
PARALLEL MATSOL LIBRARY FOR SOLUTION
PROBLEMS OF CONTACT MECHANICS

Z. Dostála, T. Kozubeka, V. Vondráka, M. Sadowskáa,
R. Kučerab, A. Markopoulosc, and T. Brzobohatýc

aDept. of Appl. Math., VŠB–Technical University of Ostrava, Czech Republic
zdenek.dostal@vsb.cz, tomas.kozubek@vsb.cz, vit.vondrak@vsb.cz,

marie.sadowska@vsb.cz
bDept. of Mathematics, VŠB–Technical University of Ostrava, Czech Republic

radek.kucera@vsb.cz
cDept. of Mechanics, VŠB–Technical University of Ostrava, Czech Republic

alexandros.markopoulos@vsb.cz, tomas.brzobohaty@vsb.cz

Abstract: The goal of this contribution is to present in a sense opti-
mal algorithms for problems of contact mechanics. These algorithms
are implemented in the MatSol library and they are based on FETI
domain decomposition methods which are well known by its paral-
lel and numerical scalability. The performance is illustrated on both
model and real world problems.

Keywords: MatSol, Contact problem, Domain decomposition, Nu-
merical scalability, Parallel scalability

1. Introduction

During last several years, our research team has been focused on devel-
opment of scalable algorithms for contact problems in mechanics. These
algorithms are based on FETI domain decomposition methods which are
well known by their numerical and parallel scalability, i.e., we are able to
solve resulting quadratic programming problems in O(1) iterations and in
O(1) seconds independently on the problem size only by adding directly pro-
portional number of processors [2]. All the algorithms were implemented
into a new library that is developed in the Mathworks Matlab environment
which is equipped with many helpful functions for mathematics, plotting,
debugging, quick testing and efficient implementation. We call this library
MatSol (MATlab SOLvers) [1]. Nowadays, it is our primary testing and
developing library. To parallelize the algorithms we use Matlab Distributed
Computing Engine which allows to run Matlab functions also on paral-
lel computers. Hence, the MatSol has full functionality to solve efficiently
large problems of mechanics.



2. Structure of the MatSol Library

Todays structure of the MatSol library looks as follows. The solution pro-
cess starts from the model which is stored in the model database. Models
may be converted to the model database from standard commercial and
non-commercial preprocessors like ANSA, ANSYS, COMSOL, PMD, etc.
The list of preprocessing tools is not limited and any new one can be simply
plugged into the MatSol library by creating a proper database convertor.
Preprocessing part continues in dependence on the solved problem. User can
solve deterministic or stochastic problems, static or transient analysis, opti-
mization problems, problems in linear and non-linear elasticity and contact
problems with various friction models. To discretize our problems we can
choose between finite and boundary element methods. Furthermore, FETI
or BETI based methods are used as the domain decomposition approaches.
The solution process could be run either in sequential or parallel mode, but
the algorithms are implemented in such a way that the code is the same
for both modes. MatSol library includes also tools for postprocessing of the
results and advanced tools for postplotting. The results of the problem may
be converted through the model database to the modelling tools for further
postprocessing.

The above described structure of the MatSol library allows to override
standard solvers in commercial and non-commercial finite element pack-
ages and substitute them by those implemented in MatSol. This gives a
very useful alternative to users of commercial packages and a great tool for
algorithm developers to test the new algorithms on the realistic problems.

Fig. 1. Geometry and traction. Fig. 2. Solution with traces of
decomposition.

3. Solved Problems

Now we shall illustrate the performance of MatSol on both model and real
world problems. All problems were solved on the computational cluster



HP BLc7000 with 9 nodes. Each node is equipped with 2 dual core AMD
Opteron processors and 8GB RAM and interconnected by infiniband net-
work. On this cluster we have installed 24 licences of Matlab distributed
computing engine.

3.1. Cantilever cube over the obstacle

The first problem is a 3D coercive contact problem of the Signorini type.
The elastic body is represented by the steel cube (see Fig. 1). The body is
fixed in all directions along the left face and loaded by traction along the
top face. The bottom face of the body may touch the rigid plane obstacle.

10
4

10
5

10
6

10
7

0

50

100

150

200

250

300

Problem size

N
um

be
r 

of
 it

er
at

io
ns

Fig. 3. Numerical scalability.

1 2 4 8 16
0

20

40

60

80

100

120

140

160

Number of cpu’s

T
im

e 
 t 

[s
]

 

 

Preprocessing time
Solver time
Total time

Fig. 4. Parallel scalability.

In Figure 2, we depict the deformed body together with the traces of
decomposition. The numerical scalability of our algorithm is illustrated in
Figure 3. We can observe that the number of iterations with increasing prob-
lem size increases only moderately in agreement with the theory. Finally,
the parallel scalability is depicted in Figure 4, where we fix the number
of primal variables and increase the number of partitions into subdomains
accordingly to the number of used CPUs. The behaviour agrees with the
theoretical results.

3.2. Real word problem: ball bearing

We have also tested our algorithms on real world problems. We considered
the analysis of the stress in the ball bearing, see Fig. 5. The problem is diffi-
cult since the traction acting on the lower part of the inner ring is distributed
throughout the nonlinear interface of the cage and balls to the fixed outer
ring. The solution (Von Mises stress distribution in MPa) of the problem
discretized by 1,688,190 unknowns (displacements) and decomposed into
700 subdomains using METIS (see Fig. 6) is depicted in Figures 7 and 8.
It required 2,364 iterations and took 5,383 seconds to identify 20,843 active
contact nodes. Though this number is not small, we were not able to resolve



Fig. 5. Ball bearing. Fig. 6. Decomposed do-
main.

the problem by a commercial software, including ANSYS, without artificial
combine elements which regularize the problem. Still we hope to improve
our results, e.g., by enhancing standard FETI preconditioners.

Fig. 7. Von Mises stress in the
midplane.

Fig. 8. Von Mises
stress (zoom).

Acknowledgements

This work has been supported by the grant GAČR 101/08/0574 and by
project of Ministry of Education of the Czech Republic #MSM6198910027.

References

[1] MatSol library. http://www.am.vsb.cz/matsol.
[2] Z. Dostál, Optimal Quadratic Programming Algorithms, with Applications to

Variational Inequalities, 1st edition, Springer US, NY 2009, SOIA 23.


