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An algorithm for solving 3D contact problems with friction
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The contribution deals with the numerical solving of contact problems with friction for 3D elastic bodies.
The algorithm uses the splitting technique based on the Gauss-Seidel iterations that leads into two constrained
quadratic programming problems (QPP) in each iterative step. The first QPP contains simple inequality bounds
so that existing fast algorithms can be used directly. The second QPP contains quadratic constraints. A new
algorithm based on an active set strategy is proposed for solving the second QPP. Numerical experiments
illustrate the efficiency of the whole computational process.
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1 Introduction

The mathematical model of contact problems withCoulomb frictionleads to aquasivariational inequality[4, 5].
It is well-known that their solutions can be defined as fixed points of a certain mapping and that themethod of
successive approximationsis a natural tool for the numerical realization [3]. Each iterative step is represented by
an auxiliary contact problem withgiven frictiondescribed by avariational inequalityof the second kind. The
efficiency of the whole computational process depends (among others) on the realization of contact problems
with given friction. In the contribution, we present a new algorithm for solving these auxiliary problems for 3D
bodies.

Our method is based on thedual formulationof contact problems with given friction, i.e. the formulation
in terms of normal and tangential contact stresses. A discrete variant of the dual formulation is represented by
a quadratic programming problem (QPP) with two types of constraints. The constraints on the normal contact
stresses are simple inequality bounds while the constraints on the tangential contact stresses are quadratic in-
equalities (the reason is that the tangential contact stress in each contact node can be represented by a vector
with two components that are constrained by the isotropic friction). In order to separate the constraints, we use
the Gauss-Seidel iterations so that two QPP are solved in each iterative step. The first QPP is constrained only
by simple inequality bounds and therefore it can be solved by an existing fast algorithm with proportioning and
gradient projections [1]. The second QPP is constrained only by quadratic inequalities that have the following
simple interpretation: the vector whose components are the tangential contact stresses belongs to a circle inR2

with the center at the origin and a given radius. In our previous paper [3], we have proposed an algorithm based
on a piecewise linear approximation of the circle defined by an intersection of squares rotated of a constant angle.
This idea enables to transform the quadratic inequality constraints to the simple inequality bounds but, unfortu-
nately, it increases considerably the size of the QPP. Here, we shall propose a new algortihm for solving the QPP
treating directly with the quadratic inequality constraints [6]. Our algorithm consists of an active set strategy
combined with the conjugate gradients.

2 Discrete dual formulation of contact problems with given friction

The discrete dual formulation of contact problems with given friction reads as follows:
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(D)





min 1
2λ>Qλ− λ>h

s.t. λν ∈ Λν , (λt1, λt2) ∈ Λt, λ =
(

λ>ν , λ>t1, λ>t2
)>

with

Λν = {λν ∈ Rm| (λν)i ≥ 0, i = 1, . . . ,m} ,

Λt =
{
(λt1, λt2) ∈ Rm ×Rm| (λt1)2i + (λt2)2i ≤ g2

i , i = 1, . . . ,m
}

,

whereQ ∈ R3m×3m is the positive definite dual Hessian,h ∈ R3m andgi > 0 are values of the slip bound at
contact nodes. We search for the normal contact stressesλν and the tangential contact stressesλt = (λ>t1, λ>t2)>;
see [3] for more details.

Let us introduce a new notation for the natural block structure of the HessianQ so that

Q =
(

Qνν Qνt

Qtν Qtt

)
, h =

(
hν

ht

)
.

Exploiting this partition ofQ, we can consider the constrained block Gauss-Seidel method:

ALGORITHM GS

Initialize: λ(0)
t , i := 0

repeat

i := i + 1

λ(i)
ν := argmin{1

2
λ>ν Qννλν − λ>ν (hν −Qνtλ

(i−1)
t ), s.t. λν ∈ Λν}

λ(i)
t := argmin{1

2
λ>t Qttλt − λ>t (ht −Qtνλ(i)

ν ), s.t. λt ∈ Λt}
until ‖λ(i) − λ(i−1)‖R3m ≤ tol

It is well-known that the Gauss-Seidel method converges to the solution of(D); see [2]. While the first QPP in
each iterative step ofALGORITHM GScan be solved by the algorithm of [1], an algorithm for solving the second
QPP shall be proposed in the next section.

3 Quadratic programming with quadratic constraints

Let us consider the following problem:

(QPQ)

{
min f(x) = 1

2 x>Ax− x>b

s. t. x ∈ Ω = {x ∈ R2m : x2
i + x2

2i ≤ g2
i , i ∈ N},

whereA ∈ R2m×2m is a symmetric positive definite matrix,b ∈ R2m, gi are positive values,N = {1, . . . , m}
andxi denotes thei-th entry of a vectorx ∈ R2m.

Let us define for givenx ∈ Ω theactive setA(x) so that

A(x) = {i ∈ N : x2
i + x2

2i = g2
i }.

Let us introduce theresidualr so thatr = Ax− b and thefree residualϕ = ϕ(x) so that

ϕi = ri, ϕ2i = r2i for i 6∈ A(x), ϕi = ϕ2i = 0 for i ∈ A(x).

The algorithm for solving the problem(QPQ) reads as follows:
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ALGORITHM QPQ Let x0 ∈ Ω. Fork ≥ 0, find xk+1 by the following rules:
(a) If ϕ(xk) 6= o, find xk+1 ∈ Ω such thatf(xk+1) < f(xk) and either

A(xk) ⊂ A(xk+1) andϕ(xk+1) 6= o

or

A(xk) ⊆ A(xk+1) andϕ(xk+1) = o.

(b) If ϕ(xk) = o, find xk+1 ∈ Ω such thatf(xk+1) < f(xk) and

A(xk) ⊃ A(xk+1).

The step (a) can be realized using the unconstrained minimization for the reduced problem(QPQ). We shall
assume that the conjugate gradients are used analogously as in the algorithm for the QPP with inequality bounds
[1]. The realization of the step (b) can be based on an analyse of the Karush-Kuhn-Tucker (KKT) conditions to
the problem(QPQ). Before giving their appropriate form, we introduce notations

xi = (xi, x2i)> ∈ R2, ri = (ri, r2i)> ∈ R2.

Lemma 3.1 The vector̄x ∈ Ω is the solution to(QPQ) iff for i ∈ N
r̄i = o for ‖x̄i‖ < gi, (1)

r̄i +
‖r̄i‖
gi

x̄i = o for ‖x̄i‖ = gi, (2)

where‖ · ‖ denotes the Euclidean norm inR2.

The conditions (2) are called theKKT boundary conditions. We can interpret them geometrically so that the
half-line of the direction̄ri begining at the end point of̄xi goes trough the center of the circle representing the
i-th qudratic constraint; see Fig. 1.

If the KKT boundary conditions are not satisfied forxi, then we can find a fesible decrease direction so that it
releases indecei from the active set. Let us denote byx⊥i andr⊥i the orthogonal vectors toxi andri, respectively;
see Fig. 2. The vectors lying in the acute angle formed byx⊥i andr⊥i are feasible (since they are oriented into
the circle) and decrease (since the angle with respect to the reduced gradientri is greater thanπ/2). The optimal
feasible decrease direction is represented by theunbalanced boundary residual

vi = −ri − ‖ri‖
gi

xi

that bisects the angle formed byx⊥i andr⊥i . These observations can be used to realize the step (b) inALGORITHM

QPQ; see [6] for more details.

4 Numerical experiments

Let us consider the model problem from [3], i.e. the steel brick unilaterally supported by the rigid foundation,
where the non-penetrability condition and the efect of a given friction is prescribed. The brick is partitioned into
linear finite elements as in Fig. 3. Table 1 summarizes the CPU times (in the columnALG GS) and compares
them with the CPU times of the algorithms presented in [3] (the columnsALG 2, ALG 4 corresponds to the
approximation of the circle by 2, 4 squares, respectively).

5 Conclusion

The numerical experiments illustrate the high efficiency of the whole computational process with respect to our
previous methods. It enables to solve sufficiently fine discretizations of the contact problems in a short time.
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Fig. 1 The KKT boundary condition.
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Fig. 2 The feasible decrease directionvi.
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Fig. 3 The partition of the steel brick.

Table 1 CPU time (sec.);n denotes the number of
nodes;m denotes the number of contact nodes.

n/m ALG GS ALG 2 ALG 4

189/54 1 1 3

975/180 2 15 61

2793/378 18 101 548

6075/648 25 486 2114

11253/990 60 1542 7724

18759/1404 148 5004 20534
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References
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