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Abstract: We use the semi-smooth Newton method to the solution of 2D contact
problems with friction. The primal-dual algorithm for problems with the Tresca
friction law is reformulated as the dual one. The conjugate gradient method is used
for inexact solving of inner linear systems. Numerical experiments illustrate the
performance of the inexact algorithm.

1 Introduction

We start with the algebraic counterpart of the elliptic PDEs describing the contact
of two (or more) elastic bodies with Tresca friction. The problem arising from a
finite element approximation reads as follows:

Find (u∗, λ∗ν , λ
∗
τ ) ∈ Rn × Rm × Rm such that

Ku+N>λν + T>λτ − f = 0, (1)

Nu− d ≤ 0, λν ≥ 0, λ>ν (Nu− d) = 0, (2)

|λτ,i| ≤ gi
|λτ,i| < gi ⇒ (Tu)i = 0
|λτ,i| = gi ⇒ ∃ci ≥ 0 : (Tu)i = ciλτ,i

 i ∈M, (3)

whereM = {1, . . . ,m} is the index set, K ∈ Rn×n is symmetric and positive definite,
N, T ∈ Rm×n have full row-rank, f ∈ Rn, d ∈ Rm

+ , and gi are entries of g ∈ Rm
+ .

The formulation (1)-(3) describes the algebraic primal-dual contact problem with
Tresca friction. The primal unknown u∗ approximates displacements, while the dual
unknowns λ∗ν , λ

∗
τ approximate the (negative) normal, tangential contact stresses,

respectively.



The semi-smooth Newton method (SSNM) uses the primal-dual formulation of
contact problems reformulated by non-smooth functions as proposed already in [1].
Later on, it was recognized that the SSNM may be interpreted as a primal-dual active
set method [4]. This approach is widely used for solving contact problems in two
(2D) as well as three (3D) space dimensions with different friction laws; see e.g. [5].
The standard convergence analysis uses the slant differentiability concept [4] leading
to the local superlinear convergence rate. This convergence result assumes exact
solutions of inner linear systems that is, however, unrealistic for large-scale problems.
The globally convergent variant of the method is analyzed in [3]. Here, we present the
inexact implementation of the SSNM leading to the highest computational efficiency.

2 Dual variant of the SSNM

Let PΛν : Rm 7→ Λν and PΛτ : Rm 7→ Λτ be the projections onto Λν = Rm
+ and

Λτ = {λτ ∈ Rm : |λτ,i| ≤ gi, i ∈M} defined by the max-function as follows:

PΛν ,i(λν) = max{0, λν,i}, (4)

PΛτ ,i(λτ ) = max{0, λτ,i + gi} −max{0, λτ,i − gi} − gi, (5)

respectively. Let us introduce the functionG : Rn+2m 7→ Rn+2m with y = (u>, λ>ν , λ
>
τ )>

given by

G(y) =

 Ku+N>λν + T>λτ − f
λν − PΛν (λν + ρ(Nu− d))
λτ − PΛτ (λτ + ρTu)

 , (6)

where ρ > 0 is an arbitrary but fixed parameter. It is easy to verify that (1)-(3) and
the equation

G(y) = 0, (7)

have the same solution y∗ = (u∗>, λ∗ν
>, λ∗τ

>)>. The function G is nonsmooth due to
the presence of the max-function. Fortunately, it is semi-smooth in the sense of [?]
so that the SSNM can be used. We will present the dual variant of the SSNM.

First of all, we introduce notation. Let q : R2m 7→ R be the quadratic cost
function defined by

q(λ) =
1

2
λ>Aλ− λ>b, (8)

where λ = (λ>ν , λ
>
τ )>, A = BK−1B> with B =

(
N>, T>

)>
is symmetric and positive

definite, b = BK−1f − c, and c =
(
d>, 0>

)>
. The gradient r : R2m 7→ R to q at

λ ∈ R2m is given by
r(λ) = Aλ− b. (9)

Denote λ∗ = (λ∗ν
>, λ∗τ

>)>, Λ = Λν ×Λτ , and introduce the the projection onto Λ by
PΛ : R2m 7→ Λ given by PΛ = (P>Λν

, P>Λτ
)>. The reduced gradient r̃α : Λ 7→ R to q for

α > 0 is defined by:

r̃α(λ) =
1

α
(λ− PΛ(λ− αr(λ))). (10)

It is well-known [2] that r̃α is the optimality criterion to the problem minλ∈Λ q(λ)
in the sense that λ∗ ∈ Λ solves this problem iff r̃α(λ∗) = 0. Therefore, the reduced



gradient will be used as the stopping criterion.

Algorithm SSNM Given λ0 ∈ R2m, ε ≥ 0, and ρ > 0. For k ≥ 0, compute:

(Step 1 ) If ‖r̃ρ(PΛ(λk))‖ ≤ ε, return λ = PΛ(λk), else go to step Step 2.

(Step 2 ) Assembly the active/inactive sets at λk:

Aν = {i ∈M : λki − ρrki ≥ 0},
Iν = M\Aν ,
I+
τ = {i ∈M : gi < λki+m − ρrki+m},
I−τ = {i ∈M : λki+m − ρrki+m < −gi},
Aτ = M\ (I+

τ ∪ I−τ ).

(Step 3 ) Find λk+1 so that

λk+1 = arg min q(λ) s.t. λν,Iν = 0, λτ,I+τ = gI+τ , λτ,I−τ = −gI−τ . (11)

Note that ρ can be discarded from Aν and Iν , when the inner subproblems in
Step 3 are solved exactly (and λ0 = 0, e.g.), since either λki = 0 or rki = 0. A similar
observation is valid also for Aτ , I+

τ , and I−τ provided that λk is sufficiently close
to λ∗ and g is sufficiently large.

3 Inexact implementation

The computational efficiency of the SSNM depends on a way how the inner sub-
problems are implemented. We propose to accept inexact solutions to (11), denoted
again by λk+1, that are computed by few CGM iterations. It is referred by

λk+1 = CGM(A, b,A, λk+1,0, tolk+1),

where A = Aν ∪ {i + m| i ∈ Aτ}, λk+1,0 is the initial CGM iteration, and tolk+1

denotes the stopping tolerance. The implementation ideas are summarized by Al-
gorithm ISSNM, where errk = ‖r̃ρ(PΛ(λk))‖ stands for the precision achieved on
the outer level. The value tolk+1 in Step 3.1 respects errk but, when the progress is
not sufficient, it improves the previous tolerance tolk. The inner initialization λk+1,0

in Step 3.2 is chosen by the previous iteration λk and by the constraints in (11).

Algorithm ISSNM Given λ0 ∈ R2m, ε ≥ 0, ρ > 0, and rtol, cfact ∈ (0, 1).

Set err0 = ‖r̃ρ(PΛ(λ0))‖, tol0 = rtol/cfact, and k = 0.

(Step 1 ) If errk ≤ ε , return λ = PΛ(λk), else go to step Step 2.

(Step 2 ) Assembly the active/inactive sets at λk.

(Step 3.1 ) tolk+1 = min{rtol × err
k/err0, cfact × tol

k}

(Step 3.2 ) λk+1,0
A = λkA, λk+1,0

ν,Iν = 0, λk+1,0

τ,I+τ
= gI+τ , λk+1,0

τ,I−τ
= −gI−τ

(Step 3.3 ) λk+1 = CGM(A, b,A, λk+1,0, tolk+1)

(Step 3.4 ) errk+1 = ‖r̃ρ(PΛ(λk+1))‖, k = k + 1, and go to Step 1.



4 Numerical experiments

Table 1 shows how Algorithm ISSNM behaves with respect to the value ρ =
β × σ−1

max, where σmax denotes the largest eigenvalue of A. We observe that the
dependence on ρ is weak.

Table 1: ISSNM with ρ = β × σ−1
max

β 0.05 1 1.9 20 100

n/m iter/nA iter/nA iter/nA iter/nA iter/nA

1320/60 07/35 07/35 07/35 07/36 10/48
11160/180 09/49 09/49 09/49 08/41 10/52
30600/300 09/48 09/48 09/48 08/43 10/55
59640/420 09/49 09/49 09/49 10/59 11/62
98280/540 09/51 09/51 09/51 09/45 12/72
146520/660 09/53 10/57 10/57 10/59 10/54
204360/780 10/59 10/59 10/59 10/61 10/56
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