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Abstract

The paper deals with the approximation and numerical realization of the Stokes system in 3D with Coulomb’s slip boundary
onditions. The weak velocity–pressure formulation leads to an implicit inequality type problem which is discretized by the
1+bubble/P1 elements. To regularize the discrete non-smooth slip term and to release the discrete impermeability condition

he duality approach is used. For numerical realization of the resulting saddle-point problem two strategies are proposed,
amely (i) its fixed-point formulation solved by the method of successive approximations (i i) the direct numerical solution
f the saddle-point problem. The semi-smooth Newton method is used to solve non-smooth equations appearing in both these
pproaches.
2023 The Authors. Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in Simulation

IMACS). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The no-slip boundary condition, i.e. the velocity vector u = 0 on the solid surface is a standard one in fluid
flow models. It characterizes the adhesion of a liquid to the surface. However there are situations, depending on
characteristics of a liquid (polymers, e.g) or walls (surfaces coated by hydrophobic materials) when a certain slip
is observed. The first slip condition was formulated by Navier who postulated that the tangential component uτ of
u which represents the slip velocity is a linear function of the shear stress σ τ . Later on this law has been extended
to more sophisticated nonlinear relations but still formulated by single-valued functions. A justification of different
slip boundary conditions from the physical point of view is done in [31] and the references therein.

From the Navier slip condition we see that a slip occurs whenever σ τ ̸= 0 at the wall, i.e. the response is
immediate. But this is not true, in general. Consider for example a water drop on an inclined plane whose surface
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is coated by a teflon film. The drop starts sliding only if the angle of inclination attains certain critical value. Below
this value the drop still adheres to the wall.

A large class of such stick–slip boundary conditions can be written as follows:

|σ τ | ≤ g,

if uτ ̸= 0 then uτ · σ τ = −g|uτ |,
(1.1)

where g stands for a threshold stick–slip bound and | · | is the magnitude of a physical quantity (the absolute value
or the Euclidean norm depending on the spatial dimension). This condition is completed with the impermeability
condition uν = 0. The second condition in (1.1) says that a slip occurs only if |σ τ | = g. On the other hand, if
uτ = 0, then |σ τ | belongs to the interval ⟨−g, g⟩. Thus the constitutive law between σ τ and uτ is now given
by a multi-valued mapping usually represented by the subgradient of an appropriate, generally nonsmooth convex
slip functional j [34]. Let us emphasize that the partition of the surface into the sticking/slipping part is one of
unknowns of the problem. We meet the same type of boundary conditions in frictional contact solid mechanics.

Weak formulations of mathematical models involving the stick–slip conditions (1.1) lead to inequality type
problems for u and the pressure p just because of the presence of j . Their complexity depends on the definition
of g in (1.1). If g is known a-priori (corresponding to the Tresca model of friction in contact mechanics), the
mathematical model is given by an inequality type problem of the second kind using the terminology in [18]. Its
mathematical analysis has been done by Fujita in [15,16]. The case when g depends on the slip velocity magnitude,
i.e. g := g(|uτ |) is more involved from the mathematical point of view since the slip functional j depends on the
solution itself. This model has been theoretically studied in [32,33] for the Stokes and Navier–Stokes equations.
Finally there is an important class of slip laws with g depending on the magnitude of the normal stress σν . This paper
is devoted to one of them, namely to local Coulomb’s type slip conditions mentioned in [31]. In this case g = F |σν |,
where F is a slip coefficient. The corresponding mathematical model leads again to an implicit inequality type
problem as j depends on the unknown σν . But this time the whole matter is much more complicated compared
with the previous one owing to the character of σν . Without additional assumptions on the solution, the normal
stress is no longer represented by a function. It has to be interpreted as a functional defined on the trace space of
kinematically admissible functions. This lack of regularity makes impossible to define |σν |. One way to overcome
this fundamental difficulty is to change the slip model. For instance, to replace local Coulomb’s slip law by its non-
local version which uses a regularized form of σν [6,10]. Another way to make the definition of g meaningful is to
establish some regularity results. Saito proved in [34] that if the boundary ∂Ω consists of two sufficiently smooth
connected components ΓD and Γ , such that dist(ΓD,Γ ) > 0, with the Dirichlet, and Tresca type slip conditions,
respectively, then the solution (u, p) to the Stokes system belongs to (H 2(Ω ))d

× H 1(Ω ) provided that g ∈ H 1/2(Γ ).
This could be a way, together with a fixed-point approach, to prove the existence of a solution to the problem with
local Coulomb’s slip conditions. As a matter of interest, this basic difficulty concerning the definition of g does
not exist in contact problems for solids with Coulomb’s friction. In this case the set of kinematically admissible
displacements is convex and it consists of functions satisfying unilateral boundary conditions. The normal stress
σν can be interpreted as the Lagrange multiplier releasing these unilateral constraints and becomes now a signed
quantity. Therefore the absolute value of σν in the definition of g disappears.

Numerical analysis (theory and also an implementation) of this class of problems is relatively a new area.
It combines techniques of computational fluid mechanics for incompressible fluids [17] and numerical analysis
for variational inequalities [18]. Approximations are based on finite element discretizations of alternative variants
of the weak velocity–pressure formulation. Since the slip functional j which appears in the weak formulation is
nondifferentiable, in general, it is convenient to regularize it just from computational purposes. One of possible ways
how to do that is to use a duality approach. Its advantage is that the resulting Lagrange multiplier can be interpreted
as the shear stress σ τ . For the error and convergence analysis as well as computational techniques for the Stokes and
Navier–Stokes equations with different types of threshold slip boundary conditions we refer to [4,5,11,12,21,22,25].

The main objective of this paper is to propose efficient methods for numerical solution of the Stokes equation
with local Coulomb’s slip boundary conditions in 3D. We present two computational strategies and compare their

efficiency. Similar problem but in 2D has been analyzed in [21]. Thus the present paper can be considered to be its
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extension to 3D case. However it should be pointed out that this extension is not straightforward, above all from
the computational point of view as it will be seen later on.

The paper is organized as follows. Section 2 presents classical setting of the problem and its different weak
formulations used in computations. To start with a continuous model is helpful for better understanding of their
algebraic counterparts arising from finite element discretizations. The first strategy is based on the velocity–pressure
formulation of the Stokes equation with local Coulomb’s slip conditions. This is done only in a formal way
from reasons exposed above. The second strategy uses a fixed-point approach. Instead of the Stokes system with
Coulomb’s law we solve a sequence of problems with the Tresca slip conditions. They define one iterative step of
the method of successive approximations. The resulting normal stress σν is used to update the slip bound in the next
iteration. To obtain directly the approximation of σν , the dualization of the impermeability condition is proposed.
We utilize the fact that the Lagrange multiplier releasing this constraint is equal to σν . Numerical realization is
based on the four-field formulation of the problem with Coulomb’s and Tresca’s slip law, i.e. the formulation in
terms of u, p, σ τ , and σν . Section 3 is devoted to the mathematical analysis of the discretized three field formulation
of the problem for u, p, and σν , i.e. keeping j in the original, nonsmooth form. A special attention is paid to the
discretization of the fixed-point mapping. Its simple restriction on a relevant finite element space cannot be used
since it does not map this space into itself. For this reason a “return” mapping has to be introduced. We formulate
sufficient conditions on finite element spaces and the return mapping under which the discrete model has at least
one solution for any discretization parameter h and any coefficient of friction F . In addition, if F is small or
large enough, then the solution is unique. However, wording “small/large enough” depends on the mutual relation
between F and h, i.e. the condition is mesh dependent.

In computations we use the semi-smooth Newton method [14,24] for the Tresca model in context of the fixed-
point approach or directly for solving the algebraic system arising from the Coulomb model. The slip conditions are
equivalently expressed at each slip node by using the projection on the circle. The algebraic system for the Tresca
model is modified using the approach as in [19]. Then resulting Schur complements are symmetric, positive definite
and the conjugate gradient method can be used as the inner solver. On the other hand the situation is completely
different for the semi-smooth Newton method applied directly to the Coulomb model. Just as in 2D [20,21], the
Jacobians and the resulting Schur complements are non-symmetric and indefinite owing to the fact that the velocity
formulation of the Stokes problem with local Coulomb slip cannot be equivalently expressed as a minimization of
a functional, Moreover the Schur complements in 3D are more involved than in 2D due to the more complicated
definition of the projection mapping. The respective linear systems defining steps of the Newton method are solved
by the BiCGSTAB algorithm.

The paper uses following notation. Let Ξ be a bounded domain in Rn , n = 2, 3. The symbol H k(Ξ ), k ≥ 0
integer, denotes the Sobolev space of functions defined in Ξ which are together with their generalized derivatives
up to order k square integrable in Ξ . We set H 0(Ξ ) = L2(Ξ ). The scalar product in L2(Ξ ), the norm in H k(Ξ )
will be denoted by (·, ·)0,Ξ and ∥ · ∥k,Ξ , respectively. If X is an ordered vector space, the symbol X+ stands for its
subset of nonnegative elements. For vectors, matrices, vector valued functions and spaces we use bold characters.
The scalar product of two vectors a, b ∈ Rm is denoted by a · b and their Euclidean norm by ∥·∥. The symbol
Rp×q stands for the space of (p × q) matrices. If A = (ai j ), B = (bi j ) ∈ Rp×q , then A : B := ai j bi j using the
summation convention. By 0 we denote the zero matrix or the zero vector and I ∈ Rp×p stands for the identity
matrix. If A = (ai j ) ∈ Rp×p, then diag(A) denotes the corresponding diagonal matrix. If a = (a1, . . . , ap) ∈ Rp,
then diag(a) = diag(a1, . . . , ap) ∈ Rp×p is the diagonal matrix with the diagonal represented by the vector a.
Calligraphic symbols will be used for index sets, for instance: M = {1, 2, . . . , p}. The indicator matrix of a subset
S ⊆ M is the diagonal matrix IS = diag(s1, s2, . . . , sp) ∈ Rp×p, where si = 1 for i ∈ S and si = 0 if i ̸∈ S .
Finally, the symbol c stands for a generic positive constant which may take different values at different places of
its appearance. To emphasize that c depends on some parameters l1, . . . , lp we write c := c(l1, . . . , lp).

2. Classical and weak formulations of the problem

Let Ω ⊂ R3 be a bounded domain with the Lipschitz boundary ∂Ω which is decomposed into two non-empty,
non-overlapping parts Γ and S open in ∂Ω : ∂Ω = Γ ∪ S, Γ ∩ S = ∅. The classical formulation of the Stokes

roblem with the local Coulomb slip conditions on S reads as follows: find a velocity field u : Ω ↦→ R3 and a
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pressure p : Ω ↦→ R satisfying the following system of the differential equations in Ω and the boundary conditions
on ∂Ω :

−2µ div D(u) + ∇ p = f in Ω ,

div u = 0 in Ω ,

u = 0 on Γ ,

uν = 0 on S,

∥σ τ∥ ≤ F |σν | on S,

F |σν |uτ = −σ τ ∥uτ∥ on S,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.1)

where f ∈ (L2(Ω ))3 is a volume force acting on the fluid, µ > 0 is a constant dynamic viscosity, D(u) =

1/2 (∇u + (∇u)T ) is the symmetric part of ∇u and F > 0 is a constant slip coefficient. The velocity field u
is decomposed into the normal and tangential part: u = uνν + uτ , uν := u · ν, where ν is the outward unit normal
vector to ∂Ω and uτ⊥uνν. Analogously, the stress vector σ = 2µD(u)ν − pν on ∂Ω will be decomposed into the
normal and shear stress: σ = σνν + σ τ , σν := σ · ν and σ τ⊥σνν.

Last two conditions in (2.1) express the local Coulomb slip law on S: the Euclidean norm of σ τ cannot exceed
the value F |σν | which depends on the solution of the problem itself. In addition, from (2.1)6 it follows that a slip
at x ∈ S, i.e. uτ (x) ̸= 0 occurs only if ∥σ τ (x)∥ = F |σν(x)| and the vectors uτ and σ τ have the opposite directions
at x .

Below we present several weak formulations of (2.1) which will be used in subsequent parts of the paper in
computations. To this end we introduce function spaces and forms:1

W (Ω ) = {v ∈ (H 1(Ω ))3
| v = 0 on Γ },

V (Ω ) = {v ∈ W (Ω )| vν = 0 on S},

Q(Ω ) = {q ∈ L2(Ω )|
∫
Ω

q dx = 0}

a(u, v) =

∫
Ω

Du : Dv dx, u, v ∈ W (Ω )

b(v, q) =

∫
Ω

div vq dx, v ∈ W (Ω ), q ∈ Q(Ω )

j(g, ∥vτ∥) = F

∫
S

g∥vτ∥ds, v ∈ W (Ω ), g ∈ L2
+

(S).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.2)

We start with the implicit variational formulation (IVF) of (2.1). Multiplying (2.1)1,2 by test functions (v, q) ∈

V (Ω ) × Q(Ω ), using the boundary conditions on S and Green’s formula we obtain the following inequality type
roblem:

Find (u, p) ∈ V (Ω ) × Q(Ω ) such that
a(u, v − u) − b(v − u, p) + j(|σν |, ∥vτ∥) − j(|σν |, ∥uτ∥) ≥ ( f , v − u)0,Ω , ∀v ∈ V (Ω )
b(u, q) = 0, ∀q ∈ Q(Ω ).

⎫⎬⎭ (P)IVF

Owing to the presence of |σν | in the argument of j we shall suppose here and in what follows that σν ∈ L2(S).
ecall that the existence of the solution to (P)IVF remains (to our knowledge) still open.

Another possibility is the fixed-point formulation (FPF) of (2.1). The unknown slip bound |σν | in (P)IVF is now
eplaced by an arbitrary function g ∈ L2

+
(S). The new problem reads as follows: given g ∈ L2

+
(S),

Find (u(g), p(g)) ∈ V (Ω ) × Q(Ω ) such that
a(u(g), v − u(g)) − b(v − u(g), p(g)) + j(g, ∥vτ ∥) − j(g, ∥uτ (g)∥) ≥ ( f , v − u(g))0,Ω , ∀v ∈ V (Ω )
b(u(g), q) = 0, ∀q ∈ Q(Ω ).

⎫⎬⎭ (P(g))

(P(g)) is the weak formulation of the Stokes problem with the Tresca slip conditions on S in which the function
g ∈ L2

+
(S) represents the known slip bound. Such problem has a unique solution for any g ∈ L2

+
(S) [15]. As before

1 Here and in what follows we set 2µ = 1.
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we suppose that the corresponding normal stress σν(g) belongs to L2(S) for any g ∈ L2
+

(S). This enables us to
efine the mapping Ψ : L2

+
(S) → L2

+
(S) by

Ψ (g) = |σν(g)| ∀g ∈ L2
+

(S) . (2.3)

From the definitions of (P)IVF and (P(g)) we see that (u, p) solves (P)IVF if and only if (u, p) =

(u(|σν |), p(|σν |)) solves (P(|σν |)), where σν is the normal stress corresponding to (u, p). In other words

Ψ (|σν |) = |σν | on S . (P)FPF

To find fixed-points of Ψ one can use various methods (successive approximations, optimal control techniques,
e.g.).

Problems (P)IVF and (P)FPF are nonsmooth due to the functional j . In addition, numerical realization of both
problems needs a good approximation of the normal stress σν . To handle these difficulties we use duality approaches
to regularize problems and to release the impermeability condition vν = 0 on S.

From the definition of (P(g)), g ∈ L2
+

(S) we see that the velocity vector u(g) satisfies the following variational
inequality:

Find u(g) ∈ V 0(Ω ) such that
a(u(g), v − u(g)) + j(g, ∥vτ∥) − j(g, ∥uτ (g)∥) ≥ ( f , v − u(g))0,Ω , ∀v ∈ V 0(Ω ) (2.4)

or equivalently

u(g) = arg min{J (v) + j(g, ∥vτ∥), v ∈ V 0(Ω )} ,

where

V 0(Ω ) = {v ∈ V (Ω ) | div v = 0 in Ω}

and

J (v) =
1
2

a(v, v) − ( f , v)0,Ω .

Let

Xν = {ϕ ∈ L2(S) | ∃v ∈ W (Ω ) : ϕ = vν on S}, X ′

ν = dual of Xν,

K (F g) = {ω ∈ (L2(S))2
| ∥ω∥ ≤ F g a.e. on S}, g ∈ L2

+
(S) .

}
(2.5)

t is easy to see that

j(g, ∥vτ∥) = F

∫
S

g ∥vτ∥ ds = sup
ω∈K (F g)

∫
S
ω · vτ ds

nd

sup
λ∈X ′

ν

⟨λ, vν⟩ ∈ {0, ∞} , v ∈ W (Ω ) ,

here ⟨, ⟩ stands for the duality pairing between X ′
ν and Xν , is the indicator function of V (Ω ). Hence

min
v∈V 0(Ω)

{J (v) + j(g, ∥vτ∥)} = min
v∈W (Ω)

sup
q∈Q(Ω)

sup
λ∈X ′

ν
ω∈K (Fg)

L (v, q, ω, λ),

here L : Z(F g) := W (Ω ) × Q(Ω ) × K (F g) × X ′
ν → R is the Lagrangian defined by

L (v, q, ω, λ) = J (v) − b(v, q) − (ω, vτ )0,S − ⟨λ, vν⟩.

The mixed formulation of (P(g)) is given by the following saddle-point problem for L :

Find (u∗(g), p∗(g), ω∗(g), λ∗(g)) ∈ Z(F g) such that
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

}

L (u (g), q, ω, λ) ≤ L (u (g), p (g), ω (g), λ (g)) ≤ L (v, p (g), ω (g), λ (g)) ∀(v, q, ω, λ) ∈ Z(F g)
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or equivalently

Find (u∗(g), p∗(g), ω∗(g), λ∗(g)) ∈ Z(F g) such that
a(u∗(g), v) − b(v, p∗(g)) − (ω∗(g), vτ )0,S − ⟨λ∗(g), vν⟩ = ( f , v)0,Ω ∀v ∈ W (Ω )

b(u∗(g), q) = 0 ∀q ∈ Q(Ω )

⟨λ, u∗
ν(g)⟩ = 0 ∀λ ∈ X ′

ν

(ω + ω∗(g), u∗
τ (g))0,S ≤ 0 ∀ω ∈ K (F g).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(M (g))

It is easy to verify [23] that there exists a unique quadruplet in Z(F g) solving (M (g)), namely
(u∗(g), p∗(g), ω∗(g), λ∗(g)) = (u(g), p(g), σ τ (g), σν(g)), where (u(g), p(g)) solves (P(g)), σ τ (g), σν(g) is the

hear, and normal stress corresponding to (u(g), p(g)), respectively. The functional Ψ defined by (2.3) can be also
xpressed as follows:

Ψ (g) = |λ∗(g)| on S . (2.6)

he mixed formulation of (P)IVF is obtained from (M (g)), replacing g ∈ L2
+

(S) by |λ∗
|, i.e.

Find (u∗, p∗, ω∗, λ∗) ∈ Z(F |λ∗
|) such that

a(u∗, v) − b(v, p∗) − (ω∗, vτ )0,S − ⟨λ∗, vν⟩ = ( f , v)0,Ω ∀v ∈ W (Ω )
b(u∗, q) = 0 ∀q ∈ Q(Ω )

⟨λ, u∗
ν⟩ = 0 ∀λ ∈ X ′

ν

(ω + ω∗, u∗
τ )0,S ≤ 0 ∀ω ∈ K (F |λ∗

|).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(M )IVF

roviding that a solution (u, p) to (P) exists, the quadruplet (u∗, p∗, ω∗, λ∗) = (u, p, σ τ , σν), where σ τ , σν is the
hear, and normal stress on S corresponding to (u, p), respectively.

emark 2.1. The pressure component p of the solution to (M (g)) under the boundary conditions (2.1)3−6 is unique
n the space Q(Ω ). On the other hand, p as the element of L2(Ω ) is determined up to an arbitrary additive constant c.

e overcome this drawback by adding a supplementary boundary condition to the existing ones. The condition will
e chosen in such a way that problem (M (g)) is uniquely solvable in W (Ω )× L2(Ω ). To this end the boundary ∂Ω
ill be split into three non-empty, non-overlapping parts Γ , S and ΓN open in ∂Ω . We keep the conditions (2.1)3−6
n Γ , and S while the value of the stress vector σ will be prescribed on ΓN : σ = σ ∈ (L2(ΓN ))3 given. The weak
ormulations of the problem remain practically unchanged just with the following minor modification: the right
and side ( f , v)0,Ω has to be now replaced by the linear form l(v) = ( f , v)0,Ω + (σ , v)0,ΓN . This way will be used
n model examples presented in Section 6.

emark 2.2. If problem (P)IVF has a solution (u, p) such that the corresponding normal and shear stresses satisfy
ν ̸= 0 and ∥σ τ∥ < F |σν | a.e. on S then uτ = 0. This together with (2.1)4 yields u = 0 a.e.on S. Thus (u, p) is

the unique solution in W (Ω ) × Q(Ω ) to the Stokes system with the no-slip boundary condition on ∂Ω . In addition,
he same pair (u, p) solves (P)IVF for any slip coefficient F+ > F .

. Existence/unicity of solutions to discretized problems

The aim of this section is to establish and analyze the discrete fixed-point formulation (P)FPF. From these
esults we obtain information on the existence and possible uniqueness of the solution to the discretized Stokes
roblem with Coulomb’s slip conditions on S. We use a slightly modified mixed formulation (M (g)) involving
nly one Lagrange multiplier on S which releases the impermeability condition vν = 0 on S but keeping the
riginal nonsmooth form of the functional j .

Let W h(Ω ) ⊂ W (Ω ), Qh(Ω ) ⊂ Q(Ω ) be finite element subspaces of W (Ω ), and Q(Ω ), respectively, where h > 0
tands for a discretization parameter (a mesh norm, e.g.), dim W h(Ω ) = n := n(h), dim Qh(Ω ) = m := m(h), and
(h), m(h) → ∞ as h → 0+. The discretization of Xν is given by

Xhν = {ϕh : S ↦→ R | ∃ vh ∈ W h(Ω ) : ϕh = vhν on S}. (3.1)

Next, we shall suppose that Xhν ⊂ H 1
0 (S). This assumption is not restrictive, since W h(Ω ) consists of continuous,

Ω and S is supposed to be sufficiently smooth. To simplify our presentation we
iecewise polynomial functions in
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J. Haslinger, R. Kučera, K. Motyčková et al. Mathematics and Computers in Simulation 216 (2024) 145–167

d

assume that S is flat, i.e. the unit normal vector ν is constant on S. Finally, the dual space X ′
ν will be discretized

by finite element subspaces MH of L2(S), where H > 0 stands for (possible) another discretization parameter,
im MH = r := r (H ) → ∞ as H → 0+. Recall that MH+ denotes the cone of nonnegative elements of MH .

In what follows we suppose that the pairs {W h(Ω ), Qh(Ω )} and {Xhν, MH } satisfy the following Babuška–Brezzi
conditions:

- ∃ β1 = const. > 0 independent of h such that

sup
vh∈Wh (Ω)\{0}

b(vh, qh)
∥vh∥1,Ω

≥ β1 ∥qh∥0,Ω ∀qh ∈ Qh(Ω ) , (3.2)

- ∃ β2 = const. > 0 independent of h, H such that

sup
vh∈Wh (Ω)\{0}

(µH , vhν)0,S

∥vh∥1,Ω

≥ β2∥µH∥−1/2,S ∀µH ∈ MH , (3.3)

where

∥µH∥−1/2,S = sup
v∈W (Ω)\{0}

(µH , vν)0,S

∥v∥1,Ω

.

The discrete mixed formulation of the Stokes problem with the Tresca slip conditions on S reads as follows:
given gH ∈ MH+,

Find (uh(gH ), ph(gH ), λH (gH )) ∈ Wh(Ω) × Qh(Ω) × MH such that
a(uh(gH ), vh − uh(gH )) − b(vh − uh(gH ), ph(gH )) − (λH (gH ), vhν − uhν (gH ))0,S

+ j(gH , ∥vhτ ∥) − j(gH , ∥uhτ ∥) ≥ ( f , vh − uh(gH ))0,Ω ∀vh ∈ Wh(Ω)
b(uh(gH ), qh) = 0 ∀qh ∈ Qh(Ω)
(µH , uhν )0,S = 0 ∀µH ∈ MH .

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (M (gH ))h

The existence and uniqueness of the solution to (M (gH ))h for any gH ∈ MH+ follows from (3.2), (3.3) and ellipticity
of the bilinear form a. Moreover, there exists a constant c := c(∥ f ∥0,Ω , β1, β2) > 0 which does not depend on
h, H, F and gH ∈ MH+ such that

∥uh(gH )∥1,Ω + ∥ph(gH )∥0,Ω + ∥λH (gH )∥−1/2,S ≤ c . (3.4)

Let us recall that λH (gH ) represents the discrete normal stress on S. To define the discretization of (P)FPF one
needs to discretize the functional Ψ from (2.6). Since the space MH consists of piecewise polynomial functions on
a given partition of S, the implication

µH ∈ MH H⇒ |µH | ∈ MH+ ∀µH ∈ MH , (3.5)

holds true for piecewise constant functions but not for higher order polynomials. Thus a simple restriction of Ψ on
MH cannot be used in the discrete fixed-point formulation.

For this reason we introduce a linear mapping RH : H 1(S) ∩ C(S) → MH with the following properties:

RH (|µH |) ∈ MH+ ∀µH ∈ MH (3.6)

∥RH (|µH |)∥0,S ≤ c ∥µH∥0,S ∀µH ∈ MH (3.7)

where c := const. > 0 is independent of H .
If (3.5) is satisfied we simply set RH = id . Finally we suppose that elements of MH satisfy the following inverse

inequality: there exists a constant c > 0 which does not depend on H such that

∥µH∥0,S ≤ cH−1/2
∥µH∥−1/2,S ∀µH ∈ MH . (3.8)

The discrete form ΨH of Ψ is defined by

ΨH : MH+ → MH+, ΨH (gH ) = RH (|λH (gH )|) ∀gH ∈ MH+ , (3.9)

where λH (gH ) ∈ MH is the last component of the solution to (M (gH ))h .

Definition 3.1. By a solution to the discretized Stokes problem with local Coulomb’s slip law we mean any solution
∗ ∗ ∗ ∗ ∗
(uh(gH ), ph(gH ), λH (gH )) to (M (gH ))h with gH ∈ MH+ being a fixed-point of ΨH .
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First we prove the following existence result.

Theorem 3.1. Let (3.7) and (3.8) be satisfied. Then ΨH defined by (3.9) has at least one fixed-point for any
h, H and any slip coefficient F . All fixed-points lie in the ball BH = {µH ∈ MH+ | ∥µH∥0,S ≤ cH−1/2

}, where
:= const. > 0 does not depend on h, H and F .

roof. We use Brouwer’s fixed-point theorem. Let gH ∈ MH+ be given. Then

∥ΨH (gH )∥0,S
(3.9)
= ∥RH (|λH (gH )|)∥0,S

(3.7)
≤ c ∥λH (gH )∥0,S

(3.8)
≤ cH−1/2

∥λH (gH )∥−1/2,S
(3.4)
≤ cH−1/2 .

ence ΨH (BH ) ⊆ BH . Obviously, ΨH is continuous in MH+ in view of continuous dependence of the solution to
M (gH ))h on gH ∈ MH+ which is easy to verify. □

Next we shall present conditions under which ΨH is Lipschitz continuous in MH+. Besides (3.7) and (3.8) we
hall suppose that there exists a constant c > 0 which does not depend on H such that

|RH (|µH |) − RH (|µH |)| ≤ cRH (|µH − µH |) a.e. on S (3.10)

olds for every µH , µH ∈ MH .

Theorem 3.2. Let (3.7), (3.8) and (3.10) be satisfied. Then the mapping ΨH defined by (3.9) is Lipschitz continuous
in MH+:ΨH (gH ) − ΨH (gH )


0,S ≤ cF H−1/2

gH − gH


0,S ∀gH , gH ∈ MH+ , (3.11)

where c > 0 does not depend on h, H, f and F .

Proof. Let gH , gH ∈ MH+ be given. ThenΨH (gH ) − ΨH (gH )


0,S =
RH (|λH (gH )|) − RH (|λH (gH )|)


0,S =

 |RH (|λH (gH )|) − RH (|λH (gH )|)|


0,S
(3.10)
≤ c

RH (|λH (gH ) − λH (gH )|)


0,S

(3.7)
≤ c

λH (gH ) − λH (gH )


0,S

(3.8)
≤ cH−1/2

λH (gH ) − λH (gH )


−1/2,S

(3.12)

To handle the last term in (3.12) we subtract (M (gH ))h from (M (gH ))h . We easily obtain the following estimate
of the distance between their solutions:uh(gH ) − uh(gH )


1,Ω

+
ph(gH ) − ph(gH )


0,Ω

+
λH (gH ) − λH (gH )


−1/2,S ≤ cF

gH − gH


0,S

where c > 0 does not depend on f , h, H and F making use of ellipticity of a, (3.2) and (3.3). From this and
(3.12) we arrive at the assertion of the theorem. □

Consequence 3.1. If cF H−1/2 < 1 in (3.11), then the mapping ΨH is contractive. Thus ΨH has a unique fixed-point
and the method of successive approximations is convergent for any choice of the initial approximation g(0)

H ∈ MH+.
Each iterative step is represented by the Stokes system with the Tresca slip conditions on S.

In the rest of this section we present the spaces W h(Ω ), Qh(Ω ), MH and the mapping RH which satisfy the
conditions (3.2)–(3.8) and will be used in the computational part of the paper.

We shall suppose that Ω ⊂ R3 is a polyhedral domain. Let {Th} be a regular system of partitions of Ω into
polyhedra T with standard assumptions on their mutual position [9]. The pair {W h(Ω ), Qh(Ω )} will be constructed

y the P1+bubble/P1-elements:

W h(Ω ) = {vh ∈ W (Ω )| vh|T
∈ (P1(T ))3

⊕ (B(T ))3
∀T ∈ Th}

Qh(Ω ) = {qh ∈ C(Ω )| qh|T
∈ P1(T ) ∀T ∈ Th,

∫
Ω

qhdx = 0} ,

⎫⎬⎭ (3.13)

here P1(T ) stands for the space of affine functions on T and B(T ) denotes the space of bubble functions of
egree 3 on T . It is well-known that the pair {W (Ω ), Q (Ω )} satisfies the Babuška–Brezzi condition (3.2) [8]. The
h h
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polyhedral meshing Th of Ω generates the triangulation Dh = Th|S
of S. From the definition of W h(Ω ) and the

ssumption on S it is readily seen that

Xhν = {ϕh ∈ C(S)| ϕh|K
∈ P1(K ) ∀K ∈ Dh, ϕh = 0 on ∂S} . (3.14)

The space MH will be constructed by piecewise linear functions on Dh vanishing on ∂S. Then MH coincides
ith Xhν and only one discretization parameter h is needed. We may assume that the pair {Xhν, Xhν} satisfies the

Babuška–Brezzi condition (3.3). Indeed, it is readily seen that the implication

µh ∈ Xhν : (µh, vhν)0,S = 0 ∀vh ∈ W h(Ω ) H⇒ µh = 0 (3.15)

is true. Hence (3.3) holds with a constant β2 > 0, which however may depend on h. To show that β2 can be
chosen to be independent of h, one can use the stability in H 1(S) of the L2-projection on the space Xhν . This

roperty has been proven in [7], e.g., for any spatial dimension under appropriate mesh conditions. Since (3.6) is
ot satisfied by functions from Xhν which change the sign in the interior of at least one triangle K ∈ Dh , a mapping

h : C(S) → Xhν is needed. We define

(Rhv)|K = P1-Lagrange interpolation of v|K ∀K ∈ Dh, v ∈ C(S) .

From its definition and properties of P1-elements it follows that (3.6) and (3.10) with c = 1 are satisfied. Next we
shall suppose that the system of triangulations {Dh} is strongly regular which justifies the use of inverse inequalities,
in particular (3.8). It remains to prove (3.7). We have:

∥Rh(|µh |)∥0,S ≤ ∥Rh(|µh |) − |µh | ∥0,S + ∥ |µh | ∥0,S ≤ chs
∥ |µh | ∥s,S + ∥µh∥0,S ≤ c ∥µh∥0,S + ∥µh∥0,S ,

where s ∈ (1, 3/2) and c := const. > 0 which does not depend on h. Here we used interpolation properties of Rh , the
fact that |µh | ∈ H s(S), s ∈ (1, 3/2) for any µh ∈ Xhν and the inverse inequality between L2(S) and H s(S). Further,
the inequality ∥|µh |∥s,S ≤ ∥µh∥s,S follows from the definition of the norm in H s(S) for s > 0 non-integer [30].
Thus all the assumptions of Theorems 3.1 and 3.2 are verified. Let us note that, the impermeability condition on S
is satisfied exactly on S as follows from (3.15).

4. Algebraic formulations

This section is devoted to the presentation of the algebraic formulations of the Stokes system with the Tresca
and Coulomb slip conditions discretized by a mixed finite element method.

Let Th denote a partition of a bounded polyhedral domain Ω into a finite number of polyhedra T with usual
assumptions on their mutual position. Each Th will be characterized by the following parameters: nu , nb, n p, and
ns , where nu = the total number (t.n.) of the vertices of T ∈ Th belonging to Ω \ Γ , nb = t.n. of the polyhedra
T ∈ Th , n p = t.n. of the vertices of T ∈ Th in Ω , and ns = t.n. of the nodes of Th in S \ Γ . These parameters
determine the scale of the algebraic system. The velocity field u and the pressure p are discretized using the pair
W h(Ω ), Qh(Ω ) defined in (3.13). Thus the discrete velocity vector u ∈ R3(nu+nb) and the discrete pressure p ∈ Rn p .
In the sequel however all components of u which correspond to the bubble functions will be eliminated in advance
on the element level. Consequently, the resulting vector u will be understood as an element of R3nu in what follows.
The impermeability condition prescribed on the slip boundary will be released by the Lagrange multipliers from
the space Mh = Xhν defined in (3.14).

Let gh ∈ Mh+ be given and consider the problem2

Find (uh, ph, λh) ∈ W h(Ω ) × Qh(Ω ) × Mh such that
a(uh, vh − uh) − b(vh − uh, ph) − (λh, vhν − uhν)0,S

+ jh(gh, ∥vhτ∥) − jh(gh, ∥uhτ∥) ≥ ( f , vh − uh)0,Ω ∀vh ∈ W h(Ω )
b(uh, qh) = 0 ∀qh ∈ Qh(Ω )

(µh, uhν)0,S = 0 ∀µh ∈ Mh .

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4.1)

The symbol jh stands for an approximation of j by an appropriate numerical integration formula.
Before we give the algebraic formulation of (4.1) we introduce several notation. By {ai }, i ∈ N = {1, . . . , ns}

e denote the slip nodes, i.e. the nodes of Th lying in S \ Γ . To express slip conditions, we use the local

2 To simplify notation here and in what follows, the dependence of (u , p , λ ) on g is not explicitly quoted.
h h h h
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orthogonal coordinate systems generated by the triplets {ν, τ 1, τ 2} with origin at ai , i ∈ N and define the full
row rank (ns × 3nu) matrices T1, T2, N whose rows consist of the tangential, normal vectors τ 1, τ 2, and ν,
espectively. If a ∈ Rn , then its i th component will be denoted by (a)i . Finally, if a = (a1, a2) ∈ Rns × Rns

hen i a = ((a1)i , (a2)i ) ∈ R2. To define jh we use the following integration rule on triangles K ∈ Dh :∫
K

ϕ ≈
1
3
|K |(ϕ(i) + ϕ( j) + ϕ(k)) , ϕ ∈ C(K ) ,

where |K | = measure of K and i, j, k are the vertices of K . Using this formula for the evaluation of j(gh, ∥vhτ∥),
gh ∈ Mh+, vh ∈ W h(Ω ) we obtain:

j(gh, ∥vhτ∥) = F
∑

K∈Dh

∫
K

gh ∥vhτ∥ ≈ F
ns∑

i=1

ωi gi ∥vhτ (ai )∥ , (4.2)

where gi := gh(ai ), ωi := | supp(ϕi )|/3 and ϕi is the Courant basis function associated with the slip node ai , i ∈ N .
The last term in (4.2) defines the functional jh appearing in (4.1). To get rid of ∥vhτ (ai )∥ we use again the duality
approach. To this end we introduce the following sets:

K(Fg) = {µ = (µ1, µ2) ∈ Rns × Rns | ∥
iµ∥ ≤ F gi , i ∈ N } , (4.3)

and

Kω(Fg) = {µ = (µ1, µ2) ∈ Rns × Rns | ∥
iµ∥ ≤ F giωi , i ∈ N } , (4.4)

where g = (g1, . . . , gns ).
Then

jh(gh, ∥vhτ∥) = max
µ∈K(Fg)

ns∑
i=1

ωi
iµ · vhτ (ai ) = max

µ∈Kω(Fg)

ns∑
i=1

iµ · ((T1v)i , (T2v)i )

= max
µ∈Kω(Fg)

(µ1 · T1v + µ2 · T2v) = max
µ∈Kω(Fg)

(TT
1 µ1 + TT

2 µ2) · v
(4.5)

n the same way we express the duality term (λh, vhν)0,S :

(λh, vhν)0,S =

∑
K∈Dh

∫
K
λhvhν ≈

ns∑
i=1

ωiλh(ai )vhν(ai ) =

ns∑
i=1

ωi (lν)i (Nv)i

=

ns∑
i=1

(λν)i (Nv)i = NT λν · v ,

(4.6)

here (lν)i = λh(ai ), (λν)i = ωi (lν)i , i ∈ N . The vector lν ∈ Rns consists of the nodal values of the discrete normal
tress at the slip nodes ai , i ∈ N . The rescaled vector λν will be termed the algebraic normal stress. The same
istinction will be used for the vectors lτ = (lτ1 , lτ2 ) ∈ K(Fg) representing the discrete shear stresses at ai , i ∈ N ,
hile the rescaled vectors λτ = (λτ1 , λτ2 ), where (λτ j )i = ωi (lτ j )i , i ∈ N , j = 1, 2 belong to Kω(Fg).
To avoid difficulties with non-uniqueness of p we proceed as in Remark 2.1, i.e. we introduce an additional

eumann type boundary condition on a part ΓN . Using (4.5) and (4.6) we straightforwardly derive the algebraic form
f the Lagrangian L introduced in Section 2 and define the saddle-point problem on R3nu × Kω(Fg) ×Rns ×Rn p .
he KKT-conditions characterizing the saddle-point problem lead to the following algebraic formulation of the
iscretized Stokes equation with the Tresca slip conditions:

Find (u, (λτ1 , λτ2 ), λν, p) ∈ R3nu × Kω(Fg) × Rns × Rn p such that
Au − TT

1 λτ1 − TT
2 λτ2 − NT λν − BT p − b = 0

Bu + Ep − c = 0
Nu = 0

(TT
1 (µ1 + λτ1 ) + TT

2 (µ2 + λτ2 )) · u ≤ 0 ∀µ = (µ1, µ2) ∈ Kω(Fg)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4.7)

here A ∈ R3nu×3nu is the symmetric, positive definite diffusion matrix, B ∈ Rn p×3nu is the full row rank divergence
atrix, b ∈ R3nu is the discrete source term, and the symmetric, positive semidefinite matrix E ∈ Rn p×n p and the

ector c ∈ Rn p arise from the elimination of the bubble components of u (on the element level). The matrices

re assembled by vectorized codes proposed in [26] for the Laplace operator and modified in [3] for the operator
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−2 div D used in (2.1); see also free available codes [27]. Let us recall that λτ j , j = 1, 2, λν are the algebraic shear
nd normal stresses, respectively. Dividing the i th components of these vectors by ωi for all i ∈ N we obtain their
hysical counterparts lτ , lν which represent the shear and normal stresses on S at the slip nodes.

If (4.7) represents the kth iteration in the method of successive approximations, the slip bound vector g in (4.7)
s given by the vector of the discrete normal stress on S from the (k − 1)-th iteration, i.e. g = l(k−1)

ν . Hence
ω(F l(k−1)

ν ) = K(Fλ(k−1)
ν ) and the kth iteration reads as follows:

Find (u, (λτ1 , λτ2 ), λν, p) ∈ R3nu × K(Fλ(k−1)
ν ) × Rns × Rn p such that

Au − TT
1 λτ1 − TT

2 λτ2 − NT λν − BT p − b = 0
Bu + Ep − c = 0

Nu = 0
(TT

1 (µ1 + λτ1 ) + TT
2 (µ2 + λτ2 )) · u ≤ 0 ∀µ = (µ1, µ2) ∈ K(Fλ(k−1)

ν )

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4.8)

Replacing λ(k−1)
ν by λν in (4.8) we obtain the algebraic formulation of (P)IVF.

Remark 4.1. The analogue of Remark 2.2 remains true also for the solution (u, (λτ1 , λτ2 ), λν, p) to the discretized
problem (P)IVF. If (λν)i ̸= 0 and

((λτ1 )i , (λτ2 )i )
 < F |(λν)i | for all i ∈ N then (u)i = 0 for all i ∈ N . Also

the remaining statements of Remark 2.2 hold true in the discrete case.

5. Algorithms

The aim of this section is to present algorithms for solving the problem with the Coulomb stick–slip boundary
conditions. To this end we use the semi-smooth Newton method. Under appropriate boundedness assumptions on
the inverse of generalized Jacobian matrices convergence of the method is superlinear provided that the initial
approximation is close to the solution [14,24]. We will use two strategies. The first one combines the method
of successive approximations with the Newton iterations applied to the solution of the Stokes problem with the
Tresca slip conditions. In the second strategy the semi-smooth Newton method is applied directly to the algebraic
formulation of the problem with the Coulomb slip conditions. In both cases we formulate the respective stick–slip
law as nonsmooth equations using the projection on the circle in R2.

Remark 5.1. Unlike the previous section we consider all dual variables with the opposite sign, i.e. λτ1 := −λτ1 ,
λτ2 := −λτ2 , λν := −λν , and p := −p. The reason is that the Schur complements introduced below are given by
generalized saddle-point matrices, where this convention leads to standard notation. Moreover, all vectors will be
considered in the column form.

Let C(r ) = {x ∈ R2
: ∥x∥ ≤ r} denote the circle of radius r ≥ 0 and P(·, r ) : R2

→ C(r ) be the projection
defined by:

P(x; r ) =

{
x for ∥x∥ ≤ r,

r
∥x∥

x for ∥x∥ > r.

It is easy to show that the Tresca and Coulomb stick–slip laws in (4.7)5 and (4.8)5 are equivalent to
iλτ = P(iλτ + ρ i uτ ; F gi ), i ∈ N , (5.1)

and
iλτ = P(iλτ + ρ i uτ ; F |(λν)i |), i ∈ N , (5.2)

respectively. Recall that iλτ = ((λτ1 )i , (λτ2 )i ), i uτ = ((T1u)i , (T2u)i ), and ρ > 0 is an arbitrary but fixed parameter.
The semi-smooth Newton method needs the generalized Jacobian matrix ∂xP : R2

→ R2×2 to the solved system.
It will be defined by:

∂xP(x; r ) =

⎧⎨⎩ I for ∥x∥ ≤ r,
r (

I −
1

2 xxT
)

for ∥x∥ > r. (5.3)

∥x∥ ∥x∥
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In the case of the Coulomb law we will also need the generalized derivative of P(x; F |y|) with respect to y ∈ R:

∂yP(x; F |y|) =

⎧⎨⎩ 0 for ∥x∥ ≤ F |y|,
F sgn y

∥x∥
x for ∥x∥ > F |y|.

(5.4)

Note that the projection on the circle in 3D is replaced by the projection on a finite interval in 2D. This simplifies
onsiderably the structure of the respective Jacobian matrices. Moreover, it leads to the symmetric, positive definite
chur complements for the Tresca slip conditions. Thus the conjugate gradient method (CGM) can be used as the
atural inner solver [20,21]. The 3D case is more involved as it will be seen from the next subsections.

.1. Method of successive approximations

In this subsection we describe in more details how to implement the method of successive approximations (4.8).
irst of all we show how to solve subproblems (4.7) by the semi-smooth Newton method. Introducing the new
artificial) variables sτ = (sτ1 , sτ2 ) ∈ Rns × Rns , i sτ = ((sτ1 )i , (sτ2 )i ) ∈ R2 by

i sτ =
iλτ + ρ i uτ , i ∈ N

nd using them in (5.1) we can rewrite (5.1) as follows:
i uτ − ρ−1(i sτ − P(i sτ ; F gi )) = 0, i ∈ N .

emark 5.2. The reason for introducing the vector sτ is to symmetrize Jacobian matrix and its positive definite
chur complement. It was noticed already for contact problems of linear elasticity that the projection on the circle
esults in non-symmetric matrices. In [29] the contact problem was symmetrized by omitting the non-symmetric
lock without influence on the computed solution. This symmetrization is technically difficult in the present case.
ere we are inspired by [19] devoted to the Stokes problem with the Navier–Tresca slip law, where sτ plays the role
f the discrete shear stress leading to the Schur complement that is unconditionally positive definite and symmetric.
ut for the pure Tresca law, the variable sτ exhibits an artificial character and it results in symmetric, positive
efinite Schur complement only if the parameter ρ > 0 is sufficiently small.

The whole system (4.7) can be equivalently written as the nonsmooth equation:

G(y) = 0 (5.5)

ith G : R3nu+3ns+n p → R3nu+3ns+n p defined at y = (uT , sT
τ1

, sT
τ1

, λT
ν , pT )T by

G(y) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Aρu + TT
1 sτ1 + TT

2 sτ2 + NT λν + B⊤p − b

T1u − ρ−1(sτ1 − Π 1(sτ ))

T2u − ρ−1(sτ2 − Π 2(sτ ))

Nu

Bu − Ep − c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

here Aρ = A − ρ(TT
1 T1 + TT

2 T2), Π j (sτ ) = (Pj (1sτ ; F g1), . . . , Pj (ns sτ ; F gns ))T
∈ Rns , and Pj stands for the

j th component of P, j = 1, 2. Note that Aρ is positive definite only if ρ > 0 is sufficiently small.
Eq. (5.5) will be solved by the Newton iterations:

JG(y(k))y(k+1)
= JG(y(k))y(k)

− G(y(k)), k = 0, 1, . . . , (5.6)

here JG(y) is an arbitrary non-singular generalized Jacobian matrix of G at y and y(0) is an initial approximation.
e will use the active/inactive set implementation of (5.6). Let A , I ⊆ N be the active, and inactive set at y,

espectively:
i
A := A (y) = {i ∈ N : ∥ sτ∥ ≤ F gi }, I := I (y) = N \ A
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and let IA , II ∈ Rns×ns be the indicator matrices of A and I , respectively. Using them in the definition of G we
have:

G(y) =

⎛⎜⎜⎜⎜⎝
Aρu + TT

1 sτ1 + TT
2 sτ2 + NT λν + B⊤p − b

T1u − ρ−1(II − DFg/∥sτ ∥)sτ1
T2u − ρ−1(II − DFg/∥sτ ∥)sτ2
Nu
Bu − Ep − c

⎞⎟⎟⎟⎟⎠ ,

here

DFg/∥sτ ∥ = diag(d1, . . . , dns ), di = F gi/∥
i sτ∥ if i ∈ I , di = 0 if i ̸∈ I .

Standard differentiation rules and (5.3) yield:

JG(y) =

⎛⎜⎜⎜⎜⎝
Aρ TT

1 TT
2 NT BT

T1 −D11 −D12 0 0
T2 −D12 −D22 0 0
N 0 0 0 0
B 0 0 0 −E

⎞⎟⎟⎟⎟⎠ , (5.7)

where

D j j = ρ−1(II − DFg/∥sτ ∥(II − D1/∥sτ ∥2D2
sτ j

)), j = 1, 2,

D12 = ρ−1DFg/∥sτ ∥D1/∥sτ ∥2Dsτ1
Dsτ2

,

D1/∥sτ ∥2 = diag (d1, . . . , dns ), di = 1/∥i sτ∥
2 if i ∈ I , di = 0 if i ̸∈ I ,

Dsτ j
= diag (sτ j ), j = 1, 2.

To solve the linear systems in (5.6), we use the Schur complement Sρ to (1,1)-block in (5.7) defined by:

Sρ = Fρ + D, (5.8)

here Fρ = CA−1
ρ CT with C = (TT

1 , TT
2 , NT , BT )⊤ and D = diag

((
D11 D12
D12 D22

)
, 0, E

)
. The right hand-sides

f the Schur complement linear systems are:

d = CA−1
ρ b − (hT

1 , hT
2 , 0T , cT )T , (5.9)

here
h1 = −ρ−1DFg/∥sτ ∥D1/∥sτ ∥2 (D2

sτ1
sτ1 + Dsτ1

Dsτ2
sτ2 ),

h2 = −ρ−1DFg/∥sτ ∥D1/∥sτ ∥2 (Dsτ1
Dsτ2

sτ1 + D2
sτ2

sτ2 ).

We arrive at the implementation of (5.6), in which the iterations are performed with the last four components of
assembled in the vector λ = (sT

τ1
, sT

τ2
, λT

ν , pT )T
∈ R3ns+n p :

ALGORITHM SSN TRESCA [Given λ(0)
∈ R3ns+n p , g ∈ Rns

+ , ρ > 0, tol > 0.] Set k := 0.

(i) Assemble the active/inactive sets A and I at λ(k), the matrix D and the vectors h1, h2 to build Sρ and d by (5.8)
and (5.9), respectively.

(ii) Using CGM solve the linear system:

Sρλ
(k+1)

= d. (5.10)

(iii) Return λsol = λ(k+1), if ∥λ(k+1)
− λ(k)

∥/∥λ(k+1)
∥ ≤ tol, else set k := k + 1 and go to step (i).

From the definition we see that the matrix D is symmetric, positive semidefinite and consequently Sρ is
symmetric, positive definite for sufficiently small ρ. It is well-known that CGM is not efficient, if the spectral
condition number of the system matrix is large. In order to improve conditioning of (5.10), we use the diagonal
preconditioner:
PSρ := diag Fρ + diag (D11, D22, 0, diag E) . (5.11)
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Let us note that the following result analogous to [28] can be established:

cond (P−1
Sρ

Sρ) ≤ cond (diag Fρ)cond (Fρ).

inally note that an appropriate values of ρ > 0 guaranteeing positive definiteness of Aρ are computed
xperimentally using the backtracking procedure so that the Cholesky factorization of Aρ is executed in Matlab.

To realize the method of successive approximations (4.8) we propose its inexact implementation with an adaptive
recision control.
ALGORITHM MSA [Given λ(0)

∈ R3ns+n p , g(0)
:= |λ(0)

ν | ∈ Rns
+ , ρ > 0, ε > 0, 0 < rtol, cfact < 1.] Set l := 0 and

ol (0)
:= rtol/cfact.

j) Compute λ(l+1)
= SSN TRESCA[λ(l), g(l)

:= |λ(l)
ν |, ρ, tol (l)].

(jj) Compute err(l)
:= ∥λ(l+1)

− λ(l)
∥/∥λ(l+1)

∥.

(jjj) If err(l)
≤ ε, stop, else set l := l + 1, tol (l)

:= min{rtol × err(l−1), cfact × tol (l−1)
} and go to step (j).

(jv) Return λ = λ(l+1) and u = A−1(b − CT λ).

Recall that the absolute value of vectors is understood componentwisely. Since MSA is a two-level iteration
process we used an adaptive precision control in which the precision of the outer and inner loop are linked. The
inner ALGORITHM SSN TRESCA used in step (j) is initialized and terminated adaptively. It respects the precision
control err(l−1) achieved in the current step sharpened by the parameter rtol. If the progress is not sufficient, the
terminating tolerance tol (l−1) is also sharpened using the parameter cfact. These parameters are chosen in advance.

5.2. Direct solution of the coulomb problem

In this subsection we solve the problem with the Coulomb stick–slip boundary conditions directly by the semi-
smooth Newton method. The respective nonsmooth equation is obtained from (4.8) and (5.2) replacing gi by |(λν)i |,
∈ N and it reads as follows:

H(y) = 0, (5.12)

where H : R3nu+3ns+n p → R3nu+3ns+n p is defined at y = (uT , λT
τ1

, λT
τ1

, λT
ν , pT )T by

H(y) :=

⎛⎜⎜⎜⎜⎝
Au + TT

1 λτ1 + TT
2 λτ2 + NT λν + BT p − b

Π 1(u, λτ1 , λτ2 , λν) − λτ1
Π 2(u, λτ1 , λτ2 , λν) − λτ2
Nu
Bu − Ep − c

⎞⎟⎟⎟⎟⎠
with Π j (u, λτ1 , λτ2 , λν) = (Pj (1λτ + ρ 1uτ ; F |(λν)1|), . . . , Pj (ns λτ + ρ ns uτ ; F |(λν)ns |))

T and Pj standing for the
j th component of P, j = 1, 2.

Eq. (5.12) will be solved by the Newton iterations (5.6) (with G replaced by H). Now the active, and inactive
sets at y are defined by:

A := A (y) = {i ∈ N : ∥
iλτ + ρ i uτ∥ ≤ F |(λν)i |}, I := I (y) = N \ A ,

respectively. Let IA , II ∈ Rns×ns be the indicator matrices for A and I , respectively. Using them in the definition
of H we see that

H(y) =

⎛⎜⎜⎜⎜⎝
Au + TT

1 λτ1 + TT
2 λτ2 + NT λν + BT p − b

ρ(IA + DF )T1u − (II − DF )λτ1
ρ(IA + DF )T2u − (II − DF )λτ2
Nu
Bu − Ep − c

⎞⎟⎟⎟⎟⎠ ,

where
i i
DF = diag (d1, . . . , dns ), di = F |(λν)i |/∥ λτ + ρ uτ∥ if i ∈ I , di = 0 if i ̸∈ I .
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Standard differentiation rules, (5.3), (5.4), and the fact that II DF = DF yield:

JH (y) =

⎛⎜⎜⎜⎜⎝
A TT

1 TT
2 NT BT

D11 −D12 −D13 −D14 0
D21 −D22 −D23 −D24 0
N 0 0 0 0
B 0 0 0 −E

⎞⎟⎟⎟⎟⎠ , (5.13)

where

D11 = ρ(IA + DF )T1 − ρDF (D2
1T1 + D1D2T2),

D21 = ρ(IA + DF )T2 − ρDF (D1D2T1 + D2
2T2),

D12 = −DF + DF D2
1 + II , D23 = −DF + DF D2

2 + II ,

D22 = D13 = DF D1D2,

D14 = −DFλν D1, D24 = −DFλν D2

nd

D j = diag (d1, . . . , dns ), di = ((λτ j )i + ρ(uτ j )i )/∥iλτ + ρ i uτ∥ if i ∈ I , di = 0 if i ̸∈ I for j = 1, 2,

DFλν = diag (F sgn(λν)1, . . . ,F sgn(λν)ns ).

To solve the linear systems (5.6) with JH in place of JG , we use the Schur complement S to (1,1)-block in (5.13)
efined by:

S = F + D (5.14)

ith F = CLA−1CT
U , where CL , CU are the lower and upper off-diagonal blocks in (5.13), respectively, and

D =

⎛⎜⎜⎝
D12 D13 D14 0
D22 D23 D24 0
0 0 0 0
0 0 0 E

⎞⎟⎟⎠ .

he right hand-sides of the Schur complement linear systems are:

d = CLA−1b − (hT
1 , hT

2 , 0T , cT )T , (5.15)

here
h1 = −ρDF (D2

1T1 + D1D2T2)u − DF D1(D1λτ1 + D2λτ2 ) + DF sgn(λν )D1λν,

h2 = −ρDF (D1D2T1 + D2
2T2)u − DF D2(D1λτ1 + D2λτ2 ) + DF sgn(λν )D2λν .

We arrive at the following implementation of (5.6), in which the iterations are performed only with the last four
omponents of y assembled in the vector λ = (λT

τ1
, λT

τ2
, λT

ν , pT )T .

ALGORITHM SSN COULOMB: [Given λ(0)
∈ R3ns+n p , ε > 0, ρ > 0.] Set k := 0.

(i) Assemble the active/inactive sets A and I at λ(k), the respective matrix D and the vectors h1, h2 to build S
and d by (5.14) and (5.15), respectively.

(ii) Using BiCGSTAB solve the linear system:

Sλ(k+1)
= d. (5.16)

(iii) Return λ = λ(k+1) and u = A−1(b − CT
U λ), if ∥λ(k+1)

− λ(k)
∥/∥λ(k+1)

∥ ≤ ε, else set k := k + 1 and go to
step (i).

In order to improve the performance of BiCGSTAB iterations, we propose the preconditioner analogous to (5.11):

PS = diag F + diag (D12, D23, 0, diag E) .

We use the BiCGSTAB implementation presented in [13].
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Fig. 1. Cube and 3D mesh.

6. Numerical examples

Recall that the finite element discretization in both examples presented below uses P1+bubble/P1 elements. To
guarantee uniqueness of the pressure p (see Remark 2.1) we shall suppose that in addition to Γ and S, there is a
non-empty part ΓN of ∂Ω with a prescribed value of the stress vector σ . Finally, both numerical strategies introduced
in Section 5 will be used and compared. All computations were done in Matlab R2021a software on supercomputer
Karolina [2]. The meshes were generated by iso2mesh software [1].

Example 1 (Cube). Let Ω = (0, 1)3 (see Fig. 1). Its boundary ∂Ω consists of three parts Γ , ΓN , and S:
= Γtop ∪ Γfront ∪ Γback, ΓN = Γleft ∪ Γright, S = (0, 1) × (0, 1) × {0}, where Γtop = (0, 1) × (0, 1) × {1},

Γfront = {0} × (0, 1) × (0, 1), Γback = {1} × (0, 1) × (0, 1), Γleft = (0, 1) × {0} × (0, 1), Γright = (0, 1) × {1} × (0, 1).
Data of problem (2.1) with added ΓN ̸= ∅ are as follows: f = −2µ div D(uexp) + ∇ pexp, µ = 1/2, σ N =

µD(uexp) ν − pexp ν, and F ∈ {0.03; 0.5; 1100}, where uexp = (uexp,1, uexp,2, uexp,3),

uexp,1(x, y, z) = 4(1 − cos(2πx)) sin(2πy)z(1 − z),
uexp,2(x, y, z) = 4 sin(2πx)(cos(2πy) − 1)z(1 − z),
uexp,3(x, y, z) = 0,

pexp(x, y, z) = 2π (− cos(2πx) + 2 cos(2πy) − cos(2π z)).

t is easy to verify that the couple (uexp, pexp) solves the Stokes system in Ω with the no-slip condition on Γ ∪ S
nd the Neumann condition with prescribed σ N on ΓN . Therefore for an appropriate choice of F it solves also
roblem (2.1) only with the Dirichlet and Neumann boundary conditions.

Computations were carried out using different meshes characterized by the parameters nu, n p, nc and three values
f the slip coefficient F which enable us to simulate (a) pure slip (F = 0.03), (b) pure stick (F = 1100), and
c) simultaneous stick and slip (F = 0.5) on S. The first experiment was done with the MSA algorithm. The

−5 −3
arameters required by this algorithm and its subroutine SSN Tresca are set as follows: ϵ = 10 , rtol = 10 ,
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Fig. 2. Tangential velocity field (left), distribution of Ψ (right) on S; F = 0.03.

Fig. 3. Tangential velocity field (left), distribution of Ψ (right) on S; F = 0.5.

and c f act = 0.5. To show how MSA depends on the initial approximation λ(0) we use λ(0)
= (0T , 0T , g(0), 0T )T ,

where g(0)
= (λ(0)

ν )T accordingly to notation introduced in Section 5. We shall consider two cases: (α) g(0)
= 0,

β) g(0) arising from the slip bound g = 30 in (2.2)6. The former g(0) results in the free-slip condition, i.e. σ τ = 0
n S so the first iteration of MSA solves the linear problem. The characteristics of the method are summarized
n Table 1. The columns i ter , NF denote the number of the fixed point iterations, and the number of the matrix–
ector multiplications, respectively. The corresponding value for the initial approximation (α), (β) is given by the
rst integer, and the integer in parenthesis, respectively. The last column indicates the used value of the parameter
. The distribution of the tangential velocity uτ and the nonnegative function Ψ = F |σν |−∥σ τ∥ on S for different
alues of F is shown in Figs. 2, 3, 4. From Fig. 2 we see that for F = 0.03 the fluid is slipping along the whole

S. This is confirmed by the distribution of Ψ which is equal to zero practically everywhere in S. On the contrary,
or (artificially) large F = 1100 the fluid adheres to S and Ψ is positive in S. Finally, if F = 0.5 then both stick
nd slip zones in S are present. It is worth noticing that the streamlines on S disappear (Fig. 3) meaning that the
uid leaves up S. In Figs. 5, 6 the evolution of the stick/slip zone during the iteration process is depicted. From

here we see that if g(0)
= 0, the process starts with the slip on the whole S unlike the pure stick on S for g(0) from

β). Table 1 indicates that just a small number of the fixed point iterations is needed to get the solution with the
161
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Fig. 4. Tangential velocity field (left), distribution of Ψ (right) on S; F = 1100.

Fig. 5. Slip zones on S in MSA algorithm: 1. iter. (left), 2. iter. (center), 3. iter. (right); F = 0.5, g(0)
= 0.

Fig. 6. Slip zones on S in MSA algorithm: 1. iter. (left), 2. iter. (center), 3. iter. (right); F = 0.5, g(0) from (β).

required precision. In addition, this number is practically the same for all finite element partitions. The low number
of iterations for F = 1100 and g(0) from (β) is due to the fact that the first and the last iteration solve the Stokes
ystem with the no-slip condition on the whole S, i.e. the linear problem.

The second experiment has been done with the SSN Coulomb algorithm. The physical data are the same as
efore. The parameters required by this algorithm are ϵ = 10−7, ρ = 0.1. The results are summarized in Table 2.
he column i ter now denotes the number of the Newton steps and NF has the same meaning as in Table 1. Unlike

he MSA algorithm, in which the parameter ρ has to be carefully chosen to ensure positive definiteness of the block
ρ in (5.7), the situation now is different since the system (5.16) is solved by the BCG type method. Comparing
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Table 1
MSA with SSN Tresca solver; g(0)

= 0, (g(0) from β).

nu/n p/nc F = 0.03 F = 0.5 F = 1100 ρ

i ter NF i ter NF i ter NF

5148/2197/143 3 (4) 343 (614) 6 (5) 1359 (896) 5 (2) 833 (284) 10−3

23 940/9261/399 3 (4) 498 (770) 5 (5) 1255 (1605) 5 (2) 1036 (257) 10−3

65 772/24 389/783 3 (4) 492 (808) 5 (5) 1354 (1149) 5 (2) 1034 (356) 10−4

139 860/50 653/1295 3 (4) 545 (872) 5 (5) 1422 (1322) 5 (2) 1199 (299) 10−4

255 420/91 125/1935 3 (4) 530 (899) 5 (5) 1566 (1556) 5 (2) 1205 (350) 10−4

421 668/148 877/2703 3 (4) 561 (979) 5 (5) 1669 (1657) 5 (2) 1270 (311) 10−4

Table 2
Direct solution with SSN Coulomb solver; g(0)

= 0, (g(0) from β), ρ = 0.1.

nu/n p/nc F = 0.03 F = 0.5 F = 1100

i ter NF i ter NF i ter NF

5148/2197/143 7 (6) 138 (156) 6 (6) 147 (146) 6 (4) 70 (78)
23 940/9261/399 7 (6) 173 (194) 7 (6) 200 (178) 4 (4) 85 (94)
65 772/24 389/783 7 (6) 193 (226) 7 (6) 264 (274) 6 (5) 111 (125)
139 860/50 653/1295 7 (6) 223 (262) 8 (7) 311 (375) 4 (4) 121 (130)
255 420/91 125/1935 7 (6) 234 (351) 7 (6) 335 (357) 4 (4) 155 (183)
421 668/148 877/2703 7 (6) 270 (262) 7 (8) 345 (408) 4 (4) 114 (122)

Fig. 7. Tube and 3D mesh.

the number of the fixed-point iterations i ter in MSA (Table 1) with the number of the Newton steps i ter (Table 2)
we see that the latter is slightly higher. It turned out during computations that the Newton iterations have to be
computed with higher accuracy compared with the MSA otherwise the Newton method may fail. Despite this fact,
comparing the numbers NF for MSA (Table 1) and SSN Coulomb solver (Table 2) we see that this number which
can serve as one of possible indicators of efficiency of the used algorithms is considerably lower for the latter,
in particular when stick–slip zones exist simultaneously. In addition, during numerical tests it emerged that SSN
Coulomb algorithm is more robust as far as the choice of ρ is concerned in comparison with MSA. For this reason
the next example will be solved by the SSN Coulomb solver.

Example 2 (3D Tube). Let Ω be the tube of radius r = 1 and length L = 6 as in Fig. 7, where the finite element
mesh Th and the partition of the boundary ∂Ω = S ∪Γ in ∪Γ out is depicted. On Γin we prescribe the input velocity
u = (umax − umax · (y2

+ z2)/r2, 0, 0), where umax = 0.5 is the maximal velocity amplitude of the parabolic flow
profile on Γin. The natural outflow condition σ N = 0 on Γout will be prescribed. Cylindrical surface of Ω represents
the slip part S. Further f = 0 in Ω , µ = 0.5 and F ∈ {0.001; 0.6; 0.7; 1000}. The smallest, largest value of F is
again chosen to simulate the pure slip, and stick, respectively on S.
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Table 3
Direct solution with SSN Coulomb solver.

nu/n p/nc F = 0.001 F = 0.6 F = 0.7 F = 1000

i ter NF i ter NF i ter NF i ter NF

2292/813/410 4 700 13 4074 9 2784 2 436
4650 /1613/745 4 796 18 6722 10 3587 2 529
19 692/6751/1862 4 1059 20 7697 11 4264 2 752
38 169/13 000/3033 4 996 25 12 209 14 6690 2 685
61 611/20 920/4025 4 1054 25 12 775 14 6976 2 708

Fig. 8. Distribution of velocity (top), pressure (middle), the function Ψ (below) on S for F = 0.6.

The results of the SSN Coulomb algorithm are summarized in Table 3. The low number of iterations for
F = 0.0001 and 1000 follows from the fact that the problems become linear. The parameters required by this
algorithm are ϵ = 10−5, ρ = 0.1. The velocity, the pressure field and the distribution of the function Ψ on S in
the simultaneous stick and slip case are seen from Figs. 8, 10 for F = 0.6 and F = 0.7, respectively using the

umerical results on the finest mesh. Finally the velocity distribution on the selected cross sections of the tube are
hown in Figs. 9 and 11.
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Fig. 9. Sectional view of the velocity distribution on Γin (left), on x = 2 (middle), on Γout (right) for F = 0.6.

Fig. 10. Distribution of velocity (top), pressure (middle), the function Ψ (below) on S for F = 0.7.

. Conclusions

The theoretical part presents two weak settings of the problem in terms of the fluid velocity and pressure namely
s (i) an implicit variational inequality and (i i) a fixed-point formulation. Since knowledge of the normal and shear
tress on the slip part of the boundary is essential to numerical realization we also present the so-called four field
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Fig. 11. Sectional view of the velocity distribution on x = 3 (left), on x = 5 (middle), on Γout (right) for F = 0.7.

formulation in terms of the velocity, pressure, normal and shear stress as it enables us to compute all these quantities
directly. Discretization of this formulation is done in an abstract way by the classical Galerkin type approach. Under
appropriate assumptions on the used finite dimensional spaces we are able to guarantee the existence of at least
solution to the discretized problems for any value of the discretization parameter h and of the slip coefficient F .
In addition, if F is sufficiently small, the discrete solution is unique. However, the condition ensuring uniqueness
is mesh dependent. The second part of the paper is devoted to computational aspects. The discretized four field
formulations lead to systems of non-smooth algebraic equations including projection mappings onto convex sets.
Such systems are solved by a semi-smooth Newton type method using the active/inactive set implementation which
is in details presented there. Finally, numerical experiments with two simple examples are presented and the above
mentioned approaches (i) and (i i) are compared.
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J. Haslinger, R. Kučera, K. Motyčková et al. Mathematics and Computers in Simulation 216 (2024) 145–167
[11] J.K. Djoko, J. Koko, Numerical methods for the Stokes and Navier-Stokes equations driven by slip boundary conditions, Comput.
Methods Appl. Mech. Engrg. 305 (2016) 936–958.

[12] J.K. Djoko, M. Mbehou, Finite element analysis for Stokes and Navier Stokes equations driven by threshold slip boundary conditions,
Int. J. Numer. Anal. Model. Ser. B4 (2013) 235–255.

[13] H.C. Elman, D.J. Silvester, A.J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics,
Numerical Mathematics and Scientific Computation, Oxford University Press, 2014.

[14] F. Facchinei, F. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol. I and II, Springer, New York,
2003.

[15] H. Fujita, A mathematical analysis of motions of viscous incompressible fluid under leak and slip boundary conditions, RIMS Kokyuroku
888 (1994) 199–216.

[16] H. Fujita, A coherent analysis of Stokes flows under boundary conditions of friction type, J. Comput. Appl. Math. 149 (2002) 57–69.
[17] V. Girault, P.A. Raviart, Finite Element Methods for Navier-STokes Equations, Springer Series in Computational Mathematics, Springer

Verlag, 1986.
[18] R. Glowinski, Numerical methods for nonlinear variational problems, Springer Series in Computational Physics, Springer Verlag, 1983.
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[20] J. Haslinger, R. Kučera, V. Šátek, The semi-smooth Newton method for solving the Stokes flow with Coulomb slip boundary conditions,

AIP Conf. Proc. 2116 (2019).
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