A smooth variant of the fictitious domain approach
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1 Introduction

The classical fictitious domain method (FDM) enforces boundary conditions in PDE’s by La-
grange multipliers defined on the boundary ~ of the original domain w [3]. Therefore the com-
puted solution has a singularity on - that can result in an intrinsic error. The basic idea of
our modification consists in introducing new control variables (instead of Lagrange multipliers)
defined on an auxiliary boundary I" located outside of @ [4]. In this approach, the singularity is
moved away from @ so that the computed solution is smoother in w and the discretization error
has a significantly higher rate of convergence in w.

The respective finite element discretization leads typically to a non-symmetric saddle-point

system )
(o ) (0)-(3) 2

where an (nxn) diagonal block A is possibly singular and (m xn) off-diagonal blocks By, Bs have
full row-rank and they are highly sparse. Moreover, m is much smaller than n and the defect [
of A, i.e., Il =n —rank A, is much smaller than m. For solving such systems, it is convenient
to use a method based on the Schur complement reduction [1]. If A is singular, the reduced
system has again a saddle-point structure. Fortunately after applying orthogonal projectors, we
obtain an equation in terms of A only that can be efficiently solved by the projected variant of the
BiCGSTAB algorithm [4]. This procedure generalizes ideas used in FETT domain decomposition
methods [2], in which A is symmetric, positive semidefinite and B; = Bs.

2 Fictitious domain method

Let us consider a non-homogeneous Dirichlet boundary value problem:
—Au=f inw, u=g on~, (2)

where w C R? is a bounded domain with the Lipschitz boundary v, f € LZQO C(RZ) and g € H'/? (7)
are given data, or in a weak form:

Find u € H}(w), uw =g on v such that

/Vu-Vvdx:/fvdx Vo € Hi (w). ®)

Let £ D w be another domain with the Lipschitz boundary T', dist(T",y) = ¢ for some § > 0
given. Finally, let 2 D = be a fictitious domain (a box, e.g.), see Fig. 1.
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Figure 1: Geometry.

We define a problem:
Find (6, \) € H§(Q) x H-Y2(T') such that
/Vﬁ-Vvdx:/fvdx+()\,v>r Vv € HY (), (4)
Q Q

(@, 1)y = (g, 1)y Y€ H2(y).

Suppose that (4) has a solution (4, ). It is easy to show that

~A% = f inZand Q\Z,

4 = g onv,

@ = 0 on 09, (5)
[%]p = X onl,

where [ |r stands for the jump of the normal derivative % across I'. In particular, 4, solves (2).

Let us compare (4) with the classical fictitious domain formulation which uses boundary La-
grange multipliers on v and which reads as follows:

Find (6, \) € H§(Q) x H='2(v) such that
/va-wclgc:/fvdgch(A,w7 Yo € Hj(Q), (6)
Q Q

(@, 1)y = (g, 1)y V€ H2(y).

In (6), the component X plays the role of Lagrange multipliers releasing the constraint u = g on
~. On other hand, A in (4) can be viewed to be a control variable enforcing @ to match g on 7.
If v and T are smooth enough then i, € H*(2), ﬂ‘ﬂ\g € H%(Q\ E) if 4 solves (4) and, similarly,
iy, € H*(w), g\, € H?(Q\ @) for 4 solving (6), while & € H3/?7¢(Q) Ve > 0 in both cases.
This means that the singularity of @ is located either on I' or on ~ accordingly where generally
a non-zero jump of % occurs. Since the singularity of 4 solving (4) is on I' having a positive
distance from ~y, one can expect that the new variant (4) will increase the convergence rate of
computed solutions in w.

Now let us comment on a solvability of (4). This is closely related to a controlability type
problem. To this end let us consider the following problem:

given A\ € H=1/2(I);
Find u :=u(\) € H} () such that (7)

/Vu-Vvdx:/fvdx+<)\,v>p Vv € Hi(Q).
Q Q
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Let ® : H-'/2(T') — H'Y2(v) be a mapping defined by
O(N\) =u(\), Ve H V(D)

where u()) solves (7) and denote V = ®(H~Y2(I)). It can be shown that V = H/2(y) (for the
proof see [4]). This means that if g € V then (4) has a solution. If not, one can approximate g
by g € V such that (4) with g replacing g has a solution again.

3 Algorithms

Let us return to the system (1) resulting from a finite element discretization of (4), where we
use same notation for the discrete analogies of u, A, f and g.

Denote N(B|V) the null-space and R(B|V) the range-space of an (m x n) matrix B in a subspace
V C R" If V= R", we simply write N(B) := N(B|R") and R(B) := R(B|R™). The system (1)
has a unique solution iff [4]

N(4)NN(Bz) = {0}, (8)

R(AN(B2)) NR(B{) = {0}. (9)

Suppose that A is singular with the defect | = dimN(A), [ > 1 and consider (n x ) matrices
N and M whose columns span the null-space N(A) and N(AT), respectively. Finally, denote by

At a generalized inverse to A. In what follows we will consider an arbitrary but fixed selections
of AT, N and M.

The generalized Schur complement of A in (1) is defined by

P —~ByATB]  ByN
-\ M'Bf 0o )

Notice that S is invertible provided that (8), (9) are satisfied. The following theorem describes
the Schur complement reduction.

Theorem 1 [4] Assume that both By, B have full row-ranks and (8), (9) are satisfied. Then
the second component \ of a solution to (1) is the first component of a solution to

F Gf A d
(e G )(2)-() w
where F := BoATB] |Gy :== ~N"B) Gy := ~M "B/ ,d := BoATf —g and e := —M " f. The
first component u of a solution to (1) is given by the formulae

= A'(f — B/ \) + No.

Let us point out that (10) is formally the same saddle-point system as (1), but its size is
considerably smaller. We will modify the new system (10) by two orthogonal projectors

P :i=1-G[(GiG])'G1, Py:=1-G;(GaGy) 'Go,

on N(G1), N(G3), respectively. Our algorithm is based on the following results.



Lemma 1 [4] The linear operator P, F : N(G2) — N(G1) is invertible.

Theorem 2 [4] Let Ay € N(Ga), A\g € R(G5 ). Then A\ = Ay + Ag is the first component of a
solution to (10) iff
Ak = Gy (G2G3 ) e

and
Py FAy = Pi(d— FAR).

The second component o is given by

a=(G1G])7'Gi(d - F\).

Let us summarize the previous results in the algorithm scheme. It turns out to be reasonable
to form and store the (I x m) matrices G1, G and the (I x [) matrices H; := (G1G{)7!,
Hj := (G2G4 )~! because [ is small. On the other hand, the (m x m) matrices I, P; and P, are
not assembled explicitly.

ALGORITHM: PROJECTED SCHUR COMPLEMENT METHOD (PSCM)

Step l.a: Assemble Gy = —N "By, Go=-M"B],d=ByATf —gande=-M"f.
Step 1.b: Assemble H; = (G1G{ )~ and Hy = (G2Gq )~ 1.

Step 1.c: Assemble A\gp = G;ng.

Step 1.d: Assemble d = Py(d — FAg).

Step l.e: Solve the equation P;FAy = d on N(Gs).

Step 1.f: Compute A = Ay + Ag.

Step 2:  Compute o = H1G1(d — F\).

Step 3:  Compute & = AT(f — B{ \) + Na.

The heart of the algorithm consists in Step l.e. Its solution can be computed by a projected
Krylov subspace method. The projected BiICGSTAB algorithm [4] can be derived from the
non-projected one [6] by choosing an initial iterate A} on N(G2), projecting the initial residual
in N(Gg) and replacing the operator P;F' by its projected version P,PF. We will denote
applications of this algorithm by

PROJBICGSTAB[e, \y, F, P1, Py, d] — Ay

and we will assume that its iterations are terminated whenever the norm of the k-th residual is
smaller than e.

As the fictitious domain ) has a simple geometry, it is easy to define a multilevel family of
nested partitions with stepsizes hj, 0 < j < J, so that hjy1 < h; (e.g., hjz1 = hj/2). In
order to accelerate BICGSTARB iterations on the finest J-th level, one can apply the hierarchical
multigrid scheme, which is formulated below. Note that upper indices denote the affiliation to
the j-th level.

(0)

The computation starts on the coarsest level, j = 0, with the first iterate )\ON’ arbitrarily

chosen in N(Ggo)) (e.g., )\%’(0) = 0). The first iterate on each subsequent level is determined as
the prolongated and projected result from the nearest lower level. The terminating tolerance e
on the j-th level is set proportionally to an expected discretization error that is € := ch? , where
p is an expected convergence rate (in the L?(w)-norm) and ¢ is a control parametr. The result
obtained with such e can be viewed as an inexact solution of (1) with the same convergence rate
as the exact one.



ALGORITHM: HIERARCHICAL MULTIGRID SCHEME

Initialize: Let )\%’(0) eN (Ggo)) be given.
PROJBICGSTAB[chE, A 7O PO pO g0y - 30
For j=1,...,J,

prolongate )\I(\{ b X%’(j ),

project 200, \00) . pI300),
PROJBICGSTABIch?, A3V, FO), PY), P d0)] — A,
end.

Return: Ay := )\I(\IJ).

4 Numerical experiments

Let w be the ellipse, w = {(x,y) € R?| (z — 0.5)2/0.42 + (y — 0.5)2/0.22 < 1}, and the fictitious
domain 2 = (0,1) x (0,1). We will assume that the right hand-sides f and g in (2) are chosen
appropriately to the exact solution e, (z,y) = 100 ((w —0.5)% — (y — 0.5)3) — 22; see Figs. 2-4.
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Figure 2: Geometry of w. Figure 3: Right hand side f. Figure 4: Ex. solution |, .

The space Hg(€2) in (4) is replaced by H;ET(Q) enabling us to use the Fourier direct method [5]
to compute actions of AT, where A is the positive semidefinite discrete Laplacian resulting from
the discretization of H;GT(Q) by piecewise bilinear functions defined on a rectangulation of {2

with a stepsize h. The spaces H~'/2(I") and H~/2(~) are approximated by piecewise constant
functions defined on partitions of polygonal approximations of I' and -, respectively.

In Table 1, we report the errors of the approximate solutions with respect to the stepsize h in
the H'(w)-norm together with the number of BICGSTAB iterations. We compare the classical
FDM (6) and our modification (4), in which the auxiliary boundary I" arises by shifting v in the
direction of the outward normal vector v with § = 8h. From the computed errors, we determine
the convergence rates (the last row of the table) that are considerably higher for our modification
of the FDM.

Fig. 5 illustrates a smoothing effect of §. If the auxiliary boundary I' is shifted far enough
from the original -, the smoothness of the computed solution increases that results in smaller
discretization errors. On the other hand, Fig. 6 shows that the condition number of P;F' (on
N(G2)) increases exponentially with respect to 6.
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Table 1: Numerical results; ¢ = h2||d||, § = 8h.

Classical Modified Modified+Multigrid
Step h Iters. | Errgi,y | Iters. | Errpgi,) | Iters. Err g ()
1/128 8 1.9647e+-0 13 1.6878e-2 11 1.8988e-2
1/256 9 1.2884e+0 | 25 7.7891e-3 13 7.6303e-3
1/512 12 8.6517e-1 40 | 4.0160e-3 19 3.8638e-3
1/1024 18 6.0510e-1 58 1.9098e-3 21 1.7758e-3
1/2048 25 4.4015e-1 86 9.9299e-4 | 31 9.8213e-4
Conv. rates: 0.54 1.02 1.07
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