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1 Discrete static contact problems with Coulomb friction

Let Ω ⊂ R
2 be a linearly elastic body supported by a rigid foundation along the contact boundary

ΓC . On ΓN and ΓD, Neumann and Dirichlet boundary conditions are prescribed. We consider
the static contact problems with Coulomb friction, see e.g. [1]. In particular, we will investigate a
discrete version of this problem, see e.g. [2, 3]. This may be understood as a FEM-approximation

of the continuous mechanical problem.

Let integers n and p define the degrees of freedom of the body Ω and the number of contact
nodes on ΓC , n ≥ 2p. Let f ∈ R

n and F be the given distributed volume force and the friction
coefficient. We seek for

• nodal displacement field u ∈ R
n

• nodal normal and tangential stress components λν ∈ R
p and λt ∈ R

p

such that (u, λν , λt) ∈ R
n × Λν × Λt(F ,−λν),

(Au,v)n = (f ,v)n + (λν , Nv)p + (λt, Tv)p ∀v ∈ R
n, (1)

(µν − λν , Nu)p + (µt − λt, Tu)p ≥ 0 ∀ (µν , µt) ∈ Λν × Λt(F ,−λν) . (2)

Here, A ∈ R
n×n is a positive definite stiffness matrix. The full-rank matrices N ∈ R

p×n and
T ∈ R

p×n associate u ∈ R
n with its normal and tangential component at the contact nodes.

The convex sets of Lagrange multipliers are

Λν = R
p
− , Λt(F ,−λν) = {µt ∈ R

p : |µt,i| ≤ −Fλν,i , ∀ i = 1, . . . , p} . (3)

It is worth noticing that the second set in (3) depends on the solution component λν .

Let r > 0 be a fixed parameter. The variational inequality (2) is equivalent to the equations

λν = PΛν
(λν − rNu) , λt = PΛt(F ,−λν)(λt − rTu) , (4)

see e.g. [4, 5]. Here PΛν
and PΛt(F,−λν) are the orthogonal projections of R

p onto Λν and
Λt(F ,−λν), see (3).

Under generic assumptions, there exists a solution of (1)&(2) for any data f ∈ R
n and F > 0.

If F is sufficiently small, the solution is unique. See e.g. [2, 7].
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2 Continuation of the static solutions

Solving (1)&(2) for (u, λν , λt) ∈ R
n × Λν × Λt(F ,−λν) is equivalent to finding roots of a

nonlinear mapping (1)&(4).

The static Coulomb friction model depends on parameters. For example, we may prescribe a
smooth loading path α ∈ R 7−→ f(α) ∈ R

n and ask for a continuous response of the body. Then
the above mention roots depend on the parameter α. We will define

z ≡









u

λν

λt

α









∈ R
n+2p+1 7−→ H(z) ≡





Au − f(α) − N
⊤λν − T

⊤λt

λν − PΛν
(λν − rNu)

λt − PΛt(F,−λν)(λt − rTu)



 ∈ R
n+2p . (5)

The mapping H : R
n+2p+1 → R

n+2p is continuous, piecewise smooth, see [7]. Hence, the
set H (u, λν , λt, α) = 0 ∈ R

n+2p defines generically a continuous, piecewise smooth curve in
R

n+2p+1. The objective is to trace the curves (5) numerically using path-following (i.e. con-

tinuation) techniques. Note that the standard continuation techniques require the curve to be
smooth. The idea is:

1. Continue the smooth pieces by a classical path-following software, see e.g. [6].

2. Join the smooth pieces continuously, preserving the orientation.

For details, see [7, 8].

3 Case study: n = 1320, p = 30

For the geometry of the example, see Figure 1: It is understood that each nodal mesh point
has two degrees of freedom for the vertical and horizontal displacement. The indicated surface

traction depend on a scalar parameter α; we omit the particular formulae. The contact boundary
ΓC is approximated by p = 30 points. The contact data λν , λt, uν , ut are changed with α. A
snapshot as α = 3.6 is shown in Figure 2.

We consider continuation of the curve (5) in the parameter range −0.5 ≤ α ≤ 1.5, starting at α =
−0.5. The curve is continuous, piecewise smooth. Hence, the curve is smooth up to transition

points. There were detected 14 transition points on the path: E.g., at the six-th transition
point which is related to α = 0.28019791259766, the contact nodal point i = 13 changes its
classification from no contact to contact, slip. At the seven-th transition point which is related
to α = 0.42934036865234, the contact nodal point i = 3 changes its classification from contact,

slip to contact, stick. At the eight-th transition point which is related to α = 0.60403706054688,
the contact nodal point i = 14 changes its classification from no contact to contact, slip.

In fact, if we know transition points, we can cheaply compute the solution for any given α, see
Figure 3.
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Figure 1: FEM approximation: Case Study n = 1320, p = 30; the mesh on the rectangular
domain Ω. The loading is due to the surface traction.
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Figure 2: Contact data λν , λt, uν , ut at the contact points i = 1, 2, . . . , 30 for α = 3.6. Contact
classification: circle ... no contact, diamond ... contact-stick, square ... contact-slip. Here, uν

and ut are the normal and tangential displacement components at particular contact points.
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Figure 3: Profiles of the normal stress components: Contact points i = 1, 2, . . . , 30 vs λν for
selected parameter values α = −0.5, 0, 0.5, 1, 1.5. Contact classification: circle ... no contact,
diamond ... contact-stick, square ... contact-slip.
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