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1. Introduction

Fictitious domain methods (FDM) belong to a class of methods for the nu-
merical solution of large scale linear algebraic systems arising from finite
element discretizations of elliptic boundary value problems. Their idea is
simple: the original problem defined in a domain ω is replaced by a new one
formulated in a larger domain Ω ⊃ ω with a simple shape (a box, e.g.). The
new problem is chosen in such a way that its solution restricted to ω coin-
cides with the solution of the original problem. Since Ω has a simple shape,
one can use specific partitions for constructing finite element spaces. We
confine ourselves to the so-called non-fitted meshes when the partition of Ω
does not respect the geometry of ω. In this case uniform meshes represent
a natural choice and the resulting stiffness matrix does not depend on ω.
In addition, it has a structure enabling us to use fast solvers. There are
several ways how to define the problem in Ω with the property mentioned
above. One of them is the method of boundary Lagrange multipliers which
has been previously used for solving Dirichlet and Neumann boundary value
problems. This approach however suffers from a serious drawback: the so-
lution is only from H3/2−η(Ω), η > 0, due to a generally non-zero jump of
the normal derivative across γ (the boundary of ω). If non-fitted meshes are
used, then this singularity appears inside of some elements of the used par-
tition, namely those ones the interior of which is cut by γ. Consequently, the



theoretical rate of convergence of approximate solutions in the H1(Ω)-norm
can not exceed 1/2. In addition, the biggest error is concentrated around γ
which explains also a slower convergence in the H1(ω)-norm of solutions
restricted to ω. To improve the accuracy in ω, the authors proposed in [1] a
new variant of FDM. Instead of Lagrange multipliers on γ they used control
variables defined on a close curve Γ in Ω having a positive distance from ω
and enforcing the Dirichlet condition on γ to be satisfied. The solution is
still singular in Ω but the singularity is shifted from γ to Γ and as a result,
convergence in ω became faster. The aim of the paper [2] is twofold: first to
introduce a fictitious domain formulation of unilateral boundary value prob-
lems and secondly, to propose its

”
smooth“ variant in the spirit mentioned

above. We focus on a simple scalar variational inequality with Signorini type
conditions on γ, but a similar approach can be used for contact problems,
e.g. Our fictitious domain formulation consists of an elliptic equation in Ω
completed by an equation on γ for the projection operator onto a convex
set which represents the equivalent expression of the unilateral conditions
prescribed there. Similarly to the Dirichlet problem we shall consider two
cases, namely: (i) boundary Lagrange multipliers on γ; (ii) control variables

on Γ, where Γ is a close curve exterior to ω. The reason for considering
(ii) is the same as above, namely to smooth our fictitious domain solution
in a vicinity of ω. In both cases the auxiliary boundary variables enforce
the satisfaction of the unilateral conditions. We prove the existence and
uniqueness of the solution in (i). On the other hand, (ii) is more involved.
The existence analysis is based on approximate controllability type results.
We show that using square integrable controls on Γ we are able to satisfy
the unilateral conditions either exactly provided that an appropriate small
source term δ is added on γ or with an arbitrary accuracy if this term is ne-
glected. A typical finite element discretization gives a large system of linear
equations completed with a small system of piecewise linear equations which
arise from a discretization of the unilateral conditions. The resulting alge-
braic problem is numerically solved by a semismooth Newton method. Each
linearized step leads to a non-symmetric, saddle-point type system which
can be solved very efficiently by a projected Schur complement method [1].

2. Setting of the problem

We shall consider the following unilateral problem in a bounded domain
ω ⊂ R

2 with the Lipschitz continuous boundary γ:

−∆u + u = f in ω,

u ≥ g, ∂u
∂nγ

≥ 0, ∂u
∂nγ

(u − g) = 0 on γ,







(1)



where f ∈ L2
loc(R

2), g ∈ H1/2(γ) are given functions and ∂
∂nγ

denotes the

normal derivative of a function on γ.
Let us choose a bounded domain Ω having a simple shape such that

ω ⊂ Ω and construct a close curve Γ ⊂ Ω surrounding ω. Let P denote the
projection of L2(γ) onto L2

+(γ). We define the following fictitious domain

formulation of (1):

Find (û, λ) ∈ H1
0 (Ω) × H−1/2(Γ) such that

(û, v)1,Ω = (f, v)0,Ω + 〈λ, v〉Γ ∀v ∈ H1
0 (Ω),

∂
∂nγ

û|ω ∈ L2(γ),

∂
∂nγ

û|ω = P ( ∂
∂nγ

û|ω − ρ(û|ω − g)), ρ > 0,







































(2)

where 〈·, ·〉Γ stands for the duality pairing between H−1/2(Γ) and H1/2(Γ).

3. Discretization and numerical experiments

Let H1
0 (Ω), L2(γ), and H−1/2(Γ) be replaced in (2) by their finite di-

mensional approximations Vh, ΛH(γ), and ΛH(Γ), respectively, such that
dimVh = n and dim ΛH(γ) = dim ΛH(Γ) = m. We arrive at the following
algebraic representation of (2):

Find (~u,~λ) ∈ R
n × R

m such that

A~u = ~f + B⊤
Γ
~λ,

Cγ~u = max{0, Cγ~u − ρ(Bγ~u − g)},















(3)

where A ∈ R
n×n denotes the stiffness matrix, Bγ , BΓ ∈ R

m×n are the Dirich-
let trace matrices on γ, Γ, respectively, Cγ ∈ R

m×n is the Neumann trace

matrix on γ, and ~f ∈ R
n, ~g ∈ R

m. The problem (3) can be understood as
one vector equation that, however, is non-smooth due to the presence of the
max-function. Therefore, the semi-smooth variant of the Newton method is
suitable for the numerical solution [2].

We consider the model example (2) with Ω = (0, 1) × (0, 1) and ω =
{(x, y) ∈ R

2| (x − 0.5)2/0.42 + (y − 0.5)2/0.22 < 1} for the exact solution
uex(x, y) = ((x − 0.5)+)3 + 0.5((y − 0.5)+)3. The obstacle g is defined by
g|γ1

= uex|γ1
on γ1, γ1 = γ \ γ2, γ2 = {(x, y) ∈ γ| x < 0.5, y < 0.5} and by

g(x, y) = sin(−2ϕ) for (x, y) ∈ γ2, where (ϕ, r) is the polar coordinate of
the point (x − 0.5, y − 0.5).

In tables below we report for each finite element step-size h, the number of
the Newton iterations itO and the matrix-vector multiplications itI (by A),



the time in seconds, and the errors in the norms of L2(ω), H1(ω), and L2(γ).
The convergence rates are computed from these errors.

h n/m itO/itI time errL2(ω) errH1(ω) errL2(γ)

1/128 16641/34 5/24 0.3 4.10e-2 3.33e+0 1.70e-2

1/256 66049/62 6/45 1.8 2.00e-2 2.33e+0 8.52e-3

1/512 263169/110 7/69 13.1 9.78e-3 1.62e+0 4.25e-3

1/1024 1050625/198 7/93 74.7 4.84e-3 1.14e+0 2.08e-3

1/2048 4198401/360 7/115 432.6 2.27e-3 7.85e-1 1.09e-3

1/4096 16785409/662 8/131 2328 1.13e-3 5.54e-1 7.21e-4

Convergence rates: 1.03 0.51 0.93

Tab. 1. Non-smooth fictitious domain formulation (γ ≡ Γ).

h n/m itO/itI time errL2(ω) errH1(ω) errL2(γ)

1/128 16641/34 5/48 0.4 3.24e-4 2.95e-1 5.07e-4

1/256 66049/62 5/69 2.5 6.31e-5 1.30e-1 9.10e-5

1/512 263169/110 5/112 20.9 1.59e-5 6.54e-2 2.65e-5

1/1024 1050625/198 7/162 150.6 4.35e-6 3.42e-2 1.17e-5

1/2048 4198401/360 6/190 674.1 1.38e-6 1.92e-2 5.18e-6

1/4096 16785409/662 9/296 5000 8.07e-7 1.47e-2 2.28e-6

Convergence rates: 1.76 0.88 1.50

Tab. 2. Smooth fictitious domain formulation (γ 6≡ Γ).
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