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1 Introduction

Contact problems represent a special branch of mechanics of solids whose goal is to find an
equilibrium state of deformable bodies being in a mutual contact. Due to non-penetration and
friction conditions, problems we have to solve are highly non-linear. For linearly elastic materials
obeying a Hook law for small deformations, a linearization of the non-penetration conditions
leads to a convex set of kinematically admissible displacements (geometrical nonlinearity). An-
other non-linearity originates from the presence of friction. In the simplest case with an à-priori
given slip bound (Tresca model), the mathematical model is represented by a variational in-
equality of the second kind. This model is however too simple since the non-penetration and
friction phenomena are decoupled. For this reason more realistic models of friction have to be
used and the Coulomb friction law is the classical one. The slip bound prescribed in Tresca
model is now replaced by the product of a coefficient of friction F and the norm of the normal
contact force. The coupling of unilateral and friction conditions leads to the so-called implicit
variational inequality (in terms of displacements) or to a quasivariational inequality (in terms
of contact stresses). Due to material or contact surface properties it may happen that the effect
of friction is directionally dependent. A discretization of 3D contact problems with orthotropic
Coulomb friction characterized by two coefficients of friction F1 and F2 in two mutually or-
thogonal directions was presented in [4]. The scalable algorithm for this problem was developed
in [3] while the main ideas may be found in [1].

2 Formulation and algorithm

Let us consider two elastic bodies represented by two non-overlapping domains Ωk ⊂ R
3 with

the boundaries ∂Ωk, k = 1, 2. Each boundary consists of three non-empty disjoint parts Γk
u, Γk

p,

and Γk
c open in ∂Ωk, so that ∂Ωk = Γ

k

u ∪ Γ
k

p ∪ Γ
k

c . The zero displacements are prescribed on

Γk
u while surface tractions act on Γk

p. On the contact interface given by Γ1
c and Γ2

c we consider
contact conditions: the non-penetration of the bodies, the transmission of the contact stresses,
and the effect of orthotropic Coulomb friction. Finally we suppose that each body Ωk is subject
to volume forces.

Our algorithm is based on the fixed-point approach in which the solution to the original problem
is defined as a fixed-point of an auxiliary mapping acting on the contact interface. To find fixed-
point we use the method of successive approximations whose individual iterative steps are given
by contact problems with orthotropic Tresca model of friction.

The finite element approximation of the auxiliary problems combined with the TFETI domain
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decomposition method [2] leads to the following algebraic minimization problem:

minimize
1

2
u⊤Ku − u⊤f +

mc∑

i=1

gi‖Fi(T1,iu, T2,iu)⊤‖2, (1)

subject to BEu = 0, Nu ≤ d, (2)

where K = diag(K1, . . . ,Ks) is a symmetric positive semidefinite block-diagonal stiffness matrix
of order n, f ∈ R

n is the load vector, BE is an m × n full rank ”gluing” matrix, N denotes
an mc × n full rank matrix describing together with d ∈ R

mc the non-penetration condition,
T1,i, T2,i are rows of mc × n full rank matrices T1, T2, respectively, Fi ∈ R

2×2 are the value of
the coefficient of friction, and gi denote discrete slip bound values at contact nodes.

Even though (1)-(2) is the minimization problem with the unique solution, it is not suitable for
direct numerical solution. The reasons are that K is typically singular, the summation term
in (1) is non-differentiable, and the feasible set in (2) is in general so complex that the projection
into it can hardly be effectively computed. In order to overcome these difficulties, one can apply
the duality theory of convex programming [1].

To regularize the non-differentiability we use the following idea based on the Cauchy-Schwarz
inequality in R

2:

max
‖F−1

i
λT,i‖2≤gi

(T1,iu, T2,iu)λT,i = gi‖Fi(T1,iu, T2,iu)⊤‖2, (3)

where λT,i ∈ R
2 plays the role of Lagrange multipliers. We will denote λT,i = (λT1,i, λT2,i)

⊤. It
is easily seen that the constraints on λT,i in (3) are the ellipsoidal inequalities.

In the dual formulation of (1)-(2) we use three types of Lagrange multipliers: λE ∈ R
m and

λN ∈ R
mc are associated with the equality and the inequality constraints in (2), while λT1

, λT2
∈

R
mc regularize the non-differentiability via (3). To simplify the notation we denote

λ =




λE

λN

λT1

λT2


 , B =




BE

N
T1

T2


 , c =




0
d
0
0


 .

The Lagrangian associated with the problem (1)-(2) reads as

L(u, λ) =
1

2
u⊤Ku − u⊤f + λ⊤(Bu − c), (u, λ) ∈ R

n × Λ(g),

and the set of the Lagrange multipliers is given by

Λ(g) = {λ ∈ R
m+3mc : λN,i ≥ 0, ‖F−1

i λT,i‖
2
2 ≤ g2

i , i = 1, . . . ,mc}.

It is well known [1] that (1)-(2) is equivalent to the saddle-point problem that is the problem of
finding (ū, λ̄) ∈ R

n × Λ(g) such that

L(ū, λ̄) = min
u∈Rn

max
λ∈Λ(g)

L(u, λ).

As L is convex in the first variable, ū can be eliminated by

ū = K†(f − Bλ̄) + Rᾱ,
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where K† ∈ R
n×n is a generalized inverse to K, R ∈ R

n×l is a matrix whose columns span the
null-space KerK, l denotes the defect of K, and ᾱ ∈ R

l is an appropriate vector. In advance,

f − B⊤λ̄ ∈ ImK.

Therefore, (1)-(2) leads to the dual problem:

minimize
1

2
λ⊤Fλ − λ⊤h̃, subject to λ ∈ Λ(g), Gλ = e,

where
F = BK†B⊤, h̃ = BK†f − c, G = R⊤B, e = R⊤f.

After homogenization, using orthogonal projectors, and penalization, we arrive at the following
problem:

minimize
1

2
λ⊤(PFP + ρQ)λ − λ⊤Ph, subject to λ ∈ Λ(g), Gλ = 0, (4)

where ρ > 0 is arbitrary and Q = G⊤(GG⊤)−1G, P = I − Q denote the orthogonal projectors
on ImG⊤ and KerG, respectively.

As (4) consists of the minimization of the quadratic objective function subject to separable
convex inequalities and linear equality constraints, we use the recently proposed optimization
algorithm based on the augmented Lagrangian method [3]. The important property of this
algorithm is that the number of iterations needed to get a solution with a given accuracy is
uniformly bounded (with respect to the scale of the problem) provided that the spectrum of
the Hessian is confined in a given interval. The assumption on the spectrum is satisfied due to
TFETI domain decomposition method.

3 Numerical experiments

We use the algorithm for solving contact problem with Coulomb friction with the geometry as
in Figure 3.1. The upper body is made of steel while the lower one is made of aluminium. The
applied surface tractions are seen in the figure, the volume forces are neglected. The coefficient
of friction is given by Fi = diag(0.3, 0.3) (isotropic case).

Ω1

Ω2

Γ1
u

Γ2
u

Γ1
c = Γ2

c

Figure 3.1: Geometry of the model problem
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Each body Ωk, k = 1, 2, is divided into the same number of sub-domains represented by bricks
of the same size that are decomposed then into cubes (trilinear finite elements). By H and h
we denote the decomposition parameter (diameter of bricks) and the discretization parameter
(diameter of cubes), respectively. We apply the inexact implementation of the algorithm so that
iter are connected iterates of the augmented Lagrangian algorithm and the method of successive
approximations. By nPFP we denote the number of matrix vector multiplications by the Hessian
matrix. Finally, n, nd = m + 3mc, and l is the number of primal unknowns, dual unknowns,
and rigid body modes. The results of our experiments are summarized in Table 3.1, where
releff := nPFP/n is the relative efficiency of the solver.

Table 3.1: Scalability and relative efficiency

s H/h = 2 H/h = 3 H/h = 4 H/h = 5

4 (324/153/24) (768/276/24) (1500/435/24) (2592/630/24)

10/180 10/269 11/356 11/470
0.5556 0.3503 0.2373 0.1813

32 (2592/1527/192) (6144/2889/192) (12000/4683/192) (20736/6909/192)

11/483 11/657 11/665 12/847
0.1863 0.1069 0.0554 0.0408

108 (8748/5493/648) (20736/10506/648) (40500/17139/648) (69984/25392/648)

11/636 11/878 13/906 14/1071
0.0727 0.0423 0.0224 0.0153

256 (20736/13419/1536) (49152/25791/1536) (96000/42195/1536) (165888/62631/1536)

12/737 14/939 15/1173 16/1400
0.0355 0.01910 0.0122 0.0084

500 (40500/26673/3000) (96000/51408/3000) (187500/84243/3000)(324000/125047/3000)

14/812 15/1039 17/1533 18/1776
0.0200 0.0108 0.0081 0.0054

a At each position (n/nd/l), iter/nPFP, and releff are displayed
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