arXiv:1904.00518v1 [cs.DC] 1 Apr 2019

A Comparative Study of Asynchronous Many-Tasking
Runtimes: Cilk, Charm++, ParalleX and AM++

Abhishek Kulkarni ~Andrew Lumsdaine
Center for Research in Extreme Scale Technologies
Indiana University
{adkulkar, lums}@crest.iu.edu

January 8, 2014

Abstract

We evaluate and compare four contemporary and emerging runtimes for high-performance computing
(HPC) applications: Cilk, Charm++, ParalleX and AM++. We compare along three bases: programming
model, execution model and the implementation on an underlying machine model. The comparison study
includes a survey of each runtime system’s programming models, their corresponding execution models,
their stated features, and performance and productivity goals.

We first qualitatively compare these runtimes with programmability in mind. The differences in ex-
pressivity and programmability arising from their syntax and semantics are clearly enunciated through
examples common to all runtimes. Then, the execution model of each runtime, which acts as a bridge
between the programming model and the underlying machine model, is compared and contrasted to that
of the others. We also evaluate four mature implementations of these runtimes, namely: Intel Cilk++,
Charm++ 6.5.1, AM++ and HPX-3, that embody the principles dictated by these models.

With the emergence of the next generation of supercomputers, it is imperative for parallel programming
models to evolve and address the integral challenges introduced by the increasing scale. Rather than
picking a winner out of these four models under consideration, we end with a discussion on lessons learned,
and how such a study is instructive in the evolution of parallel programming frameworks to address the
said challenges.

1 Introduction

In June 2013, the Tianhe-2, a supercomputer developed by China’s National University of Defense Tech-
nology, attained a performance of 33.86 Petaflop/s on the LINPACK benchmark. At the time, there were
at least 26 systems that have reached the Petaflop mark (10'® floating-point operations per second) [24].
It has been predicted that by the end of this decade, supercomputers will reach the exascale mark with
potentially thousands of nodes and hardware accelerators, millions of cores, and billions of threads of ex-
ecution [23]. This pinnacle of high-performance computing capability would, unarguably, help advance
scientific discoveries and benefit diverse domains such as climate and ocean modeling, national security,
energy, materials science, etc.

There are several key challenges in how we build computing systems, and how we develop system
software that need to be addressed before supercomputers can attain sustained exascale performance. The
four most significant challenges towards reaching this target are: Energy and Power; Memory and Storage;
Concurrency and Locality; and Resiliency [23].

The scalability of applications that are expected to benefit from the computing capability offered by
these exascale-class machines largely depends, among other things, on programmability of these machines.
Programmability is primarily dictated by the parallel programming model exposed by the de-facto runtime
on these machines to the programmer. Several parallel programming frameworks exist, but are encumbered
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by their limitations in expressing parallelism, or by the inadequacy of their corresponding runtime systems
to maintain efficiency at higher scales.

A parallel programming framework typically consists of a programming model (the language in which
a parallel program is expressed), a corresponding execution model (that defines how that program is ex-
ecuted) with the help of an underlying implementation based on a given machine model. The language
and its associated runtime comprise a parallel programming framework. Several parallel programming
frameworks are in prevalent use today, including shared-memory programming models such as Pthreads,
OpenMP [27], Cilk [5, 10], Intel (Threading Building Blocks) TBB [30, 2]; accelerator-based programming
models such as CUDA [1], OpenCL [31, 22] and OpenACC; and distributed-memory programming models
such as the Message Passing Interface (MPI) [25, 26], MapReduce [8], Charm++ [16], ParalleX [11], UPC [32],
X10 [7] and others. Many of these frameworks have experienced a wide adoption (some more than others)
in the programming community. In addition to allowing ease of programmability, another prime concern of
parallel programming frameworks is increased efficiency and higher performance. The higher performance
is attained by exploiting opportunities offered by the advances in hardware architecture.

In this report, we compare four distinct, but related, parallel programming frameworks for high-performance
computing: Cilk, Charm++, AM++ and ParalleX. Our comparison spans three bases: programming model,
execution model, and their realizations: an underlying implementation. We evaluate along these axes,
since the original goals of these frameworks is both, high productivity and high performance. If we were
only interested in one of the two, simply looking at the programming model (syntax) or the performance
of the implementation would have sufficed. Evaluating along these dimensions provides us with a fair
apples-to-apples comparison of Cilk, Charm++, AM++ and ParalleX.

Programming Model
(Language, Compiler)

Execution Model
(Runtime System, Operating System)

Machine Model
(Hardware, Network)

Figure 1: Components of a Parallel Programming Framework.

Programming Model A parallel programming model provides the constructs for exposing and expressing
latent parallelism in a program. Existing parallel programming paradigms are mainly characterized based
on the inherent data- or control-parallelism that they expose. Traditional parallel programming paradigms
widely in adoption are: SIMD/SPMD (single-program multiple-data), which helps expose data-parallelism;
MIMD/MPMD (multiple-program multiple-data), which helps expose task-parallelism; and asynchronous
execution models such as dataflow, and message-driven execution, which expose both data- and control-
parallelism.

From a programmer’s perspective, the other differentiating factor of programming models is based on
how they abstract the programmer’s view of memory (and, thus, data). Contemporary parallel program-
ming frameworks can be predominantly divided into two major classes: message-passing models based
on the CSP (Communicating Sequential Processes) execution model, and shared-memory models which
provide a uniform, global, shared-view of the memory.

A programming model enables the expression of parallelism in a given program. Productivity of a pro-
gramming model is, thus, dependent on the overall expressivity of its language. Higher-level programming
models leave out a lot of mundane details, that are filled in by the runtime, in favor of higher expressivity
(e.g. OpenMP). On the other hand, low-level programming models such as POSIX threads provide full con-
trol to the programmer thus allowing to get the maximum performance out of them. Oftentimes, high-level
programming paradigms use low-level programming paradigms as their targets to offer the best of both
worlds. Figure 2 shows a data-parallel vector-addition example expressed in a high-level programming



Listing 2: Pthreads

1 const int N = 100000;

2 int i, al[N], b[N], c[N];

3 int args[NUM_CPUS];

4 pthread_t threads[NUM_CPUS];

6 void *init(void *arg) {

7 int tid = *((int*) arg);
8

9

Listing 1: OpenMP int range = N/NUM_CPUS;

1 const int N = 100000; for (i=0; i<range; i++)

2 int i, al[N], b[N], c[N]; 10 ali] = b[i] = (range*tid)+2%i;
1}

4 #pragma omp parallel for

5 for (i=0; i<N; i++) 13 // void *sum(void *arg) { ... }

ali]l = bl[i]l = 2%i;

15 for (i=0; i<NUM_CPUS; ++i) {

8 #pragma omp parallel for \ 16 args[i] = 1i;
shared(a,b,c,100) private(i) « 17 pthread_create(&threads[i],0, init,
\ 18 (voidx)&args[il);
10 schedule(static,100) 19 }
11 for (i=0; i<N; i++)
12 cli] = ali] + b[il; 21 for (i=0; i<NUM_CPUS; ++i)

22  pthread_join(threads[i],0);

24 for (i=0; i<NUM_CPUS; ++i)
25 pthread_create(&threads[i],0, sum,
26 (void*)&args[il);

28 for (i=0; i<NUM_CPUS; ++i)
29  pthread_join(threads[i],0);

Figure 2: Data-parallel vector-addition expressed in OpenMP and POSIX Threads.

framework (OpenMP) in contrast to a low-level programming abstraction (Pthreads). The details about
task granularity, data locality etc. are either left out or can be specified through domain-specific annota-
tions.

The fundamental characteristics of a parallel programming model are:

1. Linguistic constructs for parallel control (spawn, doall).

Programmer’s view of memory (shared memory, message passing).

Explicit control over data layout or distribution.

Abstraction and encapsulation of control flow (synchronous, asynchronous).

Reuse, modularity and composability.

SRS L R

Determinism and repeatability v/s non-determinism.

Since a programming model offers a language (or language extension through annotations) to express
parallelism, it often requires a compiler (or a preprocessor or source-to-source translator) to translate the



language into instructions that the execution model can execute. Although, this requires additional devel-
opment effort, it admits domain-specific compile-time optimizations and static analyses that can guide the
runtime system to achieve higher performance. Such domain-specific languages have shown to improve
programmer productivity, while maintaining all of the performance benefits.

Execution Model As the programming model is said to introduce syntax for parallelism in a program-
ming language, the corresponding execution model complements it by providing an operational semantics
for the syntax. Put simply, while the programming model enables what is to be expressed, the execution
model dictates how it would be executed. An execution model is thus an abstraction of computation that
also captures the inter-relationships between programming model and the underlying machine model. A
parallel execution model takes into account communication, locality, synchronization etc. to turn latent
parallelism into actual parallelism with maximal efficiency.
The defining characteristics of a distributed execution model are:

1. Units of computation (threads, tasks).

Communication of data between tasks (single-node v/s multi-node).
Synchronization between tasks (through communication).

Abstraction and encapsulation of control flow (synchronous v/s asynchronous).

Efficient execution of tasks on a machine (scheduling, mapping etc.).

ARSI R

Runtime features such as termination detection, quiescence detection, parallel I/O, fault tolerance, check-
point/restart etc.

An execution model conceptually spans the entire vertical stack defining, largely, the features exposed
by the programming model to the programmer and relying heavily on the features exposed by the machine
to the runtime and operating systems. A programming model can, sometimes, be quite similar to the
underlying execution model (with a superficial difference between the two, at times).

Similarly, some execution models are a better (and more natural) fit for some machine models: e.g.
data-parallel models on vector processors, message-driven execution models on dataflow machines etc.
Execution models such as MPI, which is based on the Communicating Sequential Processes (CSP) model
have enjoyed a much broader adoption, whereas upcoming execution models such as those offered by the
Partitioned Global Address Space (PGAS) languages like UPC and Co-Array Fortran have been catching
up lately.

Implementation The execution model, typically, depends on an abstract machine model by parameteriz-
ing over the nitty-gritty machine details. Different underlying architectures, however, enable optimizations
that can improve the overall performance of the parallel programming model. Existing supercomputers
comprise of a wide variety of machine architectures (some homogeneous, and others heterogeneous), and
varying network characteristics. An implementation of a parallel programming framework is, thus, char-
acterized by factors such as

e Efficiency of the implementation (Performance).
¢ Portability (Different network transports).
¢ Interoperability (compatibility with other runtime systems).

¢ Tools and infrastructure (debugging, visualization).



Oftentimes, the implementations offer valuable insight into the shortcomings of an execution model,
and help in extending the programming framework to plug those. For instance, the Intel Cilk Plus exten-
sions define enhancements to the original Cilk model (reducers, array notation etc.) that capture some of
the common information sharing patterns for task-parallelism.

Our main contributions in this paper are as follows:

* We identify the issues concerning extreme-scale computing and how execution models address the chal-
lenges posed by some of these issues. We categorize a parallel programming framework into a program-
ming model, an execution model, and an implementation.

* We qualitatively compare three parallel programming frameworks with respect to the proposed catego-
rization.

¢ We provide a discussion to evolve and extend the ParalleX execution model to address some of its limi-
tations.

The remainder of this paper is structured as follows: Section 2 describes the Cilk programming frame-
work through a variety of examples. Section 3 presents Charm++, a message-driven, object-oriented,
asynchronous execution model for high-performance computing. Section 4 introduces ParalleX, a high-
performance parallel execution model that is built upon fundamental principles that could potentially sub-
sume multiple execution paradigms to achieve scalability. Section 6 compares three featureful implementa-
tions of these execution models. Finally, in Section 7 we conclude with a discussion and mention the future
directions for this study.

2 Cilk

Cilk is a multi-threaded language for parallel programming that introduces syntax for expressing parallel
control [10]. It is provided as an extension to the C (and C++) language to support data and task parallelism.
The original Cilk model, at MIT, was proposed and implemented as early as 1994. Since then Cilk has
undergone several revisions, and the most commonly used Cilk implementation today, Intel Cilk Plus, is
based on the original Cilk 5 model. The Cilk philosophy was to provide a parallel extension to C, and
hence, it ensures sequential semantics when the Cilk keywords are ignored. This property is called as “C
elision” (or more generally “serial elision”). Further, Cilk implements an efficient work-stealing scheduler
providing nearly optimal scheduling of parallel tasks. Intel has further introduced extensions to the orignal
Cilk model with two key constructs: reducers - which are shared objects that allow two tasks to communicate
without introducing a data-race, and array notation - which allows leveraging vector capabilities of modern
processors.

2.1 Programming Model

Cilk introduces two keywords for expressing logical parallelism within a program: cilk_spawn and cilk_for<—
. Synchronization of tasks is expressed through the keyword cilk_sync. Originally Cilk also allowed
specification of non-determinism through the keywords abort and inlet.

The spawn keyword slight differs from a traditional thread spawn, in that, it only expresses the intent
of parallelism to the Cilk runtime. It differs from a traditional C function call as the function annotated
with the cilk_spawn keyword can now be executed in parallel with the parent function. Thus, it represents
an opportunity for parallelism, and is not a command that enforces parallelism. It is not safe to use the
values returned by the children until they execute a cilk_sync statement. cilk_spawn specifies that all
spawned calls in a function complete before the execution continues. It can be seen as a “local barrier” for
the given function. There is an implicit cilk_sync at the end of every function and every try block that
contains a cilk_spawn. When the spawned function returns, the values are stored directly in the parent’s
frame. However, previous Cilk versions provided an inlet call, which allowed the incorporation of the



returned value in to the parent’s frame in a more complicated way. The inlet can be viewed as a one-
shot continuation that is executed after the child returns. The example in Figure 3 shows a parallel version
written in different versions of Cilk.

Listing 3: Cilk-2

thread Fib(cont int k, int n) {

1
2 if (n < 2)
s send_argument (k, n); Listing 5: Cilk with inlets
4 else { - ——
5 cont int x, y; 1 1nfc fib(int n) {
6 spawn_next Sum(k, ?7x, ?y); 2 int x = 0
7 spawn fib(x, n-1); 3 inlet void sum(int s) {
8 spawn fib(x, n-2); 4 X *=5;
9 } 5 return;
10 } s }
11 thread Sum(cont int k,int x,int y) { )
12 send_argument (k, x+y); 8 if (n<2)
13 } 9 return n;
10 else {
Listing 4: Cilk-5 11 sum(cilk_spawn fib(n-1));
12 sum(cilk_spawn fib(n-2));
int fib(int n) { 13 cilk_sync;
if (n < 2) 14 return x;
return n; 15 }
int x = cilk_spawn fib(n-1); 16}

cilk_sync;

1
2
3
4
5 int y = fib(n-2);
6
7 return x + y;

8

Figure 3: A Cilk program to compute the Nth Fibonacci number.

The performance of a Cilk computation can be characterized by: work, which is the serial execution
time, and critical-path length, which is the execution time on an infinite number of processors. Much of
the design influences for Cilk 5 were dictated by the following principle:

The work-first principle: Minimize the scheduling overhead borne by the work of a computa-
tion. Specifically, move overheads out of the work and onto the critical path.

The total execution time of a Cilk computation on P processors is bounded by
T
TP < ?1 + CooToo

where the first term represents the work overhead and the second term denotes the critical-path overhead. The
work-first principle aims to minimize T at the expense of a larger c. as it has a more direct impact on the
performance.

Since Cilk relies on a provably-optimal work-stealing scheduler, the programmer does not have to worry
about scheduling or explicit relocation of threads. In the orignal Cilk model, tasks had to use explicit
locking to synchronize access to shared data. Newer extensions to Cilk allow race-free access to shared
data. Prior Cilk models also permitted distributed-memory programming allowing a shared view to global
data. Globally shared data was annotated with the shared keywords, as shown in Figure 4. The semantics
of this underlying distributed-shared memory [4] is discussed in the next section.



1 cilk void matrixmul(long nb, shared block *A,
2 shared block *B,

3 shared block *R) {
4 if (nb == 1)

5 multiply_block(A, B, R);
6 else {

7 shared block *C,*D,*E,*F,*G,*H,*I,*J;

8 shared block *CG,*CH,*EG,*EH,

9 *DI,*DJ,*FI,*FJ;

10 shared page_aligned block tmp[nb*nb];

1 /* get pointers to input submatrices */

12 partition(nb, A, &C, &D, &E, &F);

13 partition(nb, B, &G, &H, &I, &J);

14 /* get pointers to result submatrices */
15 partition(nb, R, &CG, &CH, &EG, &EH);

16 partition(nb, tmp, &DI, &DJ, &FI, &FJ);

17 /* solve subproblems recursively */

18 spawn matrixmul (nb/2, C, G, CG);

19 spawn matrixmul (nb/2, C, H, CH);

20 spawn matrixmul(nb/2, E, H, EH);
21 spawn matrixmul (nb/2, E, G, EG);
22 spawn matrixmul (nb/2, D, I, DI);
23 spawn matrixmul (nb/2, D, J, DJ);
24 spawn matrixmul (nb/2, F, J, FJ);
25 spawn matrixmul (nb/2, F, I, FI);
26 sync;

27 /* add results together into R */
28 spawn matrixadd(nb, tmp, R);

29 sync;

30 }

31 return;

32 }

Figure 4: Matrix Multiplication in Cilk using distributed-shared memory.

2.2 Execution Model

In Cilk, tasks represent logical parallelism in the program. Since Cilk is a faithful extension of C (and C++),
the C elision of a Cilk program is a correct implementation of the sequential semantics of the program.
Besides, Cilk exclusively uses work-stealing as the scheduling strategy in accordance with the work-first
principle. A Cilk DAG represents the series-parallel structure of the execution of a Cilk program. Nodes
of this task DAG are stolen dynamically without any a priori partitioning. Due to these reasons, the Cilk
runtime creates two version of each Cilk function: a sequential “slow” clone, and a parallel “fast” clone.
The “fast” clones are stolen by idle threads on different processors and executed as a lightweight-thread
with a stack. Due to the C elision of a Cilk program, the stolen children are backed by “cactus” stacks
where the parent stack is common to all of the children spawned by a given function. The Cilk execution
model always executes a spawned function on the same worker (and presumably the same system thread)
whereas the continuation is stolen by a different worker (and executed, presumably, by a different thread
on a different processor).

The corner stone of the Cilk parallel programming model is its provably-optimal scheduling based on



work-stealing. This scheduling strategy is based on a prior theoretical analysis of Cilk’s execution model.
The runtime load-balancing scheduler implements a Dijkstra-like, shared-memory, mutual-exclusion pro-
tocol (THE protocol) guaranteeing that stealing only contributes to the critical-path overhead. This protocol
mandates that thieves steal from the head of the queue (contributing to the critical-path overhead) whereas
workers steal from the tail of the shared-memory task queue (adding only to the work overhead). The
workers resort to heavy-weight hardware locks only when a conflict is detected.

The Cilk multithreaded runtime system originally developed for the Connection Machine CM5 had sup-
port for distributed shared memory implemented in software. It had a weaker consistency model called
as DAG-Consistent distributed-shared memory. DAG consistency allowed different reads to return values
based on different serial orders, but the reads respected the dependencies in the DAG. Thus, a read can
“see” the write only if there is some serial execution order in the DAG where the “read” sees the “write”.
The coherence was maintained by the BACKER coherence algorithm and is described in [4]. Further ex-
tensions to this model involved implementing Lazy Release Consistency (LRC), as in TreadMarks [21], to
improve the efficiency of the memory consistency model. This system, SilkRoad [28], delayed the propaga-
tion of modifications until the next lock acquisition, thus reducing the communication cost. Cilk-NOW [6]
was an extension to the Cilk-2 language which was largely functional and used explicit continuations to
represent parallelism. More specifically, the Cilk-2 runtime system did not support putting values directly
into the parent’s frame, and hence the parallel program had to be expressed in a continuation-passing style.
Tasks were represented as heap-allocated closures. An example of a Fibonacci program written in the Cilk-2
language is shown in Listing 3 in Figure 3. The Cilk-NOW system extend the Cilk execution model with two
features 1) adaptivity - new nodes could be added (or removed) dynamically to (or from) the distributed
runtime system and 2) reliability - failing nodes did not affect the running distributed Cilk computation.

2.3 Implementation

Intel Cilk Plus is the most widely used existing Cilk implementation. It is commercially implemented as
part of the Intel C++ Composer XE compiler. In addition to that, open-source implementations for GCC
and LLVM are available from http://cilkplus.org/download.

The cilk_for keyword converts a for loop into a parallel for loop. Each of the loop iteration can be
executed in parallel . The programmer can control the granularity by setting the grain size of the loop
(similar to OpenMP parallel for).

To avoid using locks to synchronize access to shared data, Intel Cilk Plus offers reducers that allows tasks
to use private "views" of a variable which are merged at the next sync. An ordered merge (over the reducer
monoid) ensures the serial semantics of the Cilk program.

The array notation allow users to express high-level vector operations on entire arrays or their slices.
arr[:] represents an entire array of stride 1. Similarly, multi-dimensional arrays can be referred to by
arr[:][:]. The array notation can be used with both, statically and dynamically allocated arrays. Several
functors are provided that natively operate on these arrays. It can also be used to represent scatter and
gather operations, like C[:1 = A[B[:1].

An elemental function is a function which can be invoked either on scalar arguments or on array el-
ements in parallel. The Cilk compiler generates both scalar and vector versions of these functions. The
#pragma simd keyword forces the compiler to generate vectorized code for a given function.

3 Charm++

Charm++ is a parallel programming system based on message-driven execution of migratable objects [16].
While the original Charm execution model was implemented as an extension to C, current Charm++ exten-
sions are additions to the C++ language with a distributed, adaptive runtime system. Charm++ can express
both data and task parallelism in a single application. Task parallelism is primarily expressed through mi-
gratable objects (called as chares) whereas data parallelism is exposed through a collection of these chare
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elements called as “chare arrays”. The Charm++ programming model has been demonstrated to perform
better for irregular and latency-sensitive applications, that benefit from its message-driven execution.

3.1 Programming Model

The most important underlying idea behind the Charm++ programming model comes from the actor pro-
gramming models and dataflow execution models. The CSP execution model (and its primary realization,
MPI) impose a Bulk Synchronous Parallel (BSP) programming regime which has shown to incur consid-
erable overheads at higher scales due to strong synchronization. Charm++ like Cilk relies on the parallel
slackness property: that the average parallelism inherent in the application exceeds much more than the
number of processors that it is executed on. This over-decomposition allows the Charm++ runtime system
to employ intelligent load-balancing schemes to migrate objects in the system [19].

Chares are essentially concurrent objects with methods that can be invoked remotely. A program is
divided into logical tasks represented by chare classes which are then invoked through message passing. A
Charm++ program supports supports modularity and parallel composition. Modules can depend on other
external modules, and also include additional header files. The interfaces are written in a “.ci” file which
is preprocessed to generate a C++ header file and linked with the corresponding C++ code. The extended
language supports multiple inheritance, dynamic binding, overloading and strong typing.

Chare Definitions Chares disallow unrestricted global variables and static variables in classes. Chare
classes have one or more entry methods that take a list of parameters or message types. Some example
declarations of entry methods are shown below.

1 entry void entryA(int n, float arr[n]);
2 entry void entryB(int n, float arr[n*n]);
3 entry void entryC(int nd,int dims[nd],float arr[product(dims,nd)]);

Note that the entry method arguments can include array references that are passed by value. Arbitrary
message types or user-defined data structures are also supported as long as they provide the corresponding
serialization and deserialization routines.

All chare objects are mandated to have a constructor entry method, and any number of other entry
methods. Entry methods of a chare are non-preemptible. A chare’s entry methods can be invoked via
proxies. The thisProxy member variable returns the proxy pointer to itself which can then be passed to
other chare objects.

// interface.ci

chare ChareType

{

entry ChareType(parametersl);

entry void EntryMethodName (parameters2);
};

o g A~ W N =

8 // interface.h
9 class ChareType : public CBase_ChareType {
10 // Data and member functions as in C++

11 public:
12 ChareType (parametersl) ;
13 void EntryMethodName?2 (parameters2);

14 };




Chare Creation New chares are created through the ckNew method as shown below:

1 CProxy_chareType: : ckNew(parameters, int destPE);

The destPE parameter is optional, as the runtime migrates the object to a processing element (PE) based
on the load-balancing policy in effect. Note that chare creation is lazy and asynchronous.

Method Invocation The following call invokes a method EntryMethod on the chare represented by the
proxy chareProxy. It is also possible to check if a proxy points to a local chare or not. This is typically used
as an optimization where local methods can be invoked directly without forwarding them through a proxy.

1 chareProxy.EntryMethod (parameters)
2 // check if local
3 C xc=chareProxy.ckLocal();

Data objects The original Charm model supported four different kind of data objects, namely:

¢ Read-Only objects.
* Write-Once objects.
® Accumulator objects.

* Monotonic objects.

Earlier Charm++ versions also supported a Multi-phase Shared Arrays (MSA) [9, 3] abstraction that
layered PGAS semantics on top of the asynchronous Charm++ runtime.

Charm++ only supports read-only variables; however, the other modalities are subsumed by allowing
arbitrary reductions on chare arrays. As the name suggests, it is erroneous to assign to a read-only variable
more than once. These are declared using the readonly annotation as follows readonly Type VarName;.

Chare arrays are arbitrarily-sized collections of chares that are distributed across different procesing
elements. They have a globally unique identifier of type CkArrayID, and each element has a unique index
of type CkArrayIndex. Chare arrays are declared using the following syntax:

array [1D] Arr {
entry Arr(init);
entry void Size();
I
class A : public CBase_Arr {
public:
Arr(init);
Arr(CkMigrateMessage *); // migration constructor
void someEntry();

© O N o g~ W N =

—_
o

};

The thisProxy member variable can be used to return a proxy pointer to the entire chare array.

Operations on Chare Arrays Since chare-arrays are a collection of chare objects, aggregate operations
representing common communication patterns can be performed on these collections. Method invocation
on a particular chare in a chare-array is simply performed by dereferencing the chare as follows: a1[i] .«
AQ; a1l[i]l.BQO;

10



In addition to single method invocations, messages can be broadcasted to all of the chares in a chare-
array by omitting the chare index when invoking a chare method:

al.doIt(parameters);

Similarly, reductions can be performed on chare-arrays. This functionality requires that the participating
chares in the chare-array expose a contribute method with the following definition:

void contribute(int nBytes, const void *data,

CkReduction: :reducerType type) ;

Some of the built-in reduction types supported by the Charm++ language are given in Table 1.

Reduction Type

Description

nop
sum_int, sum_float, sum_double
product_int, product_float, product_double
max_int, max_float, max_double

min_int, min_float, min_double
logical_and

logical_or

bitvec_and

bitvec_or

no operation performed

sum of the given numbers

product of the given numbers
largest of the given numbers
smallest of the given numbers
logical AND of the given integers
logical OR of the given integers
bitvector AND of the given numbers
bitvector OR of the given numbers

Table 1: Built-in reduction types in Charm++.

Structured Dagger Structured Dagger (SDAG) is a coordination language built on top of Charm++ that
facilitates a clear expression of control flow by specifying constraints for message-driven execution [17].
Consider an example to multiply a row and column of a matrix:

1 // in .ci file

2 chare Mult {

3 entry void Mult(Q);

4 entry void recvRow(Input r);

5 entry void recvCol(Input c);

6 };

7 // in C++ file

8 class Mult : public CBase_Mult {
9 int count;

10 Input row, col;

11 public:

12 Mult () {

13 count = 2;

14 }

15 void recvRow(Input r) {

16 row = r;

17 if (-count == 0) multiply(row, col);
18 }

19 void recvCol(Input c) {

20 col = c;

21 if (-count == 0) multiply(row, col);
22 }

Figure 5: Charm++ program for multiplying a row and a column for a matrix.

In this program, the triggers for multiply are constrained using a member variable count. This ap-
proach can obfuscate the flow of control and is potentially error-prone. The basic constructs of SDAG
provide for program-order execution of the entry methods and code blocks that they define.
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// in .ci file
chare Mult {
entry void Mult();
entry void recv() {
when recvRow(Input r)
when recvCol(Input c)
serial {
multiply(r, c);
}
entry void recvRow(Input r);
entry void recvCol(Input c);
s
// in C++ file
class Mult : public CBase_Mult {
Mult_SDAG_CODE
public:
Mult() { recvQ; }

© 0O N O g A~ W NN =

- a4 a4 a4 A A a4
N o o~ W DN = O

Figure 6: The same Charm++ program using SDAG for multiplying a row and a column of a matrix.

SDAG allows the code referenced in Figure 5 to be transformed to that shown in Figure 6 allowing a
clear expression of the constraints that trigger a method. SDAG introduced keywords serial for atomic
blocks, when for conditional method execution, overlap to process triggers in any order, forall which is
equivalent to a “parallel for”, and finally a case construct to express a disjunction over a set of when clauses.

A complete example of a Charm++ program to compute the nth Fibonacci value is shown in Figure 7.
To allow further locality-aware optimizations in the programming model, the Charm++ language provides
group and node-group constructs. These provide the facility to create a collection of chares with a single
chare on each PE (in case of groups) or process/logical node (for node groups).

3.2 Execution Model

A basic unit of parallel computation in Charm++ programs is a chare. Chares primarily communicate
with each other using messages. These message object can be user-defined through arbitrary pack and
unpack methods. The entry methods of a chare can be remotely invoked. They are asynchronous and
non-preemptive. The Charm++ execution model supports three types of objects:

* Sequential objects (regular methods).
e Concurrent objects (chare entry methods).
* Replicated objects (chare group and node-group objects).

In the Charm runtime model [20], chare creation happens asynchronously. The scheduler picks a mes-
sage, creates a new chare if the message is a seed (i.e. a constructor invocation) for a new Chare, and invokes
the method specified by the message. As seen previously, chares can be grouped into collections. The types
of collections of chares supported in Charm++ are: chare-arrays, chare-groups, and chare-nodegroups.

Chare-arrays are mapped to processors according to a user-defined map group. A group is a collection
of replicated chares, with exactly one member element on each processing element. Similarly, a node-group
has one member element on each process or logical node.

Each Charm++ program has a main-chare that is invoked after the Charm++ runtime is bootstrapped.
This main-chare initializes all the read variables declared in all of the chares. The main-chare constructor
starts the computation by creating arrays, other chares, and groups.
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1 // fib.ci

2 mainmodule fib {

3 mainchare Main {

4 entry Main(CkArgMsg* m);
5 1}

6 chare Fib {
7 entry Fib(int n, bool isRoot, CProxy_Fib parent);
8 entry void calc(int n) {

9 if (n < 3) atomic { respond(seqFib(n)); }

10 else {

1 atomic {

12 CProxy_Fib::ckNew(n - 1, false, thisProxy);
13 CProxy_Fib::ckNew(n - 2, false, thisProxy);
14 }

15 when response(int val)

16 when response(int val2)

17 atomic { respond(val+val2); }

18 }

19 };

20 entry void response(int val);

CANS A

22 // fib.cc

23 struct Main : public CBase_Main {
24 Main(CkArgMsg* m) { CProxy_Fib::ckNew(atoi(m->argv[1]), true, CProxy_Fib()); }«
+;

26 struct Fib : public CBase_Fib {

27  Fib_SDAG_CODE

28 CProxy_Fib parent; bool isRoot;

29  Fib(int n, bool isRoot_, CProxy_Fib parent_)

30 : parent(parent_), isRoot(isRoot_) {
31 calc(n);
32 1

33 int seqFib(int n) { return (n < 2) ? n : seqFib(n - 1) + seqFib(n - 2); }
34 void respond(int val) {

35 if ('isRoot) {

36 parent.response(val) ;

37 delete this;

38 } else {

39 CkPrintf ("Fibonacci number is: %d\n", wval);
40 CkExit ()

41 }

2 } 3k

Figure 7: Charm++ program to compute the nth Fibonacci number.

To make chare methods serializable and to generate a global object space, the methods are declared in a
separate interface file “.ci”. A preprocessing step generates proxy classes for each chare class. These proxy
classes act as forwarders at runtime to route the messages to the appropriate chares.

Charm++ recognizes two logical entities: a PE (processing element) and a “logical node”. The Charm++
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Policy Description

RandCentLB Random assignment of objects to processors

GreedyLB Greedy algorithm to assign heaviest object to the least-loaded processor

GreedyCommLB Extends greedy algorithm to account for the object communication graph

MetisLB Uses METIS to partition object-communication graph

TopoCentLB Extends greedy algorithm to account for processor topology

RefineLB Minimizes object migration by moving objects away from the most-loaded processors

RefineSwapLB ~ Same as RefineLB. But when when migration fails, it swaps objects to reduce load on the most-loaded
processor

RefineCommLB  Same as RefineLB but accounts for communication

RefineTopoLB Same as RefineLB but accounts for processor topology

ComboCentLB  Used to combine more than one centralized load balancers

NeighborLB Neighborhood-aware LB where each processor averages out its load among its neighbors

WSLB A load balancer for workstation clusters, which can detect load changes and adjust load without inter-

fering interactive usage

Table 2: Load-balancing policies in the Charm++ execution model.

runtime is divided into several logical nodes (denoted by processes) running on actual physical nodes. Each
logical node might have several processing elements (PE). In a Charm++ program, a PE is a unit of mapping
and scheduling: each PE has a scheduler with an associated pool of messages. Each chare resides on one PE
at a time, and all PEs within the logical node share the same memory address space. The PEs continually
run a scheduler that implements several load-balancing policies to manage the load in the system. These
schedulers also poll for messages from the network and enqueue methods based on the arrival of messages.
Charm++ supports threaded entry points where each of the methods can be launched in a separate light-
weight thread, synchronizing with its return value through a future.

Based on the available runtime metrics, Charm++ implements several centralized and distributed load-
balancing schemes. Table 2 gives a brief description of all the available load-balancing policies.

Charm++ also supports automatic checkpoint/restart, as well as fault tolerance based on distributed
checkpoints. Experimental GPU support and shared-memory optimizations have also been implemented [14].

3.3 Implementation

The latest stable release, Charm++ 6.5.1, supports a variety of underlying hardware architectures including
the BlueGene/L, BlueGene/P, BlueGene/Q, Cray XT, XE and XK series (including XK6 and XE6), a single
workstation or a network of workstations (including x86 running Linux, Windows, MacOS). Several net-
work backends have been implemented including UDP, TCP, Infiniband, Myrinet, MPI, uGNI, and PAMI.

The implementation also includes extensions to the original model through composition frameworks
such as Converse [18], domain-specific static dataflow languages like Charisma [12], and libraries such as
AMPI [13] which allow seamless migration of legacy applications.

The Charm++ parallel programming model has been widely adopted, and has demonstrably proven the
advantages of asynchronous message-driven execution models. Many applications, including the molec-
ular dynamics application NAMD [29], an N-body solver ChaNga [15] have shown both productivity and
performance benefits. Besides application, several tools to maximize programmer productivity such as
visualization tools, debugging tools and simulators (BigSim [33]) are available for the Charm++ ecosystem.

4 ParalleX

ParalleX is an execution model for programming large-scale dynamic, adaptive applications for exascale-
class supercomputing systems [11]. The main emphasis of ParalleX is on avoiding global synchronization
whenever possible, under the contention that it limits scalability now and will limit it further on future
systems. ParalleX provides a globally-accessible address space, the Active Global Address Space, allowing
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regions of memory and computation to be moved as necessary to increase performance. The ParalleX
model also includes light-weight, user-level threads with fast context-switching that allow applications to
spawn millions of threads for hiding latency. Local Control Objects (LCOs), such as futures, are used for
synchronization. Communication uses parcels, a form of asynchronous active message; when a parcel is
received, a particular method or function is invoked on its target object. Global identifiers are used to
name objects and memory locations in a manner that allows a common namespace across distinct physical
address spaces. Parcels include continuations, which determine what should be done with the result of the
parcel’s action if there is one. ParalleX also includes percolations, which allow automatic staging of data to
and from accelerators such as GPUs, as well as support for fault tolerance as is expected to be necessary for
the effective use of exascale systems. ParalleX is designed to enable strong scaling of applications, allowing
them to exploit the full capability of the large-scale parallel systems (including exascale) anticipated by the
end of this decade.

1 boost::uint64_t fibonacci(boost::uint64_t n);
2 HPX_PLAIN_ACTION(fibonacci, fibonacci_action);

4 boost::uint64_t fibonacci(boost::uint64_t n)

{
6 if (n < 2) return n;
8 // execute the Fibonacci function locally.
9 hpx::naming::id_type const locality_id = hpx::find_here();
11 using hpx::lcos::future;
12 using hpx::async;
14 fibonacci_action fib;
15 future<boost::uint64_t> nl = async(fib, locality_id, n-1);
16 future<boost::uint64_t> n2 = async(fib, locality_id, n-2);
17 return nl.get() + n2.get();
18}

Figure 8: A HPX-3 program to compute the Nth fibonacci value.

41 Programming Model

Although there are concrete realizations of the ParalleX execution model, such as HPX-3, these were largely
experimental runtime systems developed for early performance evaluation of dynamic applications exe-
cuted in a message-driven, latency-tolerant fashion. These runtime systems do not leverage the full poten-
tial exposed by the ParalleX execution model. A novel interface, XPI (ParalleX Programming Interface),
exposes a set of library calls that interface directly with the ParalleX execution model. While sufficiently
high-level to program with, this interface is meant to be a target to high-level programming models de-
signed to take advantage of the ParalleX execution model.

In this section, we discuss the XPI programming interface, and the HPX-3 programming model. We
defer the discussion of a language extension and syntactic constructs to access the active global address-
space to Section 7.

The code listing in Figure 9 demonstrates a simple Fibonacci program written using XPI. Figure 8 shows
the same program written in HPX-3. While the XPI programming model is more verbose as a result of
being implemented for a restricted language C, it also offers more control over the underlying ParalleX
execution model. The XPI program shows an example where two future LCOs are allocated, and filled by
continuation parcels using split-phase transactions. All of the children actions would, presumably, execute
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1 XPI_register_action("fib", fib, 0);
2 XPI_register_action("set_future", future, 0);

4 XPI_Err fib(XPI_Addr addr, int n) {

5 XPI_Addr f1, £2;

6 int nn;

7  XPI_Future_new_sync(sizeof (int64_t), &fl);
8 XPI_Future_new_sync(sizeof (int64_t), &f2);

10 nn = n-1;

11 XPI_Parcel p;

12 XPI_Parcel_create(&p);

13 XPI_Parcel_set_addr(p, addr);

14 XPI_Parcel_set_action(p, "fib");

15 XPI_Parcel_set_data(p, sizeof(int), &nl);

16 XPI_Parcel_set_cont_addr(p, addr);

17 XPI_Parcel_set_cont_action(p, "set_future");

18 XPI_Parcel_set_cont_data(p, sizeof (XPI_Addr), &f1l);
19 XPI_Parcel_send(p, XPI_NULL);

20 nn = n-2;

21 XPI_Parcel_set_data(p, sizeof(int), &nl);

22  XPI_Parcel_set_cont_data(p, sizeof (XPI_Addr), &f2);
23 XPI_Parcel_free(p);

25 uint64_t x, y;

26 XPI_Thread_wait_all(f1, £2);

27 XPI_Future_get_value_sync(fl, &x);
28 XPI_Future_get_value_sync(f1l, &y);
29 return x+y;

30 }

Figure 9: A XPI program to compute the Nth fibonacci value.

at a single locality if the AGAS address addr were not to move during the entire execution. By allocating an
AGAS array using user-defined distribution hints, an explicit control over the location of ParalleX threads
can be obtained. However, this style is discouraged by the ParalleX programming paradigm, as the runtime
would detect and migrate threads (and the corresponding AGAS addresses) when it detects a hot-spot on
a particular locality.

As a programming model, ParalleX allows creation of threads to express logical parallelism in the pro-
gram. Threads belonging to the same locality can communicate and synchronize using Local Control Ob-
jects (LCOs). Arbitrary threads can communicate through the Active Global Address Space (AGAS). Two
threads cannot communicate using message-passing, however threads can spawn an arbitrary number of
children threads by sending parcels (active messages).

4.2 Execution Model

The “SLOW” model of performance that highlights four related factors, each of which acts as a poten-
tial source of performance degradation. Starvation occurs when there is insufficient concurrent work to be
performed by computing resources (e.g., processor cores), either because the total amount of work is in-
sufficient or that the distribution of work is uneven with some resources oversubscribed and others under-
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utilized. Latency is the distance of an access or service request, often measured in processor clock cycles. It
is the time-distance delay intrinsic to accessing remote resources and services. Overhead is work required to
manage parallel actions and resources on the critical-path that would be unnecessary in a purely sequential
execution. Finally, contention (Waiting) for shared logical or physical resources can further limit scalability
and cause performance degradation. Memory bank conflicts, limited network bandwidth, synchronization
objects and other resources used by multiple requesting agents contribute to this form of delay.

Some of the key features representative of the ParalleX execution model are:

Split-phase transactions using parcels and continuations.

Message-driven execution.

Distributed shared-memory (not cache coherent) with migration.

Local Control Objects for synchronization.

Percolation (pre-staging of task data).

Lightweight Threads ParalleX represents unit of computations using fine-grained actions referred to as
“threads”. These have a separate stack, and are typically implemented as lightweight threads. The Par-
alleX execution model assumes simultaneous execution of hundreds of thousands of such parallel actions.
Threads are ephemeral and can be created and destroyed at runtime. Threads have an address in the global
address-space. When a thread is blocked, the ParalleX scheduler quickly switches to a ready thread based
on a local scheduling policy. The existence of several of these threads mitigates the issues of starvation and
latency while maintaining a higher utilization of the available parallel resources.

Parcels and Message-driven Computation Parcels are a form of asynchronous active message that enable
message-driven computation. They are like “active messages” as they allow not just data to move to the
work, but also work to move to the data. When a parcel is received, the target locality spawns a thread
represented by the parcel’s action on the target object encoded as the parcel’s payload. A parcel can also
include a continuation action which determines what is to be done with the target action’s return value if
there is one. Parcels manage latency by making programs more asynchronous. A special case of parcels,
“percolation” establishes tasks to be performed by an accelerator such as a GPU while overlapping the
communication and staging time on the accelerator with other operations.

Active Global Address-Space ParalleX defines a globally distributed shared-memory address-space, which
is accessed asynchronously through parcels. It is “active” in the sense that the physical location mapped for

a given virtual address can be changed dynamically by moving data around through parcels, but keeping
the addresses the same. The AGAS offers all of the benefits of the PGAS models, while allowing addresses
to move. This is done at the expense of a complicated implementation, possibly, relying heavily on runtime
and operating system support. AGAS defines a distributed environment spanning multiple localities and
need not be contiguous.

Local Control Objects Local Control Object (LCOs) are sophisticated synchronization constructs that en-
capsulate the control flow of threads. They not only provide a unifying abstraction to common synchro-
nization primitives such as semaphores and mutexes, but also allow powerful synchronization primitives
such as futures and dataflow variables.

ParalleX Processes The ParalleX execution model organizes its global state in a hierarchy of context mod-
ules referred to as “ParalleX processes”. Put simply, processes provide an abstraction of a parallel job by
managing the application threads, the child processes and the contextual mapping information. It also
incorporates capabilities based access rights for protection and security.
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Figure 10: Process Interaction in the ParalleX Model.

Figure 10 shows the interactions between the different aspects of the ParalleX execution model to enable
message-driven computation.

4.3 Implementation

A few open-source prototypical implementations of the ParalleX execution model exist. Additional highly-
tuned implementations of the execution model are also currently under development. These implementa-
tions strive to provide the ParalleX vision and philosophy while demonstrating good performance at higher
scales.

4.3.1 HPX3

Figure 11 shows an abstract architecture for an implementation of the ParalleX adaptive runtime system.
The software architecture of HPX-3 is very similar to the abstract architecture shown in Figure 11. HPX-3 is
currently being developed at The STE | | AR Group at Louisiana State University. It is developed as a library
on top of C++. HPX-3 does not realize the full potential of the ParalleX execution model with several key
features currently unimplemented. Finally, it presently supports limited network backends with a notable
absence of high-performance network interconnection support.

local memory performance erformance
| process manager ‘ | management | counters P monitor
AGAS
translation
LCOs
parcel E . action % gg g
port [ ** manager
parcel thread thread pool
handler ' manager
1

Figure 11: The ParalleX runtime system.
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43.2 HPXi

HPXi is a prototype implementation in C++11 of a simplified subset of the full ParalleX model. The main
omission is the Active Global Address Space feature of ParalleX; objects in HPXi are instead locked to the
address space that created them. This simplifies addressing and increases performance, but loses some
aspects of the dynamic adaptivity of the ParalleX model. HPXi has a global space of objects, but raw
memory is not globally accessible and explicit action is required to expose an object to remote calls from
other address spaces. HPXi also provides both TBB-style lightweight tasks (without stacks) in addition to
the more capable user-level threads in the ParalleX model. For simplicity and ease of implementation, HPXi
is additionally missing the fault-tolerance capabilities that are integral to the ParalleX model, especially
on the planned less-reliable exascale systems; it is also missing support for dynamic spawning of new
processes and accelerators, and the handling of responses to parcels must be done manually by the user,
unlike the automatic use of continuations in the full ParalleX model.

As HPXi is a prototype designed to work on current systems, it uses asynchronous MPI point-to-
point operations as its underlying communication infrastructure. This aspect enables easy access to high-
performance interconnection networks, although it may have higher overheads than a lower-level interface
such as GASNet or writing drivers for particular types of network hardware. Although MPI is used as
infrastructure, HPXi wraps that with an active message ("parcel") interface, not send/receive or collective
operations. HPXi also uses existing mechanisms to create system-level threads, building lighter-weight task
and user-level thread abstractions on top of those using Boost.Context and Boost.Coroutine.

HPXi includes several features to ease porting of legacy MPI and MPI-style applications. For example,
it includes MPI-style send and receive operations, as well as various forms of collective communication.
Unlike standard MP], it allows multiple objects in the same address space (and thus underlying MPI rank)
to act as different emulated MPI processes. These operations interoperate with user-level threads to enable
non-blocking, asynchronous use of blocking MPI-style code. HPXi also includes multiple forms of parallel
for loops (both for independent iterations and reduction operations) to ease porting of simple OpenMP
and TBB programs. Both TBB-style spawning of a precomputed number of tasks and Cilk-style recursive
decomposition of a sequence into dynamic tasks as necessary are supported. These features, plus their rela-
tively low performance overheads, allow incremental porting of legacy applications, removing the need to
rewrite them completely into a fully asynchronous, object-based programming model all at once; however,
this porting process is necessary longer-term to achieve the best scalability of the applications on extreme-
scale systems.

433 HPX5

HPX 5 is a high-performance, production-capable library in C, currently being developed at CREST at
Indiana University. It is planned to have close integration with the operating system (through the RIOS
interfaces), an optimized parcel communication layer built on top of high-performance one-sided interfaces
and efficient threading and synchronization implementations. It supports a byte-addressable, active global
address space (AGAS,) for storing distributed data objects.

5 Active Pebbles and AM++

Active Pebbles (AP) is a novel parallel programming model suited for data-driven problems that are fine-
grained, irregular and non-local. The model provides a marked distinction between the natural expression
of an algorithm, and its underlying efficient execution mechanisms. The corresponding execution model
is implemented using a new user-level library, AM++, for programming with high-level active messages
based on generic programming principles. The efficacy of the model has been demonstrated by succinctly
and directly expressing graph algorithms and other irregular application kernels. The experimental results
exhibit performance comparable to MPI-based implementations that are significantly more complicated.
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5.1 Programming Model: Active Pebbles

The key elements in the Active Pebbles model are: pebbles, which are light-weight active messages (AM)
managed and scheduled by the runtime; handlers, which are functions that are executed on targets in re-
sponse to pebbles (or ensembles of pebbles); and distribution objects that dictate the distribution of data
objects.

The four main techniques employed by the model are:

1. Global address-space using fine-grained pebble addressing.
2. Optimized communication using active hypercube routing.
3. Communication reduction using message coalescing and message reduction.

4. Termination detection.
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Figure 12: The Active Pebbles Programming Model.

Active messages help to migrate computation to data, and are mostly used in low-level communication
layers. Programming with active messages can be cumbersome and error-prone owing to the unnatural
restructuring of the algorithm in a continuation-passing style. Active Pebbles raises the abstraction of pro-
gramming with active messages as the handlers can be more coarser grained, and the runtime handles
optimizations such as coalescing, reduction and termination detection.

The programmer defines pebbles — message types that encapsulate the data and its handler. Computa-
tion is performed by addressing pebbles to targets mapped to different nodes. Active pebbles generalizes
one-sided operations to user-defined pebble handlers, thereby removing the need for expensive pairwise
synchronization. Pebble coalescing ensures that the pebbles addressed to the same node are grouped to-
gether to increase message sizes. Intermediary nodes can potentially perform reductions on coalesced
pebbles to eliminate duplicates or combine idempotent operations. These optimizations are admitted due
to active routing over a hypercube overlay topology where multiple nodes are involved in transferring a
pebble from its source to its destination. These optimizations are central to the model and form the basis of
the Active Pebbles programming model.

5.2 Execution Model: AM++ and Implementation

AM++ is an active message framework based on generic programming techniques. As such, the AM++
library is an implementation for an execution model based on the AP programming model. It raises the
abstraction for the low-level active messages often used by communication libraries. In particular, the active
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1 struct fib::fib_handler {
2 fib_handler(fib& self) : self (&self) {
3 void operator() (const amplusplus::transport::rank_type src, const fib_data& data¢+

) const {
4 if (data.first == || data.first == 2) {
5 self->response_message.send(std: :make_pair(1l, data.second), src);
6 } else {
7 self->divide(data, src);
8 }
9 }
10 fib* self;
1 };

13 struct fib::response_handler {
14  response_handler(fib& self) : self (&self) {}
15 void operator() (const amplusplus::transport::rank_type src, const fib_data& data<

) const {
16 self->merge(data) ;
17}
18 fibx self;
19 };

Figure 13: Handlers for an AM++ program to compute the Fibonacci number.

message handlers are not forced to run in an interrupt context, and can send arbitrary messages to other
nodes. As AM++ is implemented as a C++ library, it allows statically-typed messages and generic handlers
for messages. In addition to supporting all of the optimizations mandated by the AP programming model,
the AM++ library enables compiler optimizations such as message vectorization and inlining whenever
admissible. The performance of AM++ has been shown to be competitive to lower-level active message
libraries such as GASNet and others.

6 Comparison

Table 3 compares the Cilk, Charm++ ParalleX and the Active Pebbles programming models. Task Paral-
lelism is the capability of expressing computation as task leveraging fine-grained concurrency within the
programming model. The means of task creation and synchronization for the three programming models
are given. Further distinction is made on the ability to attach explicit continuation tasks to computation
tasks; expressing static dataflow parallelism through dataflow graphs; determinism and repeatability of
computation. The memory model backing the programming model, and the means to specify the distribu-
tion of data amongst processors is additionally an important classification criteria, especially for enabling
data locality optimizations. Support for vectorizations, reductions and other aggregate operations per-
mitted on objects in the shared address space is key to maximizing parallel work. Reuse and Modularity
refers to the ability of the programming model to provide standalone libraries; its amenability for separate-
compilation, and composability with other, potentially non-parallel, modules.

Table 4 compares the execution models of Cilk, Charm++ ParalleX and AM++. The criteria used for com-
parison is primarily based on the execution semantics as defined by the programming model, and the
features offered by its specific implementation under consideration. We consider the unit of computations,
their representation and implementation details such as fine-grained concurrency, hierarchical parallelism,
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Cilk Charm++ ParalleX Active Pebbles
Task Parallelism [ ) [ ) o ®
cilk_spawn hpx_call
Task Creation and ckNew ('chare (thread handlers
. creation) )
cilk_for creation)
Task Synchronization | S+1¥-syncand SDAG LCO -
implicit
Task Execution | Asynchronous | Asynchronous | Asynchronous | Asynchronous
Explicit continuations o! O ° =
Dataflow parallelism O [ ) [ ) O
Determinism and repeatability ) = o’ O
Data Parallelism o’ ®° o’ o’
Shared- Shared- Shared-
Shared- Memory;
Memory Memory Memory; Memory; Message-
Global Object | Global Address .
Passing
Space Space
Explicit Data Distribution @) ° ® ]
Vectorized Operations [ ) O O -
Reductions o o’ o (3
Sequential Semantics ) ) O O
Reuse and modularity ) = = -

1 Obsolete 2 Write-once objects 3LCOs * Array notation, Elemental functions 5 Chare collections © AGAS array distributions
7 Distribution Objects 8 Reducer objects ° Reduction on chare collections 10 Using LCOs !! Pebble Reduction

Table 3: Comparison of the programming models.

message-driven computation and multi-node execution. Furthermore, synchronization between tasks and
their scheduling plays an important role in minimizing parallel overheads at scale. Dynamic behaviors of
runtime systems such as adaptive parallelism, distributed load balancing, automatic redistribution of data
are key for sustained throughput and performance of irregular applications at scale. Other features such as
fault tolerant, parallel I/O and support for accelerators are also considered.

7 Discussion

To address impending challenges at exascale and beyond, execution models would need to be asynchronous,
dynamic, resilient, adaptive and latency-tolerant. On top of this, they would need to expose unifying ab-
stractions for data and task parallelism to programmers while allowing them to strike a balance between
productivity, performance, safety and correctness.

Latency-tolerant optimizations such as split-phase transactions allow the decoupling of synchronous
execution through a continuation-passing style transformation of the program. Future execution models,
including the ones that were compared in this paper, would need to expose logical parallelism at vary-
ing granularity and allow an intelligent runtime to schedule and execute the computation adaptively and
autonomously.

Performance prediction of applications in distributed dynamic execution models is an emerging re-
search problem. The overall performance gain of an application largely depends on the characteristics
of the algorithm itself. But limited improvement in performance is observed already by a straightforward
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Task Scheduling | Work-stealing Various Various Work-sharing

Topology-aware mapping @) [ ) ® O
Adaptive Parallelism =) ® ® o
Automatic Redistribution O o o -
Distributed Shared-Memory =) O [ ) o
Global address space O (] { -
Quiescence detection O [ () [ ]
Fault Tolerance = (N [ ) O
Parallel I/O @) O [ ) O
Accelerator support O °° o’ -

1 Chare invocations 2 Parcel sends 3 Interoperability with a distributed model 4 Checkpointing 5GPU integration 6 Percolation
Table 4: Comparison of the execution models.

translation of the BSP-style communication primitives to their equivalent in dynamic runtime systems such
as Charm++or HPX. This is due entirely to the finer-grained concurrency allowed by the execution model.
Better performance can be achieved by leveraging more features admitted by dynamic runtime systems,
and at times, through a complete rewrite of the application’s algorithm. At higher scales, performance pre-
diction through modeling and simulation would be key factor in co-design and implementation of scalable
algorithms.

Our comparison identifies a set of common features present in the HPC runtime systems under evalu-
ation. These emerging class of runtime systems are centered around the asynchronous, massively multi-
threaded model of computation in which lightweight threads operate on data residing in globally shared
memory. This model, now commonly referred to as asynchronous many-tasking, is characterized by several
independently executing tasks, often in the order of millions or billions, that are automatically scheduled
based on some complex resource criteria. These tasks are ephemeral and event-driven in nature triggered
by active messages exchanged in the system. As explicit communication tends to be error-prone given the
massive amount of exposed concurrency, AMT models are often coupled with a global address space that al-
lows sharing data between tasks. Furthermore, as AMT models encompass and extend the SPMD paradigm
relinquishing a substantial amount of execution control to the runtime system, they are well-suited for
exascale-class applications.
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