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Summary. The paper deals with solving of contact problems with Coulomb friction
for a system of 3D elastic bodies. The iterative method of successive approximations
is used in order to find a fixed point of certain mapping that defines the solution.
In each iterative step, an auxiliary problem with given friction is solved that is
discretized by the FETI method. Then the duality theory of convex optimization
is used in order to obtain the constrained quadratic programming problem that, in
contrast to 2D case, is subject to quadratic inequality constraints. The solution is
computed (among others) by a novelly developed algorithm of constrained quadratic
programming. Numerical experiments demonstrate the performance of the whole
computational process.

1 Introduction

The FETI method was proposed by [6] for parallel solution of problems described by
elliptic partial differential equations. The key idea is elimination of the primal vari-
ables so that the original problem is reduced to a small, relatively well conditioned
quadratic programming problem (QPP) in terms of the Lagrange multipliers. Then
the iterative solver is used to compute the solution.

In context of 2D contact problems with friction, the FETI procedure leads to
the sequence of QPPs constrained by simple inequality bounds (see [3] or [8]) so
that the fast algorithm with proportioning and gradient projection (see [4]) can be
used. The situation is not so easy in 3D since the QPPs are subject to two types of
constraints. The first one, representing nonnegativity of the normal contact stress,
are again simple inequality bounds while the second one, representing an effect of
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isotropic friction, are quadratic inequalities. In our recent papers [9], [12], we have
used a linear approximation of quadratic inequalities transforming them to simple
inequality bounds so that the fast algorithm mentioned above can be used again. Un-
fortunately, this procedure increases considerably the size of the QPPs if we require
a sufficiently accurate approximation of quadratic inequalities. In order to overcome
this drawback, we have developed a new algorithm of quadratic programming that
treates directly the quadratic inequalities [11]. In this contribution, we shall show
the performance of the whole computational process on model problems.

2 Formulation of the problems

Let us consider a system of elastic bodies that occupy in the reference configuration
bounded domains Ωp ⊂ IR3 , p = 1, 2, . . . , s , with sufficiently smooth boundaries
Γ p that are split into three disjoint parts Γ pu , Γ pt and Γ pc so that Γ p = Γ pu ∪Γ pt ∪
Γ pc . Let us suppose that the zero displacements are prescribed on Γ pu and that the
surface tractions of density t p ∈ (L2(Γ pt ))3 act on Γ pt . Along Γ pc the body Ωp

may get into unilateral contact with some other of the bodies. Finally we suppose
that the bodies Ωp are subject to the volume forces of density f p ∈ (L2(Ωp))3 .

To describe non-penetration of the bodies, we shall use linearized non-penetration

condition that is defined by a mapping χ : Γc −→ Γc , Γc =
s[

p=1

Γ pc , which assigns

to each x ∈ Γ pc some nearby point χ ( x ) ∈ Γ qc , p 6= q . Let v p( x ), v q( χ ( x ))
denote the displacement vectors at x , χ ( x ) , respectively. Assuming the small dis-
placements, the non-penetration condition reads

vpn( x ) ≡ ( v p( x )− v q( χ ( x ))) · n p( x ) ≤ δp( x ),

where δp( x ) = ( χ ( x )− x ) · n p( x ) is the initial gap and n p( x ) is the critical
direction defined by n p( x ) = ( χ ( x ) − x )/‖ χ ( x ) − x ‖ or, if χ ( x ) = x ,
by the outer unit normal vector to Γ pc .

We start with an auxiliary contact problem with given friction. To this end
we introduce the space of virtual displacements V and its closed convex subset of
kinematically admissible displacements K by

V = {v = (v1, . . . ,vs) ∈
sY

p=1

(H1(Ωp))3 : vp = 0 on Γ pu},

K = {v ∈ V : vpn(x) ≤ δp(x) for x ∈ Γ pc }.

Let us assume that the normal contact stress Tn ∈ L∞(Γc) , Tn ≥ 0 , is known
apriori so that one can evaluate the slip bound g on Γc by g = FTn , where
F = F p > 0 is a coefficient of friction on Γ pc . Denote gp = g|Γp

c
.

The variational formulation of the contact problem with given friction reads as
follows:

minJ ( v ) subject to v ∈ K, (1)

where

J (v) =
1

2
a(v,v)− b(v) + j(v)
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is the total potential energy functional with the bilinear form a representing the
inner energy of the bodies and with the linear form b representing the work of the
applied forces t p and f p , respectively. The sublinear functional j represents the
work of friction forces

j( v ) =

sX

p=1

Z

Γ
p
c

gp‖ v p
t ‖ dΓ, (2)

where v p
t is the projection of the displacement v p on the plane tangential to

the critical direction n p . Let us introduce unit tangential vectors t p1, t p2 such
that the triplet B = { n p, t p1, t p2} is an orthonormal basis in IR3 for almost all
x ∈ Γ pc and denote vpt1 = v p · t p1 , vpt2 = v p · t p2 . Then v p

t = (0, vpt1 , v
p
t2

) with
respect to the basis B so that the norm appearing in j reduces to the Euclidean
norm in IR2 . More details about the formulation of contact problems can be found
in [10].

Let us point out that the solution u ≡ u (g) of (1) depends on a particular
choice of g ∈ L∞(Γc) , g ≥ 0 . We can define a mapping Φ which associates with
every g the product FTn( u (g)) , where Tn( u (g)) ≥ 0 is the normal contact
stress related to u (g) . The classical Coulomb’s law of friction corresponds to the
fixed point of Φ which is defined by g = FTn( u (g)) . To find it, we can use the

method of successive approximations which starts from a given g(0) and generates
the iterations g(l) by

(MSA) g(l+1) = Φ(g(l)), l = 1, 2, . . . .

This iterative process converges provided Φ is contractive, that is guaranteed for
sufficiently small F (see [7]).

3 Domain decomposition and discretization

We divide the bodies Ωp into tetrahedron finite elements T with the maximum
diameter h and assume that the partitions are regular and consistent with the
decompositions of ∂Ωp into Γ pu , Γ pt and Γ pc . Moreover, we restrict ourselves to
the geometrical conforming situation where the intersection between the boundaries
of any two different bodies ∂Ωp ∩ ∂Ωq , p 6= q , is either empty, a vertex, an entire
edge, or an entire face.

Let the domains Ωp be decomposed into nonoverlaping subdomains Ωp,i , i =
1, . . . , np , each of which is the union of finite elements of T . On Ωp,i , we introduce
the finite element space V p,ih by

V p,ih = {vp,i ∈ (C(Ωp,i))3 : vp,i|T ∈ (P1(T ))3 for all T ⊂ Ωp,i,
vp,i|∂Ωp,i∩Γp

u
= 0},

where Pm(T ) denotes the set of all polynomials on T of degree ≤ m . Finally, let

us introduce the product space Vh =
sY

p=1

npY

i=1

V p,ih .

Replacing V by Vh and using the gluing condition v p,i( x ) = v p,j( x ) for
any x in the interface ∂Ωp,i ∩ ∂Ωp,j , we can rewrite the approximative contact
problem with given friction (1) into the algebraic form
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min
1

2
u⊤Ku− u⊤f +

mX

k=1

gk‖((T1u)k, (T2u)k)‖

s.t. Nu ≤ d, BEu = 0.

(3)

Here, K denotes the positive semidefinite block diagonal stiffness matrix, f is
the vector of nodal forces, N , d describe the discretized non-penetration condi-
tion and B E describes the gluing condition. The summation term in the minimized
functional arises using numerical quadrature in (2), where T 1 , T 2 describe pro-
jections of displacements at the nodes lying on Γc to the tangential planes and gk
are values of slip bound.

Let us point out that the problem (3) is non-differentiable due to IR2 -norms
appearing in the summation term. Therefore we shall introduce two kinds of La-
grange multipliers λ t = ( λ ⊤

t1 , λ
⊤
t2)⊤ and λ c = ( λ ⊤

I , λ
⊤
E)⊤ . While the first

one removes the non-differentiability, the second one accounts for the constraints in
(3). Denote

B t =

»
T1

T2

–
, B c =

»
N
BE

–
, c =

»
d
o

–

and introduce the Lagrange multiplier sets

Λt( g ) = { λ t : ‖(( λ t1)k, ( λ t2)k)‖ ≤ gk} and Λc = { λ c : ( λ I)k ≥ 0}.

It is well-known that (3) is equivalent to the saddle-point problem

Find ( u , λ t, λ c) s.t. L( u , λ t, λ c) = sup
µt ∈ Λt(g)

µc ∈ Λc

inf
v
L( v , µ t, µ c), (4)

where L is the Lagrangian to (3) defined by

L( u , λ t, λ c) =
1

2
u ⊤ K u − u ⊤ f + λ

⊤
t B t u + λ

⊤
c ( B c u − c ).

After eliminating the primal variables u from (4), we obtain the minimization
problem

min
1

2
λ

⊤Fλ− λ⊤h

s.t. λ =

»
λt
λc

–
,λt ∈ Λt(g),λc ∈ Λc, Gλ = e

(5)

with

F =

»
Ftt Ftc
F⊤
tc Fcc

–
, h =

»
ht
hc

–
, G = [ G t, G c] ,

and F ii = B i K
† B ⊤

i , G i = R ⊤ B ⊤
i , i = t, c , F tc = B t K

† B ⊤
c , h t =

B t K
† f , h c = B c K † f − c , e = R ⊤ f , where K † denotes a generalized

inverse to K and R is the full rank matrix whose columns span the kernel of
K .

The problem (5) can be adapted by using the orthogonal projectors as proposed
in [5]. To simplify our presentation, we omit description of this modification here.
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4 Algorithms

The problem (5) can be solved by using the algorithm based on the augmented
Lagrangian

L( λ , µ , ρ) =
1

2
λ

⊤ F λ − λ ⊤ h + µ
⊤( G λ − e )+

ρ

2
( G λ − e )⊤( G λ − e ).

Algorithm 1. Set µ
(0) , l := 0 .

repeat
λ

(l+1) .
= argmin L( λ , µ (l), ρ) , s.t. λ ∈ Λ t( g )× Λ c

µ
(l+1) = µ

(l) + ρ( G λ
(l+1) − e )

Update ρ and increase l by one.
until stopping criterion

Algorithms of this type have been intensively studied recently [2], [1] with the
inner minimization represented by the QPP with simple inequality bounds of Λ c .
Here, the quadratic inequality constraints of Λ t( g ) are imposed furthermore.
In order to separate two types of constraints, we can split the inner minimization
by the constrained block Gauss-Seidel method. Then the efficient algorithm using
projections and adaptive precision control may be used for the first QPP with simple
inequality bounds [4] while the second QPP constrained by quadratic inequalities
can be solved by the algorithm proposed in [11]. Let us point out that augmented
Lagrangian based algorithms accept an inexact solution of the inner minimizations
without loss of the accuracy. Therefore it is natural to reduce the number of Gauss-
Seidel iterations even onto one.

The method of successive approximations (MSA) for solving the contact problem
with Coulomb friction can be implemented so that the Algorithm 1 is used in each
iterative step to evaluate the mapping Φ . We shall present a more efficient version of
this method, in which the iterative steps of (MSA) and the loop of the Algorithm 1
are connected in one loop. The resulting algorithm can be viewed as the method
of successive approximations with an inexact solving of the auxiliary problems with
given friction.

Algorithm 2. Set µ
(0) , λ

(0)
t , l := 0 .

repeat

λ
(l+1)
c

.
= argmin {1

2
λ

⊤
c ( F cc + ρG ⊤

c G c) λ c − λ
⊤
c ( h c + G ⊤

c (ρ e +

µ
(l))− ( F ⊤

tc + ρG ⊤
c G t) λ

(l)
t )} , s.t. λ c ∈ Λ c

λ
(l+1)
t

.
= argmin {1

2
λ

⊤
t ( F tt + ρG ⊤

t G t) λ t − λ
⊤
t ( h t + G ⊤

t (ρ e +

µ
(l))− ( F tc+ρG ⊤

t G c) λ
(l+1)
c )} , s.t. λ t ∈ Λ t(F λ

(l+1)
I )

µ
(l+1) = µ

(l) + ρ( G λ
(l+1) − e )

Update ρ and increse l by one.
until stopping criterion

We have used the fact that the Lagrange multiplier λ I represents the normal
contact stress so that g = F λ

(l+1)
I approximates the slip bound.
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5 Numerical experiments and conclusions

Let us consider the model brick Ω = 〈0, 3〉 × 〈0, 1〉 × 〈0, 1〉 made of an elastic
isotropic, homogeneous material characterized by Young modulus E = 21.2 × 1010

and Poisson’s ratio σ = 0.277 (steel). The brick is unilaterally supported by the
rigid foundation, where the non-penetration condition and the effect of Coulomb
friction is considered. The applied surface tractions and the parts of the boundary
Γu and Γc are seen in Figure 1. The volume forces vanish. The brick Ω is artificially
decomposed onto three parts as seen in Figure 2 so that the resulting problem has
12 rigid modes.

Ω

Γ
c

Γ
u

0 3 

Fig. 1. The cross-section of the brick Ω .

The tables below summarize results of numerical experiments, where F is the
coefficient of friction; n denotes the number of primal unknowns (dispalcements);
m denotes the number of dual unknowns (stresses); Time is CPU time in seconds
(in Matlab 7, Pentium(R)4, 3GHz, 512MB); Iter is the number of outer iterations;
nQPPA , nQPQA is the total number of multiplications by the Hessian in the QPP,
QPQ solver, respectively, and nA = nQPPA + nQPQA .

Fig. 2. Discretization and decomposition of the brick Ω .
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Table 1. F = 0.1

n m Time Iter nA

900 180 1 5 102(=63+39)
2646 378 11 5 180(=98+82)
5832 648 34 5 156(=94+62)
10890 990 67 5 112(=50+62)
18252 1404 221 5 155(=73+82)

Table 2. F = 0.3

n m Time Iter nA

900 180 2 7 140(=46+32)
2646 378 12 7 186(=54+69)
5832 648 38 7 169(=72+50)
10890 990 94 7 153(=35+49)
18252 1404 254 7 176(=78+54)

Table 1 and Table 2 demonstrate the numerical scalability of the algorithm for
various coefficients of friction. Table 3 shows the substantial progress with respect
to approximative method used in [9] represented here by Time2 and Time4.

Table 3. F = 0.3

n m Time Time2 Time4

900 180 2 15 61
2646 378 12 101 548
5832 648 38 486 2114
10890 990 94 1542 7724
18252 1404 254 5004 20534
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