2w(k)
2 = −1

2
B>2 (B1(b1 − A1u(k)

1 )− B2(A2u(k)
2 − b2));

(Step 5) λ(k) = λ(k−1) + θ(B1w(k)
1 − B2w(k)

2 ).

At the first glance ALGORITHM 6.1 and ALGORITHM 6.2 look similar, however, the second
one uses vectors from R2m. Consequently, the solution of Step 1 of ALGORITHM 6.2 based on the
dual formulation requires to solve two times larger linear system.

7. Numerical Experiments
In this section, we shall compare performances of both ALGORITHM 6.1 and ALGORITHM 6.2 for
various values of θ and degrees of freedom n and m. In tables below we report the computational
time (time), the number of the outer iterations (out:=final k), the number of the inner iteration (inn
that is the total number of the matrix-vector multiplications by C1 and C2), the final precision
of the contact displacements ελ := ε

(final k)
λ , the relative continuity of the normal contact stresses

(n stress) and the relative continuity of the tangential contact stresses (t stress). The total efficiency
of the algorithms is assessed by the ratio eff := inn/m. We set tol = 10−5, rtol = 0.5 and stop
computations if the number of the outer iterations is greater than max it = 100. All computations
are performed in Matlab 7.1 on Intel(R)Core(TM)2 Duo CPU, 2 GHz with 1 GB RAM.

The quantity inn supplies an information on the computational time as it is proportional to inn.
The ratio eff represents a comparison of our algorithms with the realization of ”similar linear prob-
lems” by the standard conjugate gradient method. It is well-known that the number of conjugate
gradient iterations (i.e., the number of matrix-vector multiplications) is bounded by the size of the
problem. One can say that our algorithms exhibit the complexity comparable with the conjugate
gradient method when eff is less than two.

Let us note that the geometry of our model problems is similar to that one depicted in Figure 1
(Γ1

c coincides with Γ2
c in Example 1). All experiments use linear finite element approximation

of (P). The triangulations of rectangular domains are defined by cutting rectangles obtained by
an equidistant rectangulation. If Γ1

c is a segment of a circle we define the triangulation of Ω1 by
adapting the one introduced for an appropriate rectangular domain (see Figure 3).
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Example 1. Let us consider the plane elastic bodies

Ω1 = (0, 3)× (1, 2) and Ω2 = (0, 3)× (0, 1)

made of an isotropic, homogeneous material characterized by the Young modulus 2.1 × 1011 and
the Poisson ratio 0.277 (steal). The decompositions of Γ1 and Γ2 are as follows:

Γ1
u = {0} × (1, 2), Γ1

c = (0, 3)× {1}, Γ1
p = Γ1 \ Γ1

u ∪ Γ1
c ,

Γ2
u = {0} × (0, 1), Γ2

c = (0, 3)× {1}, Γ2
p = Γ2 \ Γ2

u ∪ Γ2
c .

The volume forces vanish for both bodies. The non-vanishing surface tractions p1 = (p1
1, p

1
2) act

on Γ1
p so that

p1
1(s, 2) = 0, p1

2(s, 2) = p1
2,L + p1

2,R s, s ∈ (0, 3),

p1
1(3, s) = 0, p1

2(3, s) = p1
2,B(2− s) + p1

2,U (s− 1), s ∈ (1, 2),

where p1
2,L = −7× 107, p1

2,R = −1/3× 107, p1
2,B = 4× 106 and p1

2,U = 1.8× 107.

(a) Triangulation of bodies
and applied tractions

(b) Deformation

0 1 2 3
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(c) Contact zone
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1
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c
2

(d) Contact stress

Figure 2: Results for n = 864, m = 48.

Figure 2 shows results of computations. Comparisons of both algorithms for the best choices of θ
are reported in Tables 1 and 2. It is seen that the performance of ALGORITHM 6.1 is considerably
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higher in all cases and, moreover, the continuity of the tangential stresses is comparable to the
computer precision. As inn practically does not depend on m, the algorithms exhibit the scalability
property. In Tables 3 and 4 we demonstrate robustness with respect to θ. The situation is better
again for ALGORITHM 6.1 (the symbol ”–” means that the terminating tolerance is not achieved
in max it iterations).

Table 1: ALGORITHM 6.1 for θ = 0.4.

n m time out/inn ελ n stress t stress eff
24 6 0.01 15/123 6.4e−6 3.7e−5 1.6e−16 20.50
72 12 0.02 15/135 6.6e−6 7.2e−5 3.9e−16 11.25

240 24 0.03 15/148 4.1e−6 4.8e−5 4.9e−16 6.17
864 48 0.11 17/167 8.0e−6 4.5e−5 5.0e−16 3.48

3264 96 0.67 16/168 7.9e−6 5.8e−5 6.4e−16 1.75
12672 192 6.41 18/193 2.5e−6 1.8e−5 6.8e−16 1.01
49920 384 44.41 16/181 7.7e−6 2.4e−6 6.8e−16 0.47

Table 2: ALGORITHM 6.2 for θ = 0.2.

n m time out/inn ελ n stress t stress eff
24 6 0.02 41/301 9.7e−6 3.8e−5 2.5e−5 50.17
72 12 0.04 44/338 6.6e−6 4.9e−5 3.4e−5 28.17

240 24 0.09 44/350 8.3e−6 6.8e−5 3.7e−5 14.58
864 48 0.25 44/364 7.6e−6 5.8e−5 4.2e−5 7.58

3264 96 1.83 48/414 9.5e−6 5.2e−5 3.2e−5 4.31
12672 192 12.32 45/392 7.7e−6 3.4e−5 2.5e−5 2.04
49920 384 101.12 47/432 9.4e−6 1.5e−5 1.0e−5 1.13

Example 2. Let us modify the geometry of the body Ω1 from the previous example so that

Ω1 = {(x1, x2) ∈ R2 : 0 < x1 < 3, 1 + c(x1) < x2 < 2},
Γ1

c = {(x1, x2) ∈ R2 : 0 < x1 < 3, 1 + c(x1) = x2},
where c is the segment of the circle defined by c(x1) = 10.25 −

√
9.252 − x2

1. The definition of
Γ1

u, Γ1
p and the geometry of Ω2 are the same as in Example 1. The surface tractions p1 = (p1

1, p
1
2)

acting on Γ1
p are defined by

p1
1(s, 2) = 0, p1

2(s, 2) = p1
2,L + p1

2,R s, s ∈ (0, 3),

p1
1(3, s) = 0, p1

2(3, s) = p1
2,B (2− s) + p1

2,U (s− 1− c(3)), s ∈ (1 + c(3), 2),
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Table 3: ALGORITHM 6.1, out/inn for various θ.

n m θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7

24 6 46/307 23/166 14/114 15/123 19/156 18/145 37/290
72 12 47/336 32/241 22/178 15/135 17/155 21/187 39/326

240 24 45/323 31/249 23/199 15/148 19/179 23/205 51/461
864 48 50/381 29/247 23/208 17/167 18/176 31/279 57/507

3264 96 49/383 29/251 24/231 16/168 18/187 24/235 51/486
12672 192 49/391 30/276 23/231 18/193 18/186 25/257 63/616
49920 384 48/388 30/283 25/257 16/181 17/181 25/257 61/768

Table 4: ALGORITHM 6.2, out/inn for various θ.

n m θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5

24 6 81/550 41/301 27/204 23/184 44/334
72 12 84/590 44/338 33/278 – –

240 24 84/602 44/350 45/385 – –
864 48 82/613 44/364 58/489 – –

3264 96 85/649 48/414 74/605 – –
12672 192 83/646 45/392 62/548 – –
49920 384 82/645 47/432 64/570 – –

Table 5: ALGORITHM 6.1 for θ = 0.3.

n m time out/inn ελ n stress t stress eff
24 6 0.01 31/210 9.9e−6 4.0e−5 1.3e−16 35.00
72 12 0.02 31/256 7.5e−6 2.1e−5 6.9e−16 21.33

240 24 0.09 41/375 9.3e−6 7.4e−5 6.1e−16 15.63
864 48 0.25 38/361 9.7e−6 5.2e−5 1.1e−15 7.52

3264 96 1.45 40/421 7.6e−6 2.4e−5 9.3e−16 4.39
12672 192 13.01 38/433 8.7e−6 2.2e−5 8.2e−16 2.26
49920 384 142.31 51/634 8.8e−6 9.9e−6 1.0e−15 1.65
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where p1
2,L = −7 × 108, p1

2,R = −1/3 × 107, p1
2,B = −4/(1 − c(3)) × 106 and p1

2,U = −4/(1 −
c(3))×107. The results of computations are shown in Figure 3. In Tables 5-8 we present analogous
comparisons as in Example 1 (with max it=200). The conclusions are similar but the superiority of
ALGORITHM 6.1 is now less expressive. The small number of iterations for n = 24, 72 and some θ
corresponds to the wrong (zero) approximation of the contact stress on the coarsest meshes.

(a) Triangulation of bodies
and applied tractions

(b) Deformation

0 1 2 3

0.998

1

1.002

1.004

1.006

1.008

1.01

Ω1

Ω2

(c) Contact zone

0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

8

Γ
c
1

Γ
c
2

(d) Contact stress

Figure 3: Results for n = 864, m = 48.

8. Conclusions
The paper analyzes the new variant of the domain decomposition algorithm for solving frictionless
contact problems. Convergence is proved in the continuous as well as discrete setting using the
Banach fixed point theorem and, in addition, it is shown its independence on the discretization
parameter h.

The algorithm can be conceived as a modification of the one proposed in [3]. The main dif-
ference consists in the fact that the tangential contact stress is not treated iteratively as it vanishes
a-priori. Consequently, the smaller subproblems have to be solved during the iterative process and
the algorithm exhibits a better behavior than the original one.

The analysis of the paper can be extended to contact problems with friction.
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Table 6: ALGORITHM 6.2 for θ = 0.3.

n m time out/inn ελ n stress t stress eff
24 6 0.03 45/396 9.6e−6 2.6e−5 2.5e−5 66.00
72 12 0.06 50/462 9.7e−6 1.1e−5 1.1e−5 38.50

240 24 0.09 50/441 8.8e−6 5.3e−6 4.8e−6 18.38
864 48 0.34 51/513 5.6e−6 1.7e−5 1.1e−5 10.69

3264 96 2.54 52/583 7.3e−6 3.8e−5 5.7e−6 6.07
12672 192 18.97 52/635 6.1e−6 2.7e−5 5.2e−6 3.31
49920 384 151.52 50/680 9.1e−6 5.3e−5 1.7e−5 1.77

Table 7: ALGORITHM 6.1, out/inn for various θ.

n m θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7

24 6 93/614 48/322 31/210 24/164 18/123 15/102 12/83
72 12 92/693 47/372 31/256 23/190 18/152 14/119 12/104

240 24 88/685 50/394 41/375 49/469 89/893 – –
864 48 91/751 46/404 38/361 48/492 81/877 174/1938 –

3264 96 87/776 47/479 40/421 48/510 73/803 140/1566 87/1040
12672 192 87/837 46/489 38/433 66/778 79/910 122/1480 90/1070
49920 384 87/890 44/505 51/634 92/1103 106/1270 131/1618 122/1499

Table 8: ALGORITHM 6.2, out/inn for various θ.

n m θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5

24 6 128/1084 67/582 45/396 34/300 27/241
72 12 140/1172 74/653 50/462 38/360 31/304

240 24 143/1136 72/571 50/441 37/423 –
864 48 147/1350 75/701 51/513 44/492 –

3264 96 146/1392 75/796 52/583 63/729 –
12672 192 145/1504 77/899 52/635 66/835 –
49920 384 143/1579 72/929 50/680 56/788 –
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