
Optimization Methods and Software
Vol. 22, No. 3, June 2007, 453–467

Minimizing quadratic functions with separable
quadratic constraints

R. KUČERA*

VŠB-Technical University, Ostrava, Czech Republic

(Received 31 October 2004; in final form 1 February 2006)

This article deals with minimizing quadratic functions with a special form of quadratic constraints that
arise in 3D contact problems of linear elasticity with isotropic friction [Haslinger, J., Kučera, R. and
Dostál, Z., 2004, An algorithm for the numerical realization of 3D contact problems with Coulomb
friction. Journal of Computational and Applied Mathematics, 164/165, 387–408.]. The proposed
algorithm combines the active set method with the conjugate gradient method. Its general scheme is
similar to the algorithms of Polyak’s type that solve the quadratic programming problems with simple
bounds. As the algorithm does not terminate in a finite number of steps, the convergence is proved.
The implementation uses an adaptive precision control of the conjugate gradient loops. Numerical
experiments demonstrate the computational efficiency of the method.

Keywords: Quadratic function; Separable quadratic constraints; Active set; Convergence; Conjugate
gradient method; Adaptive precision control

2000 Mathematics Subject Classification: 65K05, 90C20

1. Introduction

We shall be concerned with solving

min
x∈�

f (x) (1)

where f (x) = (1/2) x�Ax − x�b, � = {x ∈ R
2m: x2

i + x2
2i ≤ g2

i , i = 1, . . . , m}, A ∈
R

2m×2m is a symmetric positive definite matrix, b ∈ R
2m, gi are positive values and xi denotes

the ith entry of a vector x ∈ R
2m. Let us point out that the quadratic constraints

x2
i + x2

2i ≤ g2
i (2)

are separable with respect to the pairs (xi, x2i)
� ∈ R

2 and can be interpreted so that the ith
pair lies in the circle with the centre in the origin of R

2 and with the radius gi .
Problem (1) arises if we want to solve 3D contact problems of the linear elasticity with

isotropic friction. In our previous paper [1], we have shown how to approximate the circles by

*Email: radek.kucera@vsb.cz

Optimization Methods and Software
ISSN 1055-6788 print/ISSN 1029-4937 online © 2007 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/10556780600609246

454 R. Kučera

intersection of rotated squares so that problem (1) is approximated by a quadratic programming
problem with simple bounds and equality constraints. This approach has the advantage that
the existing fast algorithms can be applied immediately. However, fine approximations of the
circles increase considerably the number of unknowns and lengthen the computational time.
This paper is motivated by an endeavour to propose an algorithm, solving (1) directly so that
the number of unknowns is not increased.

We are inspired by the efficient algorithms that combine the active set method [2] with the
conjugate gradient (CG) method [3].Algorithms of this type have been developed to minimizes
the function f constrained by simple bounds (box constraints) [4–6] and date back at least to
Polyak [7]. In Polyak’s algorithm, the CG method minimizes the function f on the face of
the domain defined by the current active set until either the minimum on the current face is
reached or an infeasible iteration is generated. In the first case, indices of the constraints that
violate the Karush–Kuhn–Tucker (KKT) conditions are released from the active set, whereas
in the second case, the active set is expanded. In both cases, the value of f decreases so that
the active sets can never reappear. As the number of possible active sets is finite, the algorithm
necessarily finds the active set corresponding to the solution, and the solution itself, in a finite
number of steps.

In principle, the scheme of Polyak’s algorithm can be used to solve problem (1). The
fundamental difference consists of the fact that now the algorithm does search not only for
indices of active constraints but also for positions of corresponding pairs (xi, x2i)

� lying on the
boundaries of the circles x2

i + x2
2i = g2

i . As the finite termination property can not be expected
in such a case, the convergence must be proved by different arguments. This proof is the main
goal of this article.

This article is organized as follows. In section 2, we introduce notations and discuss the
KKT conditions. Section 3 is of cardinal importance for the proof of convergence as well as
the implementation. In this section, we study the properties of a feasible descent direction that
makes possible to release indices from the active set. The general scheme of the algorithm
based on the active set method is given in section 4. We prove its convergence and discuss
its variant with an adaptive precision control. The implementation using the CG method is
described in section 5. Finally, section 6 presents the results of the numerical experiments.

2. Notations and preliminaries

Let us point out that a solution to (1) always exists and it is necessarily unique. We shall denote
it by x̄. It is well known that x̄ is fully determined by the KKT conditions [8]. Before giving
their appropriate form, we shall introduce notations.

We shall denote the Euclidean norm in R
2m by ‖ · ‖, and the same symbol stands for the

induced matrix norm. Let N denote the set of all indices so that

N = {1, 2, . . . , m}.
We shall use the following convention throughout this article: if x ∈ R

2m is a vector, then xi

is its ith entry and xi ∈ R
2 denotes the pair of its entries with indices that are bound in the ith

quadratic constraint (2), i.e.

xi = (xi, x2i)
�, i ∈ N .

Quadratic constraint (2) then read as ‖ xi‖ ≤ gi . Let us define the gradient at x by

r = r(x) = Ax − b.

Minimizing quadratic functions 455

As the quadratic constraints are separable, it can be shown that the KKT conditions are
separable as well. To this end, we introduce the Lagrangian to (1) by

L(x, μ) = 1

2
x�Ax − x�b +

∑
i∈N

μi(x
2
i + x2

2i − g2
i),

where μi are Lagrange multipliers. Then, the KKT conditions to (1) read as

∂xi
L(x̄, μ) = r̄i + 2μix̄i = 0,

∂x2i
L(x̄, μ) = r̄2i + 2μix̄2i = 0,

∂μi
L(x̄, μ) = x̄2

i + x̄2
2i − g2

i ≤ 0, μi ≥ 0, μi∂μi
L(x̄, μ) = 0

for i ∈ N , where r̄ = r(x̄). We can rewrite them more compactly by

r̄i + 2μi x̄i = 0,

‖x̄i‖ ≤ gi, μi ≥ 0, μi(‖ x̄i‖ − gi) = 0

for i ∈ N . After eliminating the Lagrange multipliers, the solution x̄ to (1) is determined so
that for i ∈ N :

‖ x̄i‖ < gi implies r̄i = 0, (3)

‖ x̄i‖ = gi implies r̄i + ‖r̄i‖
gi

x̄i = 0. (4)

Conditions (3) and (4) are called the inner KKT conditions and the boundary KKT con-
ditions, respectively. They represent the equilibrium state of x̄ with a simple geometrical
interpretation (figure 1a). If the pair x̄i lies in the interior of the circle representing the ith
quadratic constraint, then (3) implies that there is not any descent direction with respect to this
pair (figure 1b). If the pair x̄i lies on the boundary of the circle, then (4) implies that x̄i and
r̄i are opposite vectors. Therefore, any descent direction with respect to this pair is infeasible
because with components of the gradient r̄i it necessarily forms an angle greater than π/2.

Figure 2a shows situations in which the KKT conditions are not satisfied. If the pair xi lies
in the interior of the circle, then −ri is the descent direction with respect to this pair (figure 2b)
If the pair xi lies on the boundary of the circle, then the normal line to ri going through xi

cuts off a segment of the circle (grey area). Any vector beginning at xi and oriented into the
segment is the feasible descent direction with respect to this pair. We shall justify this heuristic
observation in the following section.

Figure 1. KKT conditions.

456 R. Kučera

Figure 2. Situations in which KKT conditions are not satisfied.

In order to enable an alternative reference to the KKT conditions, we decompose N for
given x ∈ � on the active set A(x) and the free set F(x) so that

A(x) = {i ∈ N : ‖xi‖ = gi},
F(x) = {i ∈ N : ‖xi‖ < gi}.

Moreover, we define the disequilibrium set D(x) as the subset of A(x) so that

D(x) =
{
i ∈ A(x): ri + ‖ri‖

gi

xi �= 0

}
.

Let us denote the free gradient ϕ = ϕ(x) ∈ R
2m and the turned boundary gradient β = β(x) ∈

R
2m so that

ϕi = ri for i ∈ F(x), ϕi = 0 for i ∈ A(x)

and

β i = ri + ‖ri‖
gi

xi for i ∈ A(x), β i = 0 for i ∈ F(x),

respectively. Thus, KKT boundary conditions (4) are satisfied at x ∈ � iff β(x) = 0 and KKT
conditions (3) and (4) are satisfied iff ϕ(x) + β(x) = 0. For a convenience, let us denote the
turned gradient by ν(x) ∈ R

2m so that ν(x) = ϕ(x) + β(x).
Finally, we introduce the product �: R

m × R
2m → R

2m, α � β = γ so that the pairs γ i are
defined by

γ i = αiβ i , i ∈ N .

3. Properties of the turned boundary gradient

In this section, we shall assume that boundary KKT conditions (4) are not satisfied at x ∈ �

so that D(x) is not empty. We shall show that −β is the feasible descent direction that releases
indices of D(x) from the active set A(x). In other words, we shall prove that

x − α � β ∈ �, (5)

f (x − α � β) < f (x), (6)

A(x − α � β) = A(x) \ D(x) (7)

for α ∈ R
m with sufficiently small (non-negative) entries αi .

Minimizing quadratic functions 457

First of all, let us point out that only the pairs

β i = ri + ‖ri‖
gi

xi (8)

for i ∈ D(x) are non-vanishing. As xi is the outer normal vector to the circle representing
the ith quadratic constraint, it is easily seen in figure 3 that −β i is oriented inside the circle.
Therefore, −β is feasible.

LEMMA 3.1 Let us have α ∈ R
m with 0 < αi < α̃i for i ∈ D(x), where

α̃i = 2
x�

i β i

β�
i β i

. (9)

Then (5) and (7) hold.

Proof It follows from the fact that α̃i is determined by ‖xi − α̃iβ i‖ = gi . �

Before proving (6), we give an auxiliary lemma.

LEMMA 3.2 It holds

β�
i ri = 1

2
‖β i‖2.

Proof Using (8), we obtain

β�
i β i = 2

(
r�
i ri + ‖ri‖

gi

x�
i ri

)
= 2β�

i ri .

�

LEMMA 3.3 Let us have α ∈ R
m with 0 < αi ≤ η‖A‖−1 for i ∈ D(x), where 0 < η < 1. Then

(6) holds.

Figure 3. Pair β i of the turned boundary gradient β.

458 R. Kučera

Proof First, we prove the lower bound of the increment. Using Lemma 3.2, we obtain

f (x) − f (x − α � β) = (α � β)�r − 1

2
(α � β)�A(α � β)

≥ (α � β)�r − 1

2
‖A‖‖α � β‖2

=
∑

i∈D(x)

αiβ
�
i ri − 1

2
‖A‖

∑
i∈D(x)

α2
i ‖β i‖2

≥
∑

i∈D(x)

αiβ
�
i ri − η

2

∑
i∈D(x)

αi‖β i‖2

= 1

2

∑
i∈D(x)

αi‖β i‖2 − η

2

∑
i∈D(x)

αi‖β i‖2

= 1 − η

2

∑
i∈D(x)

αi‖β i‖2. (10)

As the last term is positive, we have proved (6). �

In order to satisfy (5), (6) and (7) simultaneously, we define α ∈ R
m by

αi =
{

min{η‖A‖−1, δα̃i} for i ∈ D(x),

0 for i ∈ N \ D(x),
(11)

where 0 < η < 1, 0 < δ < 1 and α̃i are defined by (9).

COROLLARY 3.4 Let us denote

I(x) = {i ∈ D(x): αi = η‖A‖−1}.
One of the following three assertions holds for each i ∈ A(x):

(i) β i = 0, if i ∈ A(x) \ D(x),

(ii) f (x) − f (x − α � β) ≥ (1 − η)δx�
i β i , if i ∈ D(x) \ I(x),

(iii) f (x) − f (x − α � β) ≥ (1 − η)η

2‖A‖ ‖β i‖2, if i ∈ I(x).

Proof The assertion (i) is obvious. In order to prove (ii) and (iii), we use (10), (11) and (9):

f (x) − f (x − α � β) ≥ 1 − η

2

∑
i∈D(x)

αi‖β i‖2

= 1 − η

2

⎛⎝η‖A‖−1
∑

i∈I(x)

‖β i‖2 + 2δ
∑

i∈D(x)\I(x)

x�
i β i

⎞⎠ .

As all summation terms in the last expression are positive, we have proved (ii) and (iii). �

LEMMA 3.5 Let ‖xi‖ = gi . If x�
i β i = 0, then β i = 0.

Minimizing quadratic functions 459

Proof Using (8), we obtain 0 = x�
i β i = x�

i ri + ‖ri‖gi implying x�
i ri = −‖ri‖gi .

Substituting this in

β�
i β i = 2

(
‖ri‖2 + ‖ri‖

gi

x�
i ri

)
= 0

so that the lemma holds. �

Remark 1 Let i ∈ D(x). Define the vectors orthogonal to xi , ri by x⊥
i , r⊥

i , respectively,
and assume that this definition is in agreement with figure 3b. It is easily seen from the
figure that −β i bisects the angle formed by x⊥

i and r⊥
i . Therefore, −β i is the ideal compro-

mise between ‘infeasibility’ represented by x⊥
i and ‘stagnation’ represented by r⊥

i . In this
sense, the vector −β is the optimal feasible descent direction that releases indices of D(x)

from the active set A(x).

4. Algorithm and convergence

We shall explain the key idea of our algorithm for the one quadratic constraint (2), i.e. we
shall assume for a moment that m = 1 so that � is the circle in R

2. First, we compute the
unconstrained minimum of f . If it is feasible, then we have the solution because the inner
KKT condition (3) is satisfied. If the unconstrained minimum lies outside �, then we search
for a solution on the boundary of � so that the boundary KKT condition (4) is satisfied. In this
case, we use alternately the steps called expansion and deactivation, which generate iterations
lying on the boundary of � and in the interior of �, respectively. The step expansion uses
arbitrary (e.g. gradient) descent direction. The step deactivation is standardly performed by
the turned boundary gradient β. As the values of f decrease in both cases, the iterations can
never reappear and therefore the convergence can be proved.

The idea described here can be used simultaneously for all circles representing � in the
general problem (1). In this case, we are not able to discover by a prior unconstrained mini-
mization which of constraints are active in the solution. Therefore, we supplement the iterative
process by the step minimization in which we compute the minimum of f with respect to
components that are not active in the current iteration. To this end, we define the face at given
x ∈ � by

W(x) = {y ∈ R
2m: yi = xi , i ∈ A(x)}.

The general scheme of our algorithm for solving problem (1) reads as follows:

ALGORITHM 4.1 Let x0 ∈ �. If ν(xk) �= 0, find xk+1 ∈ � by one of the following three steps:
Minimization: If ϕ(xk) �= 0, then compute y so that

f (y) = min{f (x): x ∈ W(xk)}. (12)

If y ∈ �, then set xk+1 = y and so

f (xk+1) < f (xk) and A(xk+1) ⊇ A(xk).

Expansion: If ϕ(xk) �= 0 and y �∈ �, then find xk+1 so that

f (xk+1) < f (xk) and A(xk+1) ⊃ A(xk).

Deactivation: If ϕ(xk) = 0 and β(xk) �= 0, then set

xk+1 = xk − αk � βk, (13)

460 R. Kučera

where βk = β(xk) is the turned boundary gradient and αk = α is defined by (11) and so

f (xk+1) < f (xk) and A(xk+1) ⊂ A(xk).

The convergence of the algorithm is enforced by properties of the turned boundary gradient
in the step deactivation and by the fact that the algorithm generates a strictly decreasing
sequence {f (xk)}.

THEOREM 4.1 Let x0 ∈ �, 0 < η < 1, 0 < δ < 1 and let {xk} denote a sequence generated
by Algorithm 4.1. Then, {xk} converges to the solution x̄ of (1).

Proof First of all, let us point out that Lemma 3.1 and Lemma 3.3 prove that the algorithm
is well defined, i.e. iterations generated by (13) are feasible, decreasing and release indices
from the active set.

The algorithm generates a finite or infinite sequence {xk}. If {xk} is finite, then its last term
solves problem (1) because it satisfies the KKT conditions. In the rest of the proof, we shall
assume that {xk} is infinite.

Let KD denote the set of all indices such that ϕ(xk) = 0 and β(xk) �= 0 for each k ∈ KD,
i.e. the next iteration xk+1 is generated by the step deactivation. Let us point out that KD is
necessarily an infinite set. As � is compact and xk ∈ �, there is an accumulation point x̄ ∈ �

of the sequence {xk: k ∈ KD} and a subset K0
D of KD such that {xk: k ∈ K0

D} converges to x̄.
Because f is continuous, it follows that {f (xk): k ∈ K0

D} converges to f (x̄). We shall prove
that x̄ satisfies KKT conditions (3) and (4).

Let us first suppose that ‖x̄i‖ < gi for fixed i ∈ N . Then, ‖xk
i ‖ < gi for sufficiently large

k ∈ K0
D and because ϕ(xk) = 0, we have rk

i = 0 for such k. Therefore, r̄i = 0 so that KKT
condition (3) is satisfied.

If ‖x̄i‖ = gi for fixed i ∈ N , we shall distinguish two situations. If there is an infinite
subsequence of {xk: k ∈ K0

D} such that ‖xk
i ‖ < gi , we can show as stated earlier that r̄i = 0 so

that KKT condition (4) is satisfied. If there is no such subsequence, then there is the infinite
subset K1

D of K0
D such that ‖xk

i ‖ = gi for each k ∈ K1
D. Using Corollary 3.4, we obtain:

βk
i = 0, if i ∈ A(xk) \ D(xk),

f (xk) − f (xk+1) ≥ (1 − η)δ(xk
i)

�βk
i , if i ∈ D(xk) \ I(xk),

f (xk) − f (xk+1) ≥ (1 − η)η

2‖A‖ ‖βk
i ‖2, if i ∈ I(xk)

for each k ∈ K1
D. Let us decompose the set K1

D on K2
D, K3

D and K4
D so that

K2
D = {k ∈ K1

D: i ∈ A(xk) \ D(xk)},
K3

D = {k ∈ K1
D: i ∈ D(xk) \ I(xk)},

K4
D = {k ∈ K1

D: i ∈ I(xk)}.

At least one of the sets K2
D, K3

D and K4
D is infinite. If K2

D is infinite, then obviously β̄ i = 0.
If K3

D is infinite, then {(xk
i)

�βk
i : k ∈ K3

D} converges to zero. We obtain x̄�
i β̄ i = 0, and using

Lemma 3.5, we obtain β̄ i = 0. If K4
D is infinite, then {‖βk

i ‖2: k ∈ K4
D} converges to zero and

therefore we obtain again β̄ i = 0. Summing up all the three cases, we conclude that KKT
boundary condition (4) is satisfied.

We have proved that x̄ is the solution to (1). Now we shall show that the whole sequence
{xk} converges to x̄. It is well known that the solution to (1) is characterized by the variational

Minimizing quadratic functions 461

inequality (Ax̄ − b)�(x − x̄) ≥ 0 for all x ∈ �. By means of this inequality, we obtain

f (xk) − f (x̄) = (Ax̄ − b)�(xk − x̄) + 1

2
(xk − x̄)A(xk − x̄) ≥ 1

2
λmin‖xk − x̄‖2, (14)

where λmin is the smallest eigenvalue of A. As the sequence {f (xk)} is lower bounded and
decreasing, its only accumulation point is necessarily f (x̄). Therefore (14) implies that the
whole sequence {xk} converges to x̄. �

Motivated by the works of Dostál and Friedlander [4, 6], we shall use the adaptive precision
control in Algorithm 4.1. We replace the criteria ϕ(xk) �= 0 by

‖ϕ(xk)‖ > γ ‖β(xk)‖, (15)

where γ > 0. The convergence of the modified algorithm is proved by the following theorem.

THEOREM 4.2 Let x0 ∈ �, 0 < η < 1, 0 < δ < 1, γ > 0 and let {xk} denote a sequence
generated by Algorithm 4.1, in which the criteria ϕ(xk) �= 0 is replaced by (15). Then, {xk}
converges to the solution x̄ of (1).

Proof As the concept of the proof is the same with Theorem 4.1, we shall explain it briefly.
Let KD denote again the set of all indices such that the next iteration is generated by the step
deactivation, i.e. β(xk) �= 0 and ‖ϕ(xk)‖ ≤ γ ‖β(xk)‖ for each k ∈ KD. Let us choose the
subset K0

D of KD such that {xk: k ∈ K0
D} converges to an accumulation point of {xk: k ∈ KD},

say x̄. Let us point out that x̄ necessarily satisfies

‖ϕ(x̄)‖ ≤ γ ‖β(x̄)‖. (16)

The arguments of the proof of Theorem 4.1 can be analogously used in order to prove β̄ i = 0
for i ∈ A(x̄), which is equivalent to ‖β(x̄)‖ = 0. Therefore, (16) implies ‖ϕ(x̄)‖ = 0 so that
x̄ satisfies KKT conditions (3) and (4). The rest of the proof is the same with Theorem 4.1. �

5. Implementation

In this section, we describe the implementation of Algorithm 4.1 with the adaptive precision
control (15) by the CG method.We use an easily understandable variant of the Matlab language,
in which we do not distinguish generation of variables by indices unless it is convenient
for further references. The algorithm is given subsequently, in which we do not distinguish
generation of variables by indices unless it is convenient for further references. As the step
deactivation is completely described by (13), we explain the steps minimization and expansion,
which are performed by the CG loop.

First of all, we define the projection P�: R
2m → �, y = P�(x) so that for i ∈ N ,

yi = xi , if ‖xi‖ ≤ gi,

yi = gi

‖xi‖xi , if ‖xi‖ > gi.

We apply this projection to any infeasible point generated by the algorithm.
Let us suppose that xk satisfies (15). We start the CG loop by the initial approximation

y(0) = xk in order to compute the minimum of f on the face W(xk), i.e. we solve (12). Let

462 R. Kučera

us point out that the constraints represented by the face can be neglected if we use another
projection PF(xk): R

2m → W(xk) \ {xk}, y = PF(xk)(x), which is defined by

yi = xi for i ∈ F(xk),

yi = 0 for i ∈ N \ F(xk).

The CG loop is terminated by one of the two situations corresponding to the steps minimization
or expansion.

(a) Provided that the lth CG approximation y(l) ∈ � satisfies ‖ϕ(y(l))‖ ≤ γ ‖β(y(l))‖, it is
the solution to (12) with respect to the adaptive precision control and we set xk+1 = y(l).

(b) Provided that the lth CG approximation y(l) �∈ �, we explore its projection P�(y(l)). In
advance, we check whether the value of f decreases. The CG loop is terminated if

f (P�(y(l))) ≥ f (P�(y(l−1))). (17)

In this case, we set

xk+1 = P�(y(l−1) − αp
(l−1)

F), (18)

where p
(l−1)

F is the current CG direction and α is a shortened steplength. If (17) does not hold,
we test whether the adaptive precision control is reached. If

‖ϕ(P�(y(l)))‖ ≤ γ ‖β(P�(y(l)))‖,
then we set xk+1 = P�(y(l)).

The shortened steplength in (18) must expand the active set. We can take α = 0 provided that
y(l−1) �∈ �. If y(l−1) ∈ �, then we define α as the maximal feasible steplength. This procedure
is described in the function SHORTENESS, in which we exploit the auxiliary variable in_set. This
variable monitors whether the current approximation y = y(l−1) belongs to �. As we need
to know whether the current CG approximation belongs to �, we monitor this information
during the CG loop in the auxiliary variable in_set (= 0/1 that means �∈/∈).

ALGORITHM 5.1 Let x0 ∈ �, 0 < η < 1, 0 < δ < 1, γ > 0 and tol > 0.

k = 0, r0 = Ax0 − b {Initialization}
while ‖ν (xk)‖ > tol {Main loop}

if ‖ϕ (xk)‖ > γ ‖β(xk)‖ {Minimization and Expansion}
y = xk, in_set = 1 {Initialization of CG method}
F = F(xk), rF = PF (rk), pF = PF (rk), α = 0, αcg = 0
{CG loop}
while ‖ν (P�(y))‖ > tol and α = αcg and ‖ϕ (P�(y))‖ > γ ‖β(P�(y))‖

αcg = r�
F pF/p�

F ApF {CG steplength}
if y − αcgpF ∈ � {Feasible CG iteration}

α = αcg , in_set = 1
else {Infeasible CG iteration}

if f (P�(y − αcgpF)) < f (P�(y))

α = αcg , in_set = 0
else

α = SHORTENESS (y, pF , g, in_set)

end if
end if
y = y − αpF , rF = rF − αPF (ApF) {New CG iteration}
pF = rF − (r�

F ApF/ p�
F ApF)pF

Minimizing quadratic functions 463

end while
xk+1 = P�(y), rk+1 = Axk+1 − b, k = k + 1

end if
if ‖ϕ (xk)‖ ≤ γ ‖β(xk)‖ {Deactivation}

αk
i =

{
min { η ‖A‖−1, 2 δ (xk

i)
� βk

i / (βk
i)

�βk
i } for i ∈ D(xk)

0 for i ∈ N \D(xk)

xk+1 = xk − αk � β(xk), rk+1 = rk − A (αk � β(xk)), k = k + 1
end if

end while

α = function SHORTENESS (y, p, g, in_set)

if in_set = 1 {Shortened steplength for y ∈ �}
α = min

{
αi : αi ≥ 0, ‖yi − αipi‖ = gi, i ∈ N

}
else {Shortened steplength for y �∈ �}
α = 0
end if

6. Numerical experiments

We assess the behaviour of Algorithm 5.1 by two examples. In the first example, we test
experimentally the sensitivity of the algorithm on the values of γ , η and δ. The second example
arises in 3D contact problems with isotropic friction. We shall demonstrate the high efficiency
of the algorithm with respect to the methods used in ref. [1]. All computations are performed
in Matlab 7 on Pentium 4, 3 GHz with 512 MB RAM.

Example 6.1 Let us consider problem (1) in which

A = fivediag(−1, −1, 4, −1, −1) ∈ R
12×12,

b = Ay,

g = (2, 1, 0.5, 2, 10−3, 154)�

and y = (2, 1, 0.5, 0, 0, 11, 10−5, −1,
√

2, −0.1, 4.1 × 10−4, 143)�. The solution x̄ ∈ R
12

has three active constraints, A(x̄) = {2, 3, 5}. In tables 1–3, we shall denote k the total number
of the iterations, kD the number of the steps deactivation and kCG the number of the CG steps,
respectively. The computational costs are assessed by the number nA of multiplications with
the Hessian matrix A. We set x0 = 0 and tol = 10−6‖b‖.

Let η = 0.5 and δ = 0.5. Table 1 summarizes experiments in which we change γ . The
first row corresponds to the implementation of Algorithm 5.1 without the adaptive precision
control so that criteria (15) is replaced by ‖ϕ(xk)‖ > tol. The optimal values of γ are around
a unity.

Let γ = 1 and δ = 0.5. Table 2 summarizes experiments in which we change η. The optimal
values of η are 0.8 and 0.9.

Let γ = 1 and η = 0.8. Table 3 summarizes experiments in which we change δ. The optimal
values of δ are those greater than 0.4.

464 R. Kučera

Table 1. Dependence on γ .

γ k kD kCG nA

– 21 7 14 64
0.01 22 7 15 69
0.1 22 7 15 63
0.5 22 7 15 57
0.8 21 7 14 54
1 21 7 14 54
1.2 24 10 14 54
1.8 29 14 15 57
2 35 17 18 60
3 35 17 18 60

Table 2. Dependence on η.

η k kD kCG nA

0.1 21 7 14 54
0.2 21 7 14 54
0.3 21 7 14 54
0.4 21 7 14 54
0.5 21 7 14 54
0.6 20 7 13 51
0.7 20 7 13 51
0.8 18 6 12 46
0.9 18 6 12 46
1 20 8 12 48

The algorithm is less sensitive on values of η and δ, which regulate the step deactivation.
This property shows that the computational behaviour of the algorithm is determined above
all by the truncated CG method used in the steps minimization and expansion.

Example 6.2 The discrete dual formulation of the 3D contact problem with (given) isotropic
friction reads as follows:

min
1

2
λ�Qλ − λ�h, (19)

s.t. λi ≥ 0, λ2
2i + λ2

3i ≤ g2
i , i = 1, . . . , m, (20)

where Q ∈ R
3m×3m is a symmetric positive definite matrix, h ∈ R

3m and gi ≥ 0. The
unknowns λi represent a normal contact stress, whereas the unknowns (λ2i , λ3i)

� represent

Table 3. Dependence on δ.

δ k kD kCG nA

0.1 21 7 14 54
0.2 21 7 14 54
0.3 20 7 13 51
0.4 20 7 13 51
0.5 18 6 12 46
0.6 18 6 12 46
0.7 18 6 12 46
0.8 18 6 12 46
0.9 18 6 12 46

Minimizing quadratic functions 465

Figure 4. Approximation of the quadratic constraint.

a tangential contact stress. The method described in ref. [1] is based on approximations of
the circles representing the quadratic constraints in (20) by intersections of rotated squares
(figure 4). Hence, the problems (19) and (20) are approximated by the quadratic programming
problem with simple bounds and linear equality constraints so that the efficient algorithm [9]
based on the augmented Lagrangian can be used. We shall show that Algorithm 5.1 leads to
much faster computation of the solution.

We split problems (19) and (20) by using the Gauss–Seidel-type method on independent
minimizations with simple bounds and quadratic constraints, respectively. To this end, we
introduce the natural decompositions of Q, h and λ as

Q =
(

Qnn Qnt

Q�
nt Qtt

)
, h =

(
hn

ht

)
, λ =

(
λn

λt

)
.

The Gauss–Seidel loop reads as follows:

Initialize λ
(0)
t , k = 0.

repeat

k = k + 1

λ(k)
n = argmin

{
1

2
λ�

n Qnnλn − λ�
n (hn − Qntλ

(k−1)
t), s.t. λn,i ≥ 0

}
(21)

λ
(k)
t = argmin

{
1

2
λ�

t Qttλt − λ�
t (ht − Q�

ntλ
(k)
n), s.t. λ2

t,i + λ2
t,2i ≤ g2

i

}
(22)

until stopping criterion

We suppose that (21) is solved by the algorithm of ref. [5], whereas the solution to (22) is
computed by Algorithm 5.1 in each iterative step. Consider the model contact problem of
ref. [10] discretized by means of the finite element method so that n denotes the number of
primal unknowns (displacements) and m denotes the number of dual unknowns (stresses).
Table 4 compares computational times of the presented algorithm (Time) with computational
times of the algorithm of ref. [1] for two (Time2) and four (Time4) rotated squares, respectively.
Let us point out that the compared implementations are of the similar quality.

Table 5 shows the iteration history of the Gauss–Seidel loop for n = 18759 and m = 1443.
n

qpp
A and n

qpq
A denote the number of multiplications with the Hessian matrix in (21) and (22),

respectively. The stopping criterion reads as follows:

Error ≡ ‖λ(k) − λ(k−1)‖
‖λ(k)‖ < 10−6.

466 R. Kučera

Table 4. The computational times in seconds.

n m Time Time2 Time4

975 195 2 15 61
2,793 399 12 101 548
6,318 702 38 486 2,114

11,253 1,023 94 1,542 7,724
18,759 1,443 254 5,004 20,534

Table 5. The iteration history.

k Error n
qpp
A n

qpq
A

1 1 39 43
2 1.7 × 10−1 17 39
3 2.3 × 10−2 12 31
4 2.3 × 10−3 10 13
5 2.1 × 10−4 7 10
6 1.2 × 10−5 3 7
7 1.3 × 10−5 3 4
8 0 2 4

Let us point out that the algorithm used in (21) has the finite termination property. Although
our algorithm has not this property, the number of Hessian matrix multiplications n

qpp
A and

n
qpq
A are comparable.

7. Conclusions and comments

We have presented a new active set-based algorithm for minimizing stricly convex quadratic
functions with separable quadratic constraints. The algorithm is similar to the class of Polyak’s
algorithms that solve quadratic programming problems with simple inequality bounds in a
finite number of iterations. Although our algorithm has not the finite termination property,
numerical experiments show the comparable computational efficiency.

The algorithm has been proposed for solving 3D contact problems of linear elasticity with
isotropic friction. Problems of this type are characterized by a large number of unknowns
that make demands on computational efficiency as well as memory requirements. The pre-
sented algorithm is an important ingredient in the development of the FETI-based domain
decomposition methods [11].

Acknowledgements

This work is supported by the National Program of Research Information Society under project
1ET400300415 and by the Grant Agency of the Czech Republic under grant 101/04/1145.

References

[1] Haslinger, J., Kučera, R. and Dostál, Z., 2004,An algorithm for the numerical realization of 3D contact problems
with Coulomb friction. Journal of Computational and Applied Mathematics, 164/165, 387–408.

[2] Fletcher, R., 1997, Practical Methods of Optimization (Chichester: John Wiley & Sons).
[3] Golub, G.H. and Van Loan, C.F., 1996, Matrix Computation (Baltimore: The Johns Hopkins University Press).
[4] Dostál, Z., 1997, Box constrained quadratic programming with proportioning and projections. SIAM Journal

on Optimization, 7, 871–887.

Minimizing quadratic functions 467

[5] Dostál, Z. and Schöberl, J., 2005, Minimizing quadratic functions over non-negative cone with the rate of
convergence and finite termination. Computational Optimization and Applications, 30, 23–44.

[6] Friedlander, A. and Martínez, M., 1994, On the maximization of a concave quadratic function with box
constraints. SIAM Journal on Optimization, 4, 117–192.

[7] Polyak, B.T., 1969, The conjugate gradient method in extremal problems. USSR Computational Mathematics
and Mathematical Physics, 9, 94–112.

[8] Bazaraa, M.S. and Shetty C.M., 1979, Nonlinear Programming (New York: John Wiley and Sons).
[9] Dostál, Z., Friedlander, A. and Santos, S.A., 2003, Augmented Lagrangian with adaptive precision control

for quadratic programming with simple bounds and equality constraints. SIAM Journal on Optimization, 13,
1120–1140.

[10] Kučera, R., Haslinger, J. and Dostál, Z., 2004, An algorithm for solving 3D contact problems with friction. In:
T.E. Simos, Ch. Tsitouras (Eds) International Conference on Numerical Analysis and Applied Mathematics,
(Berlin: WILEY-VCH), pp. 217–220.

[11] Kučera, R., Haslinger, J. and Dostál, Z., 2005, A new FETI based algorithm for solving 3D contact problems
with Coulomb friction. Lecture Notes in Computational Science and Engineering, in press.

