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1 Introduction

We consider the problem
min
x∈Ω

q(x) (1)

with q(x) = 1
2 x⊤Ax − x⊤b and Ω = {x ∈ R

3m : xi ≥ li, x2
i+m + x2

i+2m ≤ g2
i , i = 1, . . . ,m},

where n = 3m, A ∈ R
n×n is symmetric, positive definite, b ∈ R

n, and li ∈ R, gi ∈ R+,
i = 1, . . . ,m. Such minimizations arise, e.g., from the finite element approximation of contact
problems of linear elasticity with friction in three space dimensions (3D) [8]. The problem (1)
can be solved by a general method,nevertheless, one can expect that an algorithm taking into
account the structure of (1) will be more efficient. The specialized algorithm for solving (1)
called KPRGP (KKT-Proportioning with Reduced Gradient Projections) was proposed and
analyzed in [9, 10, 5]. It combines the conjugate gradient method with the gradient projections
in a feasible active set strategy. This idea generalizes naturally the algorithm of Dostál and
Schöberl [4, 6] developed originally for simple bound problems. The common feature of these
algorithms is the same convergence rate enabling to achieve optimal convergence results of the
domain decomposition methods for 3D contact problems without [3, 4] and with [5, 2] friction.
However, their practical behavior may be different due to the difference in the finite termination
property. After finding indices of simple bounds active in the solution, the simple bound problem
reduces to a linear one, for which the conjugate gradient method completes the iterative process.
Unfortunately, this property does not hold for the quadratic inequalities x2

i+m + x2
i+2m ≤ g2

i .
Here, the algorithm seeks also positions of the pairs (xi+m, xi+2m) lying on the curved boundaries
of the active circles. Therefore, ”zig-zag iterations” may be generated so that short conjugate
gradient sequences alternate with projective steps changing the active set. In order to overcome
this drawback, one can recommend to use a strictly feasible algorithm that does not work with
any active set. Its typical representative is an interior-point method.

We generalize the path-following (PF) variant of the interior point method that was proposed
in [13, 7] for solving linear programming problems. The main idea consists in applying the New-
ton iterations to solve equations in the (modified) system of the Karush-Kuhn-Tucker (KKT)
conditions to (1). Since some unknowns in the KKT system are constrained by simple bounds,
the Newton steps are damped. Another key ingredient is the centering that keeps iterations
deeper in the feasible region so that longer steps may be performed. The most expensive part
of each iteration is the solution of an indefinite linear system. To this end, we apply methods
based on the Schur complement reduction so that reduced linear systems are solved by the con-
jugate gradient method. As the reduced matrices are typically ill-conditioned, preconditioners
are needed. Our preconditioners are optimal in the sense that condition numbers of the precon-
ditioned matrices are bounded by a constant multiple of the condition number of A (although
the condition numbers of the matrices without preconditioning converge to infinity). The total
efficiency is increased by a precision control terminating adaptively the inner conjugate gradient
iterations. See [11] for more details.
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2 Algorithm

Let x∗ denote the solution to (1). Let us introduce the Lagrangian to (1) by

L(x, ν) = q(x) +

m
∑

i=1

νi(li − xi) +

m
∑

i=1

νi+m(x2
i+m + x2

i+2m − g2
i ),

where ν = (ν1, . . . , ν2m)⊤ is the Lagrange multiplier to the constraints in Ω. The solution x∗ is
the first component of the saddle-point (x∗, ν∗) ∈ R

n ×R
2m to L satisfying the KKT conditions:

∇xL(x, ν) = 0, ∇νL(x, ν) ≤ 0, ν ≥ 0, ν⊤∇νL(x, ν) = 0.

Let z := −∇νL(x, ν) be the new variable and let us define the function F : R
n+4m 7→ R

n+4m

by F (v) = (∇xL(x, ν)⊤, (∇νL(x, ν) + z)⊤, e⊤NZ)⊤, where v = (x⊤, ν⊤, z⊤)⊤ ∈ R
n+4m, N =

diag(ν), Z = diag(z), and e ∈ R
2m is the vector of all ones. The solution x∗ is the first

component of the solution v∗ = (x∗⊤, ν∗⊤, z∗⊤)⊤ to

F (v) = 0, ν ≥ 0, z ≥ 0. (2)

To derive our path-following algorithm, we replace (2) by

F (v) = (0⊤, 0⊤, τe⊤)⊤, ν > 0, z > 0, (3)

where τ > 0. Solutions vτ to (3) define in R
n+4m a curve C(τ) called the central path. This curve

leads to v∗, when τ tends to zero. We combine the Newton method applied to the equation in
(3) with changes of τ so that the iterations lay in the neighborhood of C(τ) defined by

N (γ, β) = {v = (x⊤, ν⊤, z⊤)⊤ ∈ R
n+4m : ‖∇xL(x, ν)‖ ≤ βϑ,

‖∇νL(x, ν) + z‖ ≤ βϑ, ν ≥ 0, z ≥ 0, νizi ≥ γϑ, i = 1, . . . , 2m}, (4)

where β ≥ 0, γ ∈ (0, 1], and ϑ = ϑ(v) = ν⊤z/(2m). In the kth iteration, we modify τ = τk by
the product of ϑk = ϑ(v(k)) with the centering parameter σk lying in a positive interval. The
algorithm uses also the Armijo-type condition (6) ensuring that the sequence {ϑk} is decreasing.
Below, we introduce restrictions on the values of β and σ that are required by the convergence
analysis [11]. By J = J(v) in (5), we denote the Jacobi matrix to F at v.

Algorithm PF: Given γ ∈ (0, 1], β ≥ 1, 0 < σmin ≤ σmax ≤ 1/2, ω ∈ (0, 1), and ǫ ≥ 0. Let
v(0) ∈ N (γ, β) and set k := 0.

(1◦) Choose σk ∈ [σmin, σmax].

(2◦) If ν(k) > 0 and z(k) > 0, solve

J(v(k))∆v(k+1) = −F (v(k)) + (0⊤, 0⊤, σkϑke
⊤)⊤, (5)

else set ∆v(k+1) = 0.

(3◦) Set
v(k+1) = v(k) + αk∆v(k+1)

using the largest αk ∈ (0, 1] satisfying v(k+1) ∈ N (γ, β) and

ϑk+1 ≤ (1 − αkω(1 − σk))ϑk. (6)

(4◦) Return v̄ = v(k+1), when

err(k) := ‖v(k+1) − v(k)‖/‖v(k+1)‖ ≤ ǫ,

else set k := k + 1 and go to step (1◦).
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3 Preconditioning and experiments

The Jacobi matrix J = J(v) reads as follows:

J =





J11 J12 0
J21 0 I
0 Z N



 ,

where J11 = A+diag(0, 2N2, 2N2), J12 = J⊤
21 = diag(−I, 2(X2 X3)

⊤), N2 = diag(νm+1, . . . , ν2m),
and Xk = diag(x(k−1)m+1, . . . , xkm), k = 2, 3. The computational efficiency consists in the way
how the ill-conditioned (inner) linear systems with the matrix J are solved. We use two solution
methods both based on the Schur complement reduction. The first one is based on the elimina-
tion of the 2nd and 3rd unknown that results in the positive definite matrix JSC preconditioned
by PSC :

JSC = J11 + J12D
−1
22 J21, PSC = D11 + J12D

−1
22 J21,

where D22 = N−1Z, D11 = diag(J11). The second one is based on the elimination of the 3rd
unknown leading to the indefinite matrix JAM preconditioned by PAM :

JAM =

(

J11 J12

J21 −D22

)

, PAM =

(

D11 J12

J21 −D22

)

.

The following result is proved in [11]; see also [12, 1].

Theorem 1 (i) The eigenvalues λ of P−1
AMJAM are positive. The eigenvalue λ = 1 is of the

multiplicity 2m and the remaining n eigenvalues are the same as the eigenvalues of P−1
SCJSC .

(ii) All eigenvalues of P−1
SCJSC lay in the interval [amind

−1
max, amaxd

−1
min], where amin, dmin and amax,

dmax are the smallest and the largest eigenvalues of A, D = diag(A), respectively.
(iii) The condition numbers κ(P−1

SCJSC) and κ(P−1
AMJAM ) are bounded by the product of the con-

dition numbers κ(A) and κ(D).

Numerical experiments illustrate behavior of Algorithm PF for the contact problem with
Tresca friction [8]. All computations are performed in Matlab on PC Core i7(2.8GHz) with
4GB RAM. In Table 1, we report the number of iterations iter, the number nA of matrix-vector
multiplications by A, and the solution time in seconds. In labeling of columns PF(rtol, cfact), we
introduce the parameters that control the inner (conjugate gradient) precisions [11]. To compare
the efficiency with KPRGP, we report its solution characteristics. In Figure 1, we depict the
iteration history of the condition numbers that is in agreement with Theorem 1.

PF(0.3, 0.99) PF(0.1, 0.9) PF(0.01, 0.99) KPRGP

n/m iter/nA time iter/nA time iter/nA time nA time

10890/990 19/132 24.91 17/134 24.98 16/136 25.24 203 30.64
18252/1404 16/95 44.43 13/75 36.49 16/141 60.47 230 78.13
28350/1890 19/128 117.44 16/120 109.72 16/133 118.97 254 177.31
41616/2448 16/102 184.47 18/135 232.27 17/157 260.74 259 344.97

Table 1: Tresca friction, inner solver based on JAM .
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of the Czech Republic and by Research Projects MSM6198910027 (RK) and MSM6198959214
(HN,JM,PŽ) of the Czech Ministry of Education. This paper has been elaborated in the frame-
work of the IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070 supported by
Operational Programme ’Research and Development for Innovations’ funded by Structural Funds
of E. U. and state budget of C. R. (RK).
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Figure 1: The preconditioning effect (for JAM ).
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