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1 Introduction

The contribution deals with numerical realization of elliptic boundary value problems arising in
linear elasticity by a fictitious domain method. Any fictitious domain formulation [2] extends the
original problem defined in a domain ω to a new (fictitious) domain Ω with a simple geometry
(e.g. a box) which contains ω. The main advantage consists in the fact that an uniform mesh
can be constructed on Ω. Consequently, the stiffness matrix has a structure that enables us to
use highly efficient multiplying procedures. We will apply multiplying procedures based on a
correspondence between circulant matrices and the discrete Fourier transform (DFT).

The original fictitious domain method based on Lagrange multipliers [1] enforces boundary
conditions by Lagrange multipliers defined on the boundary of the original domain γ. Therefore
the fictitious domain solution has a singularity on γ that can result in an intrinsic error of the
computed solution. Our modified version [3] uses an auxiliary curve Γ located outside of ω, on
which we introduce a new control variable in order to satisfy the boundary conditions on γ. In
this case the singularity is moved away from ω so that the computed solution is smoother in ω.
We have illustrated experimentally in [3] that the discretization error is significantly smaller in
the second case and corresponding rate of convergence is higher.

2 Formulation of the problem

Let us consider an elastic body represented by a bounded domain ω ⊂ R
2 with the sufficiently

smooth boundary γ consisting of two disjoint parts γu and γp, γ = γu ∪ γp (see Figure 4.1).
The zero displacements are prescribed on γu while surface tractions of density p ∈ (L2(γp))

2

act on γp. Finally we suppose that the body ω is subject to volume forces of density f |ω ,

f ∈ (L2
loc(R

2))2. We seek a displacement field u in ω satisfying the equilibrium equation and
the Dirichlet and Neumann boundary conditions:

−divσ(u) = f in ω,

u = 0 on γu,

σ(u)ν = p on γp,















(1)

where σ(u) is the stress tensor in ω and ν stands for the unit outward normal vector to γ. The
stress tensor is related to the linearized strain tensor ε(u) := 1/2(∇u+∇⊤u) by the Hooke law
for linear isotropic materials:

σ(u) := c1tr(ε(u))I + 2c2ε(u) in ω,

where ”tr” denotes the trace of matrices, I ∈ R
2×2 is the identity matrix and c1, c2 > 0 are the

Lamè constants.
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Denote
V(ω) = {v ∈ (H1(ω))2| v = 0 on γu}.

The weak formulation of (1) reads as follows:

Find u ∈ V(ω) such that aω(u, v) = fω(v) + (p, v)γp ∀v ∈ V(ω), (2)

where

aω(u, v) =

∫

ω
σ(u) : ε(v) dx, fω(v) =

∫

ω
f · v dx

and (·, ·)γp is the scalar product in (L2(γp))
2.

Let us consider a box Ω such that ω ⊂ Ω and construct a closed curve Γ surrounding ω (see
Figure 4.1). Instead of (2), we propose to solve the following fictitious domain formulation of
(1) in Ω:

Find (û, λ) ∈ (H1
per(Ω))2 × Λ(Γ) such that

aΩ(û, v) + bΓ(λ, v) = fΩ(v) ∀v ∈ (H1
per(Ω))2,

bγu(µu, û) = 0 ∀µu ∈ Λ(γu),

bγp(µp, σ(û)ν) = bγp(µp, p) ∀µp ∈ Λ(γp),



























(3)

where H1
per(Ω) is the space of periodic functions from H1(Ω); Λ(Γ) := (H−1/2(Γ))2, Λ(γu) :=

(H−1/2(γu))2, Λ(γp) := (H1/2(γp))
2 and bΓ, bγu , bγp are the respective duality pairings between

these spaces and their duals. It is readily seen that û|ω solves (2).

3 Algebraic solvers

A discretization of (3) based on a mixed finite element method leads typically to the following
algebraic saddle-point problem: find a pair (u, λ) ∈ R

2n × R
2m such that









A B⊤
Γ

Bγu 0

Cγp 0









(

u

λ

)

=









f

0

p









, (4)

where A ∈ R
2n×2n is the stiffness matrix, BΓ ∈ R

2m×2n and Bγu ∈ R
2mu×2n are the Dirichlet

trace matrices on Γ and γu, respectively, Cγp ∈ R
2mp×2n is the Neumann trace matrix (repre-

senting the trace of σ(u)ν) on γp, f ∈ R
2n, p ∈ R

2mp and m = mu + mp.

The system (4) can be solved by the algorithm presented in [3] that combines the Schur com-
plement reduction with the null-space method. It requires a multiplying procedure to perform
the matrix-vector products A†y, where A† is a generalized inverse to A and y ∈ R

2n. Let us
note that A is singular due to the presence of H1

per(Ω) in (3). On the other hand, the periodic
boundary condition on ∂Ω leads to a block circulant structure of A that enables us to handle
the spectral decomposition of blocks of A by the DFT. Therefore one can evaluate A†y by the
FFT-algorithm without necessity to assemble and store A.

We introduce the main ideas of our multiplying procedure. First note that the differential
operator in (1) reads as follows:

divσ(u) =











(c1 + 2c2)
∂2u1

∂x2
1

+ c2
∂2u1

∂x2
2

+ (c1 + c2)
∂2u2

∂x1∂x2

(c1 + c2)
∂2u1

∂x1∂x2
+ c2

∂2u2

∂x2
1

+ (c1 + 2c2)
∂2u2

∂x2
2











,
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where u = (u1, u2). Let us consider equidistant partitions of the sides of Ω := (0, l1) × (0, l2)
into n1, n2 segments with stepsizes h1 = l1/n1, h2 = l2/n2, respectively. Thus, Ω is partitioned
into n := n1n2 rectangles. On such a partition we define the finite element subspace of H1

per(Ω)
formed by piecewise bilinear functions. Then the stiffness matrix A takes the form:

A =

(

(c1 + 2c2)A1 ⊗ M2 + c2M1 ⊗ A2 −(c1 + c2)B1 ⊗ B2

−(c1 + c2)B1 ⊗ B2 c2A1 ⊗ M2 + (c1 + 2c2)M1 ⊗ A2

)

, (5)

where Ak, Mk, Bk ∈ R
nk×nk are the circulants with the first columns ak, mk, bk ∈ R

nk , ak =
1
hk

(2,−1, 0, . . . , 0,−1)⊤, mk = hk

6 (4, 1, 0, . . . , 0, 1)⊤, bk = 1
2(0,−1, 0, . . . , 0, 1)⊤, k = 1, 2, respec-

tively, and ⊗ stands for the Kronecker product. It is well-known that the eigenvalues of any
circulant can be obtained by the DFT of its first column while the eigenvectors are the columns
of the inverse to the DFT matrix [2]. Introducing notation Xk for the DFT matrix of order nk,
we can write Ak = X−1

k DAk
Xk, Mk = X−1

k DMk
Xk, Bk = X−1

k DBk
Xk, where DAk

, DMk
, DBk

,
k = 1, 2, are the respective diagonal matrices of eigenvalues. Substituting into (5), we obtain:

A =

(

X−1
1 ⊗ X−1

2 0

0 X−1
1 ⊗ X−1

2

)(

D11 D12

D21 D22

)(

X1 ⊗ X2 0

0 X1 ⊗ X2

)

, (6)

where D11 = (c1 +2c2)DA1
⊗DM2

+ c2DM1
⊗DA2

, D22 = c2DA1
⊗DM2

+(c1 +2c2)DM1
⊗DA2

,
D12 = (c1 + c2)DB1

⊗ DB2
, D21 = D12. Denote D the second matrix on the right hand-side

of (6). The generalized inverse A† may be obtained replacing D by D† in (6). Let us note that
the actions of D† can be easily performed using the following factorization of D:

D =

(

I 0

D21D
†
11 I

)(

D11 0

0 D22 − D21D
†
11D12

)(

I D†
11D12

0 I

)

, (7)

where D†
11 = diag(d̃1, . . . , d̃n) with d̃i = 1/di, if di 6= 0, and d̃i = 0, if di = 0. Taking into

account the fact that all blocks in (7) are diagonal, we obtain the following result.

Lemma 3.1 Let n1 and n2 be powers of two. Then the matrix-vector product A†v, v ∈ R
2n,

can be evaluated by the total complexity O(4n log2 n + 4n).

4 Numerical experiments

Let ω be given by the interior of the circle (see Figure 4.1):

ω = {(x, y) ∈ R
2| (x − 0.5)2 + (y − 0.5)2 < 0.32}

and Ω = (0, 1) × (0, 1). The right hand-side in (1) are chosen as f = −divσ(û), p = σ(û)ν,
where û(x, y) = (0.1 ln(x + y + 1), 0.1xy), (x, y) ∈ R

2. The approximation of H1
per(Ω) in (3)

has been described in the previous section while Λ(γu), Λ(γp) and Λ(Γ) are replaced by their
subspaces of piecewise constant functions on partitions of polygonal approximations of γu, γp

and Γ, respectively. The stepsizes H on γu, γp and Γ are chosen to guarantee the requirement
dimΛ(γu) + dimΛ(γp) = dimΛ(Γ). The auxiliary boundary Γ is constructed by shifting γ
four h units in the direction of the outward normal vector with h := h1 = h2. The original
and deformed geometries are depicted in Figure 4.2 and the difference between the exact and
computed displacements is shown in Figure 4.3 for h = 1/256.

3



0 1
0

1
Ω

ω

γu

γp

Γ

ν

Figure 4.1: Geometry of ω.

0 1
0

1

 

 

original
deformed

Figure 4.2: Original and de-
formed geometry.
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Figure 4.3: Differ. |ûh−û| in ω.

In Table 4.1, we report the number of primal (2n) and control (2m) variables, the number of
BiCGSTAB iterations, the computational time and the relative errors in the following norms:

Err(L2(ω))2 =
‖ûh − û‖(L2(ω))2

‖û‖(L2(ω))2
, Err(H1(ω))2 =

‖ûh − û‖(H1(ω))2

‖û‖(H1(ω))2
, Err(L2(γ))2 =

‖ûh − û‖(L2(γ))2

‖û‖(L2(γ))2
.

From the computed errors, we determine the convergence rates of the fictitious domain solution
in the (L2(ω))2, (H1(ω))2 and (L2(γ))2-norm, respectively. We consider partitions with the
non-constant ratio of stepsizes H/h = | log2(h)| found experimentally which leads to a smooth
behavior of the approximations of control variables as H → 0 + .

Table 4.1: Results of the FD approach (3).

Step h 2n/2m Iters. C.time[s] Err(L2(ω))2 Err(H1(ω))2 Err(L2(γ))2

1/64 8450/44 20 0.2808 4.2348e-004 5.2662e-001 9.7813e-004
1/128 33282/68 19 0.39 1.7261e-004 3.3539e-001 3.4267e-004
1/256 132098/124 34 2.371 3.8171e-005 1.5851e-001 1.4673e-004
1/512 526338/212 46 16.26 1.0374e-005 8.2440e-002 2.9814e-005
1/1024 2101250/384 77 109 4.7117e-006 5.5679e-002 1.1683e-005

Convergence rates: 1.7036 0.8508 1.6298
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