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1 Introduction

The classical fictitious domain method (FDM) enforces boundary conditions in PDE’s by La-
grange multipliers defined on the boundary γ of the original domain ω [3]. Therefore the com-
puted solution has a singularity on γ that can result in an intrinsic error. The basic idea of
our modification consists in introducing new control variables (instead of Lagrange multipliers)
defined on an auxiliary boundary Γ located outside of ω [4]. In this approach, the singularity is
moved away from ω so that the computed solution is smoother in ω and the discretization error
has a significantly higher rate of convergence in ω.

The respective finite element discretization leads typically to a non-symmetric saddle-point
system (

A B�
1

B2 0

)(
û
λ

)
=

(
f
g

)
, (1)

where an (n×n) diagonal block A is possibly singular and (m×n) off-diagonal blocks B1, B2 have
full row-rank and they are highly sparse. Moreover, m is much smaller than n and the defect l
of A, i.e., l = n − rank A, is much smaller than m. For solving such systems, it is convenient
to use a method based on the Schur complement reduction [1]. If A is singular, the reduced
system has again a saddle-point structure. Fortunately after applying orthogonal projectors, we
obtain an equation in terms of λ only that can be efficiently solved by the projected variant of the
BiCGSTAB algorithm [4]. This procedure generalizes ideas used in FETI domain decomposition
methods [2], in which A is symmetric, positive semidefinite and B1 = B2.

2 Fictitious domain method

Let us consider a non-homogeneous Dirichlet boundary value problem:

−∆u = f in ω, u = g on γ, (2)

where ω ⊂ R2 is a bounded domain with the Lipschitz boundary γ, f ∈ L2
loc(R

2) and g ∈ H1/2(γ)
are given data, or in a weak form:

Find u ∈ H1
0 (ω), u = g on γ such that∫

ω
∇u · ∇v dx =

∫
ω

fv dx ∀v ∈ H1
0 (ω).

⎫⎪⎬
⎪⎭ (3)

Let Ξ ⊃ ω be another domain with the Lipschitz boundary Γ, dist(Γ, γ) = δ for some δ > 0
given. Finally, let Ω ⊃ Ξ be a fictitious domain (a box, e.g.), see Fig. 1.
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Figure 1: Geometry.

We define a problem:

Find (û, λ) ∈ H1
0 (Ω) × H−1/2(Γ) such that∫

Ω
∇û · ∇v dx =

∫
Ω

fv dx + 〈λ, v〉Γ ∀v ∈ H1
0 (Ω),

〈û, µ〉γ = 〈g, µ〉γ ∀µ ∈ H−1/2(γ).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4)

Suppose that (4) has a solution (û, λ). It is easy to show that

−∆û = f in Ξ and Ω \ Ξ,
û = g on γ,
û = 0 on ∂Ω,

[∂û
∂ν ]Γ = λ on Γ,

⎫⎪⎪⎬
⎪⎪⎭ (5)

where [ ]Γ stands for the jump of the normal derivative ∂û
∂ν across Γ. In particular, û|ω solves (2).

Let us compare (4) with the classical fictitious domain formulation which uses boundary La-
grange multipliers on γ and which reads as follows:

Find (û, λ) ∈ H1
0 (Ω) × H−1/2(γ) such that∫

Ω
∇û · ∇v dx =

∫
Ω

fv dx + 〈λ, v〉γ ∀v ∈ H1
0 (Ω),

〈û, µ〉γ = 〈g, µ〉γ ∀µ ∈ H−1/2(γ).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6)

In (6), the component λ plays the role of Lagrange multipliers releasing the constraint u = g on
γ. On other hand, λ in (4) can be viewed to be a control variable enforcing û to match g on γ.
If γ and Γ are smooth enough then û|Ξ ∈ H2(Ξ), û|Ω\Ξ ∈ H2(Ω\Ξ) if û solves (4) and, similarly,

û|ω ∈ H2(ω), û|Ω\ω
∈ H2(Ω \ ω) for û solving (6), while û ∈ H3/2−ε(Ω) ∀ε > 0 in both cases.

This means that the singularity of û is located either on Γ or on γ accordingly where generally
a non-zero jump of ∂û

∂ν occurs. Since the singularity of û solving (4) is on Γ having a positive
distance from γ, one can expect that the new variant (4) will increase the convergence rate of
computed solutions in ω.

Now let us comment on a solvability of (4). This is closely related to a controlability type
problem. To this end let us consider the following problem:

given λ ∈ H−1/2(Γ);

Find u := u(λ) ∈ H1
0 (Ω) such that∫

Ω
∇u · ∇v dx =

∫
Ω

fv dx + 〈λ, v〉Γ ∀v ∈ H1
0 (Ω).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7)
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Let Φ : H−1/2(Γ) �→ H1/2(γ) be a mapping defined by

Φ(λ) = u(λ)|γ ∀λ ∈ H−1/2(Γ),

where u(λ) solves (7) and denote V = Φ(H−1/2(Γ)). It can be shown that V = H1/2(γ) (for the
proof see [4]). This means that if g ∈ V then (4) has a solution. If not, one can approximate g
by g̃ ∈ V such that (4) with g̃ replacing g has a solution again.

3 Algorithms

Let us return to the system (1) resulting from a finite element discretization of (4), where we
use same notation for the discrete analogies of û, λ, f and g.

Denote N(B|V) the null-space and R(B|V) the range-space of an (m×n) matrix B in a subspace
V ⊂ Rn. If V = Rn, we simply write N(B) := N(B|Rn) and R(B) := R(B|Rn). The system (1)
has a unique solution iff [4]

N(A) ∩ N(B2) = {0}, (8)

R(A|N(B2)) ∩ R(B�
1 ) = {0}. (9)

Suppose that A is singular with the defect l = dim N(A), l ≥ 1 and consider (n × l) matrices
N and M whose columns span the null-space N(A) and N(A�), respectively. Finally, denote by
A† a generalized inverse to A. In what follows we will consider an arbitrary but fixed selections
of A†, N and M .

The generalized Schur complement of A in (1) is defined by

S =
( −B2A

†B�
1 B2N

M�B�
1 0

)
.

Notice that S is invertible provided that (8), (9) are satisfied. The following theorem describes
the Schur complement reduction.

Theorem 1 [4] Assume that both B1, B2 have full row-ranks and (8), (9) are satisfied. Then
the second component λ of a solution to (1) is the first component of a solution to(

F G�
1

G2 0

)(
λ
α

)
=

(
d
e

)
, (10)

where F := B2A
†B�

1 , G1 := −N�B�
2 , G2 := −M�B�

1 , d := B2A
†f − g and e := −M�f. The

first component u of a solution to (1) is given by the formulae

û = A†(f − B�
1 λ) + Nα.

Let us point out that (10) is formally the same saddle-point system as (1), but its size is
considerably smaller. We will modify the new system (10) by two orthogonal projectors

P1 := I − G�
1 (G1G

�
1 )−1G1, P2 := I − G�

2 (G2G
�
2 )−1G2,

on N(G1), N(G2), respectively. Our algorithm is based on the following results.
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Lemma 1 [4] The linear operator P1F : N(G2) �→ N(G1) is invertible.

Theorem 2 [4] Let λN ∈ N(G2), λR ∈ R(G�
2 ). Then λ = λN + λR is the first component of a

solution to (10) iff
λR = G�

2 (G2G
�
2 )−1e

and
P1FλN = P1(d − FλR).

The second component α is given by

α = (G1G
�
1 )−1G1(d − Fλ).

Let us summarize the previous results in the algorithm scheme. It turns out to be reasonable
to form and store the (l × m) matrices G1, G2 and the (l × l) matrices H1 := (G1G

�
1 )−1,

H2 := (G2G
�
2 )−1 because l is small. On the other hand, the (m×m) matrices F , P1 and P2 are

not assembled explicitly.

Algorithm: Projected Schur Complement Method (PSCM)

Step 1.a: Assemble G1 = −N�B�
2 , G2 = −M�B�

1 , d = B2A
†f − g and e = −M�f .

Step 1.b: Assemble H1 = (G1G
�
1 )−1 and H2 = (G2G

�
2 )−1.

Step 1.c: Assemble λR = G�
2 H2e.

Step 1.d: Assemble d̃ = P1(d − FλR).
Step 1.e: Solve the equation P1FλN = d̃ on N(G2).
Step 1.f: Compute λ = λN + λR.
Step 2: Compute α = H1G1(d − Fλ).
Step 3: Compute û = A†(f − B�

1 λ) + Nα.

The heart of the algorithm consists in Step 1.e. Its solution can be computed by a projected
Krylov subspace method. The projected BiCGSTAB algorithm [4] can be derived from the
non-projected one [6] by choosing an initial iterate λ0

N
on N(G2), projecting the initial residual

in N(G2) and replacing the operator P1F by its projected version P2P1F . We will denote
applications of this algorithm by

ProjBiCGSTAB[ε, λ0
N, F, P1, P2, d̃] → λN

and we will assume that its iterations are terminated whenever the norm of the k-th residual is
smaller than ε.

As the fictitious domain Ω has a simple geometry, it is easy to define a multilevel family of
nested partitions with stepsizes hj, 0 ≤ j ≤ J , so that hj+1 < hj (e.g., hj+1 = hj/2). In
order to accelerate BiCGSTAB iterations on the finest J-th level, one can apply the hierarchical
multigrid scheme, which is formulated below. Note that upper indices denote the affiliation to
the j-th level.

The computation starts on the coarsest level, j = 0, with the first iterate λ
0,(0)
N

arbitrarily
chosen in N(G(0)

2 ) (e.g., λ
0,(0)
N

= 0). The first iterate on each subsequent level is determined as
the prolongated and projected result from the nearest lower level. The terminating tolerance ε
on the j-th level is set proportionally to an expected discretization error that is ε := chp

j , where
p is an expected convergence rate (in the L2(ω)-norm) and c is a control parametr. The result
obtained with such ε can be viewed as an inexact solution of (1) with the same convergence rate
as the exact one.
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Algorithm: Hierarchical Multigrid Scheme

Initialize: Let λ
0,(0)
N

∈ N(G(0)
2 ) be given.

ProjBiCGSTAB[chp
0, λ

0,(0)
N

, F (0), P
(0)
1 , P

(0)
2 , d̃(0)] → λ

(0)
N

.

For j = 1, . . . , J,

prolongate λ
(j−1)
N

→ λ̃
0,(j)
N

,

project λ̃
0,(j)
N

→ λ
0,(j)
N

:= P
(j)
2 λ̃

0,(j)
N

,

ProjBiCGSTAB[chp
j , λ

0,(j)
N

, F (j), P
(j)
1 , P

(j)
2 , d̃(j)] → λ

(j)
N

,

end.

Return: λN := λ
(J)
N

.

4 Numerical experiments

Let ω be the ellipse, ω ≡ {(x, y) ∈ R2| (x − 0.5)2/0.42 + (y − 0.5)2/0.22 < 1}, and the fictitious
domain Ω = (0, 1) × (0, 1). We will assume that the right hand-sides f and g in (2) are chosen
appropriately to the exact solution ûex(x, y) = 100

(
(x − 0.5)3 − (y − 0.5)3

) − x2; see Figs. 2-4.
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Figure 2: Geometry of ω.
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Figure 3: Right hand side f .
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Figure 4: Ex. solution ûex|ω .

The space H1
0 (Ω) in (4) is replaced by H1

per(Ω) enabling us to use the Fourier direct method [5]
to compute actions of A†, where A is the positive semidefinite discrete Laplacian resulting from
the discretization of H1

per(Ω) by piecewise bilinear functions defined on a rectangulation of Ω
with a stepsize h. The spaces H−1/2(Γ) and H−1/2(γ) are approximated by piecewise constant
functions defined on partitions of polygonal approximations of Γ and γ, respectively.

In Table 1, we report the errors of the approximate solutions with respect to the stepsize h in
the H1(ω)-norm together with the number of BiCGSTAB iterations. We compare the classical
FDM (6) and our modification (4), in which the auxiliary boundary Γ arises by shifting γ in the
direction of the outward normal vector ν with δ = 8h. From the computed errors, we determine
the convergence rates (the last row of the table) that are considerably higher for our modification
of the FDM.

Fig. 5 illustrates a smoothing effect of δ. If the auxiliary boundary Γ is shifted far enough
from the original γ, the smoothness of the computed solution increases that results in smaller
discretization errors. On the other hand, Fig. 6 shows that the condition number of P1F (on
N(G2)) increases exponentially with respect to δ.
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Table 1: Numerical results; ε = h2‖d̃‖, δ = 8h.

Classical Modified Modified+Multigrid
Step h Iters. ErrH1(ω) Iters. ErrH1(ω) Iters. ErrH1(ω)

1/128 8 1.9647e+0 13 1.6878e-2 11 1.8988e-2
1/256 9 1.2884e+0 25 7.7891e-3 13 7.6303e-3
1/512 12 8.6517e-1 40 4.0160e-3 19 3.8638e-3
1/1024 18 6.0510e-1 58 1.9098e-3 21 1.7758e-3
1/2048 25 4.4015e-1 86 9.9299e-4 31 9.8213e-4

Conv. rates: 0.54 1.02 1.07
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Figure 5: H1(ω)-error sensitivity on δ.
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Figure 6: cond(P1F |N(G2)) sensitivity on δ.
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