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Abstract: The contribution deals with the solution of large non-symmetric two-by-two
block linear systems with singular (1,1)-blocks. The algorithm consists of two levels. The
outer level combines the Schur complement reduction with the orthogonal projectors that
leads to the linear equation between two different subspaces. This equation is solved by a
Krylov-type method. The efficiency is illustrated by examples arising from the combina-
tion of the fictitious domain and FETI method.

1 Introduction

We consider two-by-two block linear systems(
A B>1
B2 −C

)(
u
λ

)
=

(
f
g

)
, (1.1)

where A ∈ Rn×n, C ∈ Rm×m, B1, B2 ∈ Rm×n, f, u ∈ Rn, g, λ ∈ Rm, and m � n.
Systems of this type arise in a variety of scientific and engineering applications [1]. The
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algorithm analyzed in this paper extends the algebraic background of the FETI (Finite
Element Tearing and Interconnecting) domain decomposition methods [3, 7], in which A
is symmetric, positive semidefinite, B1 = B2, and C = 0. Here, we consider the general
case with the only one assumption that the block matrix in (1.1) is non-singular while A
is singular.

The extension of the FETI algorithm for solving (1.1) with C = 0 called the PSCM
(Projected Schur Complement Method) was proposed in [5]. The general algorithmical
scheme combines the Schur complement reduction with the null-space method performed
by orthogonal projectors. It results in the linear equation given by a singular matrix that
is an invertible operator between two different subspaces V1 and V2 in Rm. Since it is not
efficient to assembly the Schur complement for large-scale problems, the only operation
allowed with the operator matrix is the matrix-vector multiplication. To this end one
can use Krylov-type methods. In [5], the authors proposed the ProjBiCGSTAB with
an appropriate combination of orthogonal projectors on V1 and V2. Here, we prove the
condition for the angle between V2 and V⊥1 guaranting the convergence. Our analysis open
the door for deriving other projected Krylov methods between subspaces. As an example,
we use the projected GMRES in numerical experiments. The efficiency is illustrated by
examples arising from the combination of the fictitious domain and FETI method.

2 Deriving of projected Krylov methods

The PSCM algorithm requires to compute actions of an arbitrary generalized inverse X
to A and of the matrices RA, RA> whose columns span the null-spaces of A and A>,
respectively [6]. We will assume that G1 = −R>AB>2 , G2 = −R>

A>B
>
1 , d = B2Xf − g, and

e = −R>
A>f are assembled while F = B2XB

>
1 + C is to our disposal by the multiplying

procedure. The last ingredients are two orthogonal projectors onto the null-spaces N (Gi)
of Gi denoted by Pi = I −G>i (GiG

>
i )−1Gi, i = 1, 2. The key step of the PSCM algorithm

consists in solving of the operator equation

P1Fx = q (2.1)

with q = P1(d − FG>2 (G2G
>
2 )−1e), where x is the projection of λ onto N (G2). Although

P1F is the singular matrix in Rm, the solvability of (2.1) is guaranteed, as P1F is the
invertible operator between N (G2) and N (G1) [5, 6].

Let V1,V2 ⊂ Rm be two different subspaces of the same dimension m − l, 1 ≤ l < m.
We replace (2.1) by the following abstract problem: find x ∈ V2 such that

Mx = q, (2.2)

where q ∈ V1 and M ∈ Rm×m represents the invertible operator between V1 and V2. Let
Z1, Z2 ∈ Rm×(m−l) be matrices whose columns span V1, V2, respectively. Let x̄, q̄ ∈ Rm−l be
such that q = Z1(Z

>
1 Z1)

−1q̄, x = Z2x̄. Substituting these vectors into (2.2) and multiplying
by Z>1 , we find that (2.2) reduces to the system of linear equations:

Nx̄ = q̄, (2.3)



where N = Z>1 MZ2 ∈ R(m−l)×(m−l).

Lemma 2.1 The matrix N in (2.3) is non-singular.

Proof. Let Z>1 MZ2y = 0 be the homogeneous system. Denoting y1 = MZ2y, we obtain
Z>1 y1 = 0. As y1 ∈ V1 is orthogonal to all basis vectors of V1, we get y1 = 0. In MZ2y = 0,
we set y2 = Z2y. Then, My2 = 0 implies y2 = 0 due to the invertibility of M . Finally,
Z2y = 0 yields y = 0, as Z2 has full column-rank. Hence, the solution to the homogeneous
system is trivial. 2

A (standard) Krylov method applied to (2.3) generates approximations to the solution
x̄ of (2.3) in Rm−l. The projected Krylov method generates approximations directly to
the solution x of (2.2) in V2. The crucial point in deriving projected methods consists in
showing how to transform the matrix-vector multiplication from Rm−l to V2. The idea is
based on the following equivalences:

ȳ = Z>1 MZ2x̄ ⇐⇒ Z2ȳ = Z2Z
>
1 MZ2x̄ ⇐⇒ y = Z2Z

>
1 Mx. (2.4)

Let MP ∈ Rm×m be another invertible operator between V2 and V1. We can consider Z2

orthogonal and introduce Z1 = MPZ2. Taking into account P2 = Z2Z
>
2 , we get

y = P2M
>
P Mx. (2.5)

We discuss two variants of MP : (i) MP = M and (ii) MP = P1.
The variant (i) leads to N non-singular for any choice of the input data and enables

us to use the CGM. On the other hand, two expensive matrix-vector multiplications by M
and M> are needed in (2.5). Moreover, the condition number κ(N) is usually too high so
that the convergence rate of the CGM may be slow.

For the variant (ii), the invertibility of MP is guaranteed by the following result.

Theorem 2.1 Let P1 be the orthogonal projector onto V1. The restriction P1 : V2 7→ V1

is invertible iff
V2 ∩ V⊥1 = {0}, (2.6)

where V⊥1 is the orthogonal complement to V1 in Rm.

Proof. First we prove the implication ”⇐”. Any x ∈ V2 can be split into two orthogonal
components: x = xV⊥

1
+ xV1 , where xV⊥

1
∈ V⊥1 and xV1 ∈ V1. If x 6= 0, then (2.6) yields

xV1 6= 0 and P1x = xV1 . Therefore, the only solution of the homogeneous equation P1x = 0
on V2 is trivial. The invertibility of P1 on V2 is proved. To prove the opposite implication
”⇒”, we assume that there is x ∈ V2 ∩V⊥1 , x 6= 0. Then, x is the non-zero solution of the
homogeneous equation P1x = 0 on V2. This contradicts to the invertibility of P1 on V2. 2

The condition (2.6) is equivalent to the fact that the angle θ between V2 and V⊥1 is non-
zero. It is implicitly required by ProjBiCGSTAB proposed in [5]. It is possible to prove
that N is close to a singular matrix when θ is small. In such situations, the convergence
rate of the projected Krylov methods may be slow. However, if θ is sufficiently large, then
the variant (ii) may avoid disadvantages of (i).



3 Numerical experiments

To test our algorithms, we shall solve linear systems (1.1) arising from the combination
of the smooth FD and FETI method applied to finite element approximations of linear
elasticity problems [5, 4, 8].

We compare the efficiency of the PSCM implemented with different projected Krylov
methods used for solving (2.1). By ProjGMRES(P1F ) and ProjGMRES(P1) we denote the
projected GMRES variants withMP = M andMP = P1, respectively. Note that the former
leads to the equation with the symmetric, positive definite operator so that the projected
CGM may be also used in this case. We refer to this method as ProjCGM(P1F ). The
projected BiCGSTAB [5] is denoted here by ProjBiCGSTAB(P1). Actions of generalized
inverses of A to vectors are computed by combining the Cholesky factorization with the
singular value decomposition [2]. The choice of the generalized inverse has no influnce on
convergence of the projected methods [7, 6]. All computations were performed by using 32
cores with 2GB memory per core of the HP Blade system, model BLc7000.

Figure 3.1 and 3.2 show convergence rate of the relative residual norm which is typ-
ical for small and large problems, respectively. Table 3.1 reports the number of itera-
tions (iter) and the computational time in seconds (CPU time). One can observe that
ProjGMRES(P1) is the most efficient method, if a high accuracy of the computed solution
is required. The progress is more expressive in CPU time, since the only one action of the
generalized inverse of A per iteration is needed.
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Figure 3.1: n = 3528, m = 186.
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Figure 3.2: n = 520200, m = 18372.
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