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PROCESSES AND THREADS

We are now about to embark on a detailed study of how operating systems are designed and constructed. The most central concept in any 
operating system is the process: an abstraction of a running program. Everything else hinges on this concept, and it is important that the 
operating system designer (and student) have a thorough understanding of what a process is as early as possible.

2.1 PROCESSES

All modern computers can do several things at the same time. While running a user program, a computer can also be reading from a disk and 
outputting text to a screen or printer. In a multiprogramming system, the CPU also switches from program to program, running each for tens 
or hundreds of milliseconds. While, strictly speaking, at any instant of time, the CPU is running only one program, in the course of 1 second, 
it may work on several programs, thus giving the users the illusion of parallelism. Sometimes people speak of pseudoparallelism in this 
context, to contrast it with the true hardware parallelism of multiprocessor systems (which have two or more CPUs sharing the same physical 
memory). Keeping track of multiple, parallel activities is hard for people to do. Therefore, operating system designers over the years have 
evolved a conceptual model (sequential processes) that makes parallelism easier to deal with. That model, its uses, and some of its 
consequences form the subject of this chapter.

2.1.1 The Process Model

In this model, all the runnable software on the computer, sometimes including the operating system, is organized into a number of sequential
processes, or just processes for short. A process is just an executing program, including the current values of the program counter, registers, 
and variables. Conceptually, each process has its own virtual CPU. In reality, of course, the real CPU switches back and forth from process to 
process, but to understand the system, it is much easier to think about a collection of processes running in (pseudo) parallel, than to try to keep 
track of how the CPU switches from program to program. This rapid switching back and forth is called multiprogramming, as we saw in 
Chap. 1.

In Fig. 2-1(a) we see a computer multiprogramming four programs in memory. In Fig. 2-1(b) we see four processes, each with its own flow of 
control (i.e., its own logical program counter), and each one running independently of the other ones. Of course, there is only one physical 
program counter, so when each process runs, its logical program counter is loaded into the real program counter. When it is finished for the 
time being, the physical program counter is saved in the process’ logical program counter in memory. In Fig. 2-1(c) we see that viewed over a 
long enough time interval, all the processes have made progress, but at any given instant only one process is actually running.

Figure 2-1. (a) Multiprogramming of four programs. (b) Conceptual model of four independent, sequential processes. (c) Only one program is 
active at once.

With the CPU switching back and forth among the processes, the rate at which a process performs its computation will not be uniform and 
probably not even reproducible if the same processes are run again. Thus, processes must not be programmed with built-in assumptions about 
timing. Consider, for example, an I/O process that starts a streamer tape to restore backed up files, executes an idle loop 10,000 times to let it 
get up to speed, and then issues a command to read the first record. If the CPU decides to switch to another process during the idle loop, the 
tape process might not run again until after the first record was already past the read head. When a process has critical real-time requirements 
like this, that is, particular events must occur within a specified number of milliseconds, special measures must be taken to ensure that they do 
occur. Normally, however, most processes are not affected by the underlying multiprogramming of the CPU or the relative speeds of different
processes.

The difference between a process and a program is subtle, but crucial. An analogy make help here. Consider a culinary-minded computer 
scientist who is baking a birthday cake for his daughter. He has a birthday cake recipe and a kitchen well stocked with all the input: flour, 
eggs, sugar, extract of vanilla, and so on. In this analogy, the recipe is the program (i.e., an algorithm expressed in some suitable notation), the 
computer scientist is the processor (CPU), and the cake ingredients are the input data. The process is the activity consisting of our baker 
reading the recipe, fetching the ingredients, and baking the cake.
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Now imagine that the computer scientist’s son comes running in crying, saying that he has been stung by a bee. The computer scientist records 
where he was in the recipe (the state of the current process is saved), gets out a first aid book, and begins following the directions in it. Here 
we see the processor being switched from one process (baking) to a higher-priority process (administering medical care), each having a 
different program (recipe versus first aid book). When the bee sting has been taken care of, the computer scientist goes back to his cake, 
continuing at the point where he left off.

The key idea here is that a process is an activity of some kind. It has a program, input, output, and a state. A single processor may be shared 
among several processes, with some scheduling algorithm being used to determine when to stop work on one process and service a different
one.

2.1.2 Process Creation

Operating systems need some way to make sure all the necessary processes exist. In very simple systems, or in systems designed for running 
only a single application (e.g., the controller in a microwave oven), it may be possible to have all the processes that will ever be needed be 
present when the system comes up. In general-purpose systems, however, some way is needed to create and terminate processes as needed 
during operation. We will now look at some of the issues.

There are four principal events that cause processes to be created:

1. System initialization.
2. Execution of a process creation system call by a running process.
3. A user request to create a new process.
4. Initiation of a batch job.

When an operating system is booted, typically several processes are created. Some of these are foreground processes, that is, processes that
interact with (human) users and perform work for them. Others are background processes, which are not associated with particular users, but 
instead have some specific function. For example, one background process may be designed to accept incoming email, sleeping most of the 
day but suddenly springing to life when email arrives. Another background process may be designed to accept incoming requests for Web 
pages hosted on that machine, waking up when a request arrives to service the request. Processes that stay in the background to handle some
activity such as email, Web pages, news, printing, and so on are called daemons. Large systems commonly have dozens of them. In UNIX, 
the ps program can be used to list the running processes. In Windows 95/98/Me, typing CTRL-ALT-DEL once shows what’s running. In 
Windows 2000, the task manager is used.

In addition to the processes created at boot time, new processes can be created afterward as well. Often a running process will issue system 
calls to create one or more new processes to help it do its job. Creating new processes is particularly useful when the work to be done can 
easily be formulated in terms of several related, but otherwise independent interacting processes. For example, if a large amount of data is 
being fetched over a network for subsequent processing, it may be convenient to create one process to fetch the data and put them in a shared 
buffer while a second process removes the data items and processes them. On a multiprocessor, allowing each process to run on a different 
CPU may also make the job go faster.

In interactive systems, users can start a program by typing a command or (double) clicking an icon. Taking either of these actions starts a new 
process and runs the selected program in it. In command-based UNIX systems running X Windows, the new process takes over the window in 
which it was started. In Microsoft Windows, when a process is started it does not have a window, but it can create one (or more) and most do. 
In both systems, users may have multiple windows open at once, each running some process. Using the mouse, the user can select a window
and interact with the process, for example, providing input when needed.

The last situation in which processes are created applies only to the batch systems found on large mainframes. Here users can submit batch 
jobs to the system (possibly remotely). When the operating system decides that it has the resources to run another job, it creates a new process 
and runs the next job from the input queue in it.

Technically, in all these cases, a new process is created by having an existing process execute a process creation system call. That process may 
be a running user process, a system process invoked from the keyboard or mouse or a batch manager process. What that process does is 
execute a system call to create the new process. This system call tells the operating system to create a new process and indicates, directly or
indirectly, which program to run in it.

In UNIX, there is only one system call to create a new process: fork. This call creates an exact clone of the calling process. After the fork, the 
two processes, the parent and the child, have the same memory image, the same environment strings, and the same open files That is all there 
is. Usually, the child process then executes execve or a similar system call to change its memory image and run a new program. For example, 
when a user types a command, say, sort, to the shell, the shell forks off a child process and the child executes sort. The reason for this two-
step process is to allow the child to manipulate its file descriptors after the fork but before the execve to accomplish redirection of standard 
input, standard output, and standard error.

In Windows, in contrast, a single Win32 function call, CreateProcess, handles both process creation and loading the correct program into the 
new process. This call has 10 parameters, which include the program to be executed, the command line parameters to feed that program, 
various security attributes, bits that control whether open files are inherited, priority information, a specification of the window to be created 
for the process (if any), and a pointer to a structure in which information about the newly created process is returned to the caller. In addition 
to CreateProcess, Win32 has about 100 other functions for managing and synchronizing processes and related topics.
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In both UNIX and Windows, after a process is created, both the parent and child have their own distinct address spaces. If either process 
changes a word in its address space, the change is not visible to the other process. In UNIX, the child’s initial address space is a copy of the 
parent’s, but there are two distinct address spaces involved; no writable memory is shared (some UNIX implementations share the program 
text between the two since that cannot be modified). It is, however, possible for a newly created process to share some of its creator’s other 
resources, such as open files. In Windows, the parents and child’s address spaces are different from the start.

2.1.3 Process Termination

After a process has been created, it starts running and does whatever its job is. However, nothing lasts forever, not even processes. Sooner or 
later the new process will terminate, usually due to one of the following conditions:

1. Normal exit (voluntary).
2. Error exit (voluntary).
3. Fatal error (involuntary).
4. Killed by another process (involuntary).

Most processes terminate because they have done their work. When a compiler has compiled the program given to it, the compiler executes a 
system call to tell the operating system that it is finished. This call is exit in UNIX and ExitProcess in Windows. Screen-oriented programs 
also support voluntary termination. Word processors, Internet browsers and similar programs always have an icon or menu item that the user 
can click to tell the process to remove any temporary files it has open and then terminate.

The second reason for termination is that the process discovers a fatal error. For example, if a user types the command

cc foo.c
to compile the program foo.c and no such file exists, the compiler simply exits. Screen-oriented interactive processes generally do not exit 
when given bad parameters. Instead they pop up a dialog box and ask the user to try again.

The third reason for termination is an error caused by the process, often due to a program bug. Examples include executing an illegal
instruction, referencing nonexistent memory, or dividing by zero. In some systems (e.g. UNIX), a process can tell the operating system that it 
wishes to handle certain errors itself, in which case the process is signaled (interrupted) instead of terminated when one of the errors occurs.

The fourth reason a process might terminate is that a process executes a system call telling the operating system to kill some other process. In 
UNIX this call is kill. The corresponding Win32 function is TerminateProcess. In both cases, the killer must have the necessary authorization 
to do in the killee. In some systems, when a process terminates, either voluntarily or otherwise, all processes it created are immediately killed 
as well. Neither UNIX nor Windows works this way, however.

2.1.4 Process Hierarchies

In some systems, when a process creates another process, the parent process and child process continue to be associated in certain ways. The 
child process can itself create more processes, forming a process hierarchy. Note that unlike plants and animals that use sexual reproduction, a 
process has only one parent (but zero, one, two, or more children).

In UNIX, a process and all of its children and further descendants together form a process group. When a user sends a signal from the 
keyboard, the signal is delivered to all members of the process group currently associated with the keyboard (usually all active processes that 
were created in the current window). Individually, each process can catch the signal, ignore the signal, or take the default action, which is to 
be killed by the signal.

As another example of where the process hierarchy plays a role, let us look at how UNIX initializes itself when it is started. A special process, 
called init, is present in the boot image. When it starts running, it reads a file telling how many terminals there are. Then it forks off one new 
process per terminal. These processes wait for someone to log in. If a login is successful, the login process executes a shell to accept 
commands. These commands may start up more processes, and so forth. Thus, all the processes in the whole system belong to a single tree, 
with init at the root.

In contrast, Windows does not have any concept of a process hierarchy. All processes are equal. The only place where there is something like 
a process hierarchy is that when a process is created, the parent is given a special token (called a handle) that it can use to control the child. 
However, it is free to pass this token to some other process, thus invalidating the hierarchy. Processes in UNIX cannot disinherit their
children.

2.1.5 Process States

Although each process is an independent entity, with its own program counter and internal state, processes often need to interact with other
processes. One process may generate some output that another process uses as input. In the shell command

cat chapter1 chapter2 chapter3 | grep tree
the first process, running cat, concatenates and outputs three files. The second process, running grep, selects all lines containing the word 
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“tree.” Depending on the relative speeds of the two processes (which depends on both the relative complexity of the programs and how much 
CPU time each one has had), it may happen that grep is ready to run, but there is no input waiting for it. It must then block until some input is 
available.

When a process blocks, it does so because logically it cannot continue, typically because it is waiting for input that is not yet available. It is 
also possible for a process that is conceptually ready and able to run to be stopped because the operating system has decided to allocate the 
CPU to another process for a while. These two conditions are completely different. In the first case, the suspension is inherent in the problem 
(you cannot process the user’s command line until it has been typed). In the second case, it is a technicality of the system (not enough CPUs to 
give each process its own private processor). In Fig. 2-2 we see a state diagram showing the three states a process may be in:

1. Running (actually using the CPU at that instant).
2. Ready (runnable; temporarily stopped to let another process run).
3. Blocked (unable to run until some external event happens).

Logically, the first two states are similar. In both cases the process is willing to run, only in the second one, there is temporarily no CPU 
available for it. The third state is different from the first two in that the process cannot run, even if the CPU has nothing else to do.

Figure 2-2. A process can be in running, blocked, or ready state. Transitions between these states are as shown.

Four transitions are possible among these three states, as shown. Transition 1 occurs when a process discovers that it cannot continue. In some
systems the process must execute a system call, such as block or pause, to get into blocked state. In other systems, including UNIX, when a 
process reads from a pipe or special file (e.g., a terminal) and there is no input available, the process is automatically blocked.

Transitions 2 and 3 are caused by the process scheduler, a part of the operating system, without the process even knowing about them. 
Transition 2 occurs when the scheduler decides that the running process has run long enough, and it is time to let another process have some 
CPU time. Transition 3 occurs when all the other processes have had their fair share and it is time for the first process to get the CPU to run 
again. The subject of scheduling, that is, deciding which process should run when and for how long, is an important one; we will look at it 
later in this chapter. Many algorithms have been devised to try to balance the competing demands of efficiency for the system as a whole and 
fairness to individual processes. We will study some of them later in this chapter.

Transition 4 occurs when the external event for which a process was waiting (such as the arrival of some input) happens. If no other process is
running at that instant, transition 3 will be triggered and the process will start running. Otherwise it may have to wait in ready state for a little
while until the CPU is available and its turn comes.

Using the process model, it becomes much easier to think about what is going on inside the system. Some of the processes run programs that 
carry out commands typed in by a user. Other processes are part of the system and handle tasks such as carrying out requests for file services 
or managing the details of running a disk or a tape drive. When a disk interrupt occurs, the system makes a decision to stop running the 
current process and run the disk process, which was blocked waiting for that interrupt. Thus, instead of thinking about interrupts, we can think
about user processes, disk processes, terminal processes, and so on, which block when they are waiting for something to happen. When the 
disk has been read or the character typed, the process waiting for it is unblocked and is eligible to run again.

This view gives rise to the model shown in Fig. 2-3. Here the lowest level of the operating system is the scheduler, with a variety of processes 
on top of it. All the interrupt handling and details of actually starting and stopping processes are hidden away in what is here called the
scheduler, which is actually not much code. The rest of the operating system is nicely structured in process form. Few real systems are as 
nicely structured as this, however.

Figure 2-3. The lowest layer of a process-structured operating system handles interrupts and scheduling. Above that layer are sequential processes.

2.1.6 Implementation of Processes

To implement the process model, the operating system maintains a table (an array of structures), called the process table, with one entry per 
process. (Some authors call these entries process control blocks.) This entry contains information about the process’ state, its program 
counter, stack pointer, memory allocation, the status of its open files, its accounting and scheduling information, and everything else about the 
process that must be saved when the process is switched from running to ready or blocked state so that it can be restarted later as if it had 
never been stopped.

Figure 2-4 shows some of the more important fields in a typical system. The fields in the first column relate to process management. The other 
two columns relate to memory management and file management, respectively. It should be noted that precisely which fields the process table 
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has is highly system dependent, but this figure gives a general idea of the kinds of information needed.

Figure 2-4. Some of the fields of a typical process table entry.

Now that we have looked at the process table, it is possible to explain a little more about how the illusion of multiple sequential processes is
maintained on a machine with one CPU and many I/O devices. Associated with each I/O device class (e.g., floppy disks, hard disks, timers, 
terminals) is a location (often near the bottom of memory) called the interrupt vector. It contains the address of the interrupt service 
procedure. Suppose that user process 3 is running when a disk interrupt occurs. User process 3’s program counter, program status word, and 
possibly one or more registers are pushed onto the (current) stack by the interrupt hardware. The computer then jumps to the address specified 
in the disk interrupt vector. That is all the hardware does. From here on, it is up to the software, in particular, the interrupt service procedure.

All interrupts start by saving the registers, often in the process table entry for the current process. Then the information pushed onto the stack 
by the interrupt is removed and the stack pointer is set to point to a temporary stack used by the process handler. Actions such as saving the
registers and setting the stack pointer cannot even be expressed in high-level languages such as C, so they are performed by a small assembly 
language routine, usually the same one for all interrupts since the work of saving the registers is identical, no matter what the cause of the 
interrupt is.

When this routine is finished, it calls a C procedure to do the rest of the work for this specific interrupt type. (We assume the operating system 
is written in C, the usual choice for all real operating systems.) When it has done its job, possibly making some process now ready, the 
scheduler is called to see who to run next. After that, control is passed back to the assembly language code to load up the registers and 
memory map for the now-current process and start it running. Interrupt handling and scheduling are summarized in Fig. 2-5. It is worth noting 
that the details vary somewhat from system to system.

Figure 2-5. Skeleton of what the lowest level of the operating system does when an interrupt occurs.

2.2 THREADS

In traditional operating systems, each process has an address space and a single thread of control. In fact, that is almost the definition of a 
process. Nevertheless, there are frequently situations in which it is desirable to have multiple threads of control in the same address space 
running in quasi-parallel, as though they were separate processes (except for the shared address space). In the following sections we will 
discuss these situations and their implications.

2.2.1 The Thread Model

The process model as we have discussed it thus far is based on two independent concepts: resource grouping and execution. Sometimes it is 
useful to separate them; this is where threads come in.

One way of looking at a process is that it is way to group related resources together. A process has an address space containing program text 
and data, as well as other resources. These resource may include open files, child processes, pending alarms, signal handlers, accounting 
information, and more. By putting them together in the form of a process, they can be managed more easily.

The other concept a process has is a thread of execution, usually shortened to just thread. The thread has a program counter that keeps track 
of which instruction to execute next. It has registers, which hold its current working variables. It has a stack, which contains the execution 
history, with one frame for each procedure called but not yet returned from. Although a thread must execute in some process, the thread and 
its process are different concepts and can be treated separately. Processes are used to group resources together; threads are the entities 
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scheduled for execution on the CPU.

What threads add to the process model is to allow multiple executions to take place in the same process environment, to a large degree 
independent of one another. Having multiple threads running in parallel in one process is analogous to having multiple processes running in 
parallel in one computer. In the former case, the threads share an address space, open files, and other resources. In the latter case, processes 
share physical memory, disks, printers, and other resources. Because threads have some of the properties of processes, they are sometimes 
called lightweight processes. The term multithreading is also used to describe the situation of allowing multiple threads in the same process.

In Fig. 2-6(a) we see three traditional processes. Each process has its own address space and a single thread of control. In contrast, in Fig. 2-6
(b) we see a single process with three threads of control. Although in both cases we have three threads, in Fig. 2-6(a) each of them operates in 
a different address space, whereas in Fig. 2-6(b) all three of them share the same address space.

Figure 2-6. (a) Three processes each with one thread. (b) One process with tree threads.

When a multithreaded process is run on a single-CPU system, the threads take turns running. In Fig. 2-1, we saw how multiprogramming of 
processes works. By switching back and forth among multiple processes, the system gives the illusion of separate sequential processes 
running in parallel. Multithreading works the same way. The CPU switches rapidly back and forth among the threads providing the illusion 
that the threads are running in parallel, albeit on a slower CPU than the real one. With three compute-bound threads in a process, the threads 
would appear to be running in parallel, each one on a CPU with one-third the speed of the real CPU.

Different threads in a process are not quite as independent as different processes. All threads have exactly the same address space, which 
means that they also share the same global variables. Since every thread can access every memory address within the process’ address space, 
one thread can read, write, or even completely wipe out another thread’s stack. There is no protection between threads because (1) it is
impossible, and (2) it should not be necessary. Unlike different processes, which may be from different users and which may be hostile to one 
another, a process is always owned by a single user, who has presumably created multiple threads so that they can cooperate, not fight. In 
addition to sharing an address space, all the threads share the same set of open files, child processes, alarms, and signals, etc. as shown in Fig. 
2-7. Thus the organization of Fig. 2-6(a) would be used when the three processes are essentially unrelated, whereas Fig. 2-6(b) would be 
appropriate when the three threads are actually part of the same job and are actively and closely cooperating with each other.

The items in the first column are process properties, not thread properties. For example, if one thread opens a file, that file is visible to the
other threads in the process and they can read and write it. This is logical since the process is the unit of resource management, not the thread. 
If each thread had its own address space, open files, pending alarms, and so on, it would be a separate process. What we are trying to achieve 
with the thread concept is the ability for multiple threads of execution to share a set of resources so they can work together closely to perform 
some task.

Figure 2-7. The first column lists some items shared by all threads in a process. The second one lists some items private to each thread.

Like a traditional process (i.e., a process with only one thread), a thread can be in any one of several states: running, blocked, ready, or 
terminated. A running thread currently has the CPU and is active. A blocked thread is waiting for some event to unblock it. For example,
when a thread performs a system call to read from the keyboard, it is blocked until input is typed. A thread can block waiting for some 
external event to happen or for some other thread to unblock it. A ready thread is scheduled to run and will as soon as its turn comes up. The 
transitions between thread states are the same as the transitions between process states and are illustrated in Fig. 2-2.

It is important to realize that each thread has its own stack, as shown in Fig. 2-8. Each thread’s stack contains one frame for each procedure 
called but not yet returned from. This frame contains the procedure’s local variables and the return address to use when the procedure call has
finished. For example, if procedure X calls procedure Y and this one calls procedure Z, while Z is executing the frames for X, Y and Z will all 
be on the stack. Each thread will generally call different procedures and a thus a different execution history. This is why is thread needs its 
own stack.

When multithreading is present, processes normally start with a single thread present. This thread has the ability to create new threads by 
calling a library procedure, for example, thread_create. A parameter to thread_create typically specifies the name of a procedure for the new 
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thread to run. It is not necessary (or even possible) to specify anything about the new thread’s address space since it automatically runs in the 
address space of the creating thread. Sometimes threads are hierarchical, with a parent-child relationship, but often no such relationship exists, 
with all threads being equal. With or without a hierarchical relationship, the creating thread is usually returned a thread identifier that names 
the new thread.

Figure 2-8. Each thread has its own stack.

When a thread has finished its work, it can exit by calling a library procedure, say, thread_exit. It then vanishes and is no longer schedulable. 
In some thread systems, one thread can wait for a (specific) thread to exit by calling a procedure, for example, thread_wait. This procedure 
blocks the calling thread until a (specific) thread has exited. In this regard, thread creation and termination is very much like process creation 
and termination, with approximately the same options as well.

Another common thread call is thread_yield, which allows a thread to voluntarily give up the CPU to let another thread run. Such a call is 
important because there is no clock interrupt to actually enforce timesharing as there is with processes. Thus it is important for threads to be
polite and voluntarily surrender the CPU from time to time to give other threads a chance to run. Other calls allow one thread to wait for 
another thread to finish some work, for a thread to announce that it has finished some work, and so on.

While threads are often useful, they also introduce a number of complications into the programming model. To start with, consider the effects 
of the UNIX fork system call. If the parent process has multiple threads, should the child also have them? If not, the process may not function 
properly, since all of them may be essential.

However, if the child process gets as many threads as the parent, what happens if a thread in the parent was blocked on a read call, say, from 
the keyboard? Are two threads now blocked on the keyboard, one in the parent and one in the child? When a line is typed, do both threads get 
a copy of it? Only the parent? Only the child? The same problem exists with open network connections.

Another class of problems is related to the fact that threads share many data structures. What happens if one thread closes a file while another 
one is still reading from it? Suppose that one thread notices that there is too little memory and starts allocating more memory. Part way
through, a thread switch occurs, and the new thread also notices that there is too little memory and also starts allocating more memory. 
Memory will probably be allocated twice. These problems can be solved with some effort, but careful thought and design are needed to make 
multithreaded programs work correctly.

2.2.2 Thread Usage

Having described what threads are, it is now time to explain why anyone wants them. The main reason for having threads is that in many 
applications, multiple activities are going on at once. Some of these may block from time to time. By decomposing such an application into 
multiple sequential threads that run in quasi-parallel, the programming model becomes simpler.

We have seen this argument before. It is precisely the argument for having processes. Instead of thinking about interrupts, timers, and context 
switches, we can think about parallel processes. Only now with threads we add a new element: the ability for the parallel entities to share an 
address space and all of its data among themselves. This ability is essential for certain applications, which is why having multiple processes 
(with their separate address spaces) will not work.

A second argument for having threads is that since they do not have any resources attached to them, they are easier to create and destroy than 
processes. In many systems, creating a thread goes 100 times faster than creating a process. When the number of threads needed changes 
dynamically and rapidly, this property is useful.

A third reason for having threads is also a performance argument. Threads yield no performance gain when all of them are CPU bound, but 
when there is substantial computing and also substantial I/O, having threads allows these activities to overlap, thus speeding up the 
application.

Finally, threads are useful on systems with multiple CPUs, where real parallelism is possible. We will come back to this issue in Chap. 8.

It is probably easiest to see why threads are useful by giving some concrete examples. As a first example, consider a word processor. Most 
word processors display the document being created on the screen formatted exactly as it will appear on the printed page. In particular, all the 
line breaks and page breaks are in their correct and final position so the user can inspect them and change the document if need be (e.g., to 
eliminate widows and orphans—incomplete top and bottom lines on a page, which are considered esthetically unpleasing).
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Suppose that the user is writing a book. From the author’s point of view, it is easiest to keep the entire book as a single file to make it easier to 
search for topics, perform global substitutions, and so on. Alternatively, each chapter might be a separate file. However, having every section 
and subsection as a separate file is a real nuisance when global changes have to be made to the entire book since then hundreds of files have to 
be individually edited. For example, if proposed standard xxxx is approved just before the book goes to press, all occurrences of “Draft 
Standard xxxx” have to be changed to “Standard xxxx” at the last minute. If the entire book is one file, typically a single command can do all 
the substitutions. In contrast, if the book is spread over 300 files, each one must be edited separately.

Now consider what happens when the user suddenly deletes one sentence from page 1 of an 800-page document. After checking the changed 
page to make sure it is correct, the user now wants to make another change on page 600 and types in a command telling the word processor to
go to that page (possibly by searching for a phrase occurring only there). The word processor is now forced to reformat the entire book up to 
page 600 on the spot because it does not know what the first line of page 600 will be until it has processed all the previous pages. There may 
be a substantial delay before page 600 can be displayed, leading to an unhappy user.

Threads can help here. Suppose that the word processor is written as a two-threaded program. One thread interacts with the user and the other 
handles reformatting in the background. As soon as the sentence is deleted from page 1 the interactive thread tells the reformatting thread to 
reformat the whole book. Meanwhile, the interactive thread continues to listen to the keyboard and mouse and responds to simple commands 
like scrolling page 1 while the other thread is computing madly in the background. With a little luck, the reformatting will be completed 
before the user asks to see page 600, so it can be displayed instantly.

While we are at it, why not add a third thread? Many word processors have a feature of automatically saving the entire file to disk every few 
minutes to protect the user against losing a day’s work in the event of a program crash, system crash, or power failure. The third thread can 
handle the disk backups without interfering with the other two. The situation with three threads is shown in Fig. 2-9.

Figure 2-9. A word processor with three threads.

If the program were single-threaded, then whenever a disk backup started, commands from the keyboard and mouse would be ignored until 
the backup was finished. The user would perceive this as sluggish performance. Alternatively, keyboard and mouse events could interrupt the 
disk backup, allowing good performance but leading to a complex interrupt-driven programming model. With three threads, the programming
model is much simpler. The first thread just interacts with the user. The second thread reformats the document when told to. The third thread 
writes the contents of RAM to disk periodically.

It should be clear that having three separate processes would not work here because all three threads need to operate on the document. By 
having three threads instead of three processes, they share a common memory and thus all have access to the document being edited.

An analogous situation exists with many other interactive programs. For example, an electronic spreadsheet is a program that allows a user to 
maintain a matrix, some of whose elements are data provided by the user. Other elements are computed based on the input data using 
potentially complex formulas. When a user changes one element, many other elements may have to be recomputed. By having a background 
thread do the recompute on, the interactive thread can allow the user to make additional changes while the computation is going on. Similarly, 
a third thread can handle periodic backups to disk on its own.

Now consider yet another example of where threads are useful: a server for a World Wide Web site. Requests for pages come in and the 
requested page is sent back to the client. At most Web sites, some pages are more commonly accessed than other pages. For example, Sony’s 
home page is accessed far more than a page deep in the tree containing the technical specifications of some particular camcorder. Web servers 
use this fact to improve performance by maintaining a collection of heavily used pages in main memory to eliminate the need to go to disk to 
get them. Such a collection is called a cache and is used in many other contexts as well.

One way to organize the Web server is shown in Fig. 2-10(a). Here one thread, the dispatcher, reads incoming requests for work from the
network. After examining the request, it chooses an idle (i.e., blocked) worker thread and hands it the request, possibly by writing a pointer 
to the message into a special word associated with each thread. The dispatcher then wakes up the sleeping worker, moving it from blocked 
state to ready state.

When the worker wakes up, it checks to see if the request can he satisfied from the Web page cache, to which all threads have access. If not, it
starts a read operation to get the page from the disk and blocks until the disk operation completes. When the thread blocks on the disk 
operation, another thread is chosen to run, possibly the dispatcher, in order to acquire more work, or possibly another worker that is now ready 
to run.
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Figure 2-10. A multithreaded Web server.

This model allows the server to be written as a collection of sequential threads. The dispatcher’s program consists of an infinite loop for 
getting a work request and handing it off to a worker. Each worker’s code consists of an infinite loop consisting of accepting a request from 
the dispatcher and checking the Web cache to see if the page is present. If so, it is returned to the client and the worker blocks waiting for a 
new request. If not, it gets the page from the disk, returns it to the client, and blocks waiting for a new request.

A rough outline of the code is given in Fig. 2-11. Here, as in the rest of this book, TRUE is assumed to be the constant 1. Also, buf and page
are structures appropriate for holding a work request and a Web page, respectively.

Figure 2-11. A rough outline of the code for Fig. 2-10. (a) Dispatcher thread. (b) Worker thread.

Consider how the Web server could be written in the absence of threads. One possibility is to have it operate as a single thread. The main loop 
of the Web server gets a request, examines it, and carries it out to completion before getting the next one. While waiting for the disk, the 
server is idle and does not process any other incoming requests. If the Web server is running on a dedicated machine, as is commonly the case, 
the CPU is simply idle while the Web server is waiting for the disk. The net result is that many fewer requests/sec can be processed. Thus
threads gain considerable performance, but each thread is programmed sequentially, in the usual way.

So far we have seen two possible designs: a multithreaded Web server and a single-threaded Web server. Suppose that threads are not 
available but the system designers find the performance loss due to single threading unacceptable. If a nonblocking version of the read system 
call is available, a third approach is possible. When a request comes in, the one and only thread examines it. If it can be satisfied from the 
cache, fine, but if not, a nonblocking disk operation is started.

The server records the state of the current request in a table and then goes and gets the next event. The next event may either be a request for
new work or a reply from the disk about a previous operation. If it is new work, that work is started. If it is a reply from the disk, the relevant 
information is fetched from the table and the reply processed. With nonblocking disk I/O a reply probably will have to take the form of a 
signal or interrupt.

In this design, the “sequential process” model that we had in the first two cases is lost. The state of the computation must be explicitly saved
and restored in the table every time the server switches from working on one request to another. In effect, we are simulating the threads and 
their stacks the hard way. A design like this in which each computation has a saved state and there exists some set of events that can occur to 
change the state is called a finite-state machine. This concept is widely used throughout computer science.

It should now be clear what threads have to offer. They make it possible to retain the idea of sequential processes that make blocking system 
calls (e.g., for disk I/O) and still achieve parallelism. Blocking system calls make programming easier and parallelism improves performance. 
The single-threaded server retains the ease of blocking system calls but gives up performance. The third approach achieves high performance
through parallelism but uses nonblocking calls and interrupts and is thus is hard to program. These models are summarized in Fig. 2-12.

Figure 2-12. Three ways to construct a server.

A third example where threads are useful is in applications that must process very large amounts of data. The normal approach is to read in a 
block of data, process it, and then write it out again. The problem here is that if only blocking system calls are available, the process blocks 
while data are coming in and data are going out. Having the CPU go idle when there is lots of computing to do is clearly wasteful and should 
be avoided if possible.

while (TRUE) {
    get_next_request(&buf);
    handoff_work(&buf);
}

while (TRUE) {
    wait_for_work(&buf);
    look_for_page_in_cache(&buf, &page);
    if (page_not_in_cache(&page))

read_page_from_disk(&buf, &page);
    return page(&page);
}

(a) (b)

Model Characteristics
Threads Parallelism, blocking system calls
Single-threaded process No parallelism, blocking system calls
Finite-state machine Parallelism, nonblocking system calls, interrupts
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Threads offer a solution. The process could be structured with an input thread, a processing thread, and an output thread. The input thread 
reads data into an input buffer. The processing thread takes data out of the input buffer, processes them, and puts the results in an output
buffer. The output buffer writes these results back to disk. In this way, input, output, and processing can all be going on at the same time. Of 
course, this model only works if a system call blocks only the calling thread, not the entire process.

2.2.3 Implementing Threads in User Space

There are two main ways to implement a threads package: in user space and in the kernel. The choice is moderately controversial, and a 
hybrid implementation is also possible. We will now describe these methods, along with their advantages and disadvantages.

The first method is to put the threads package entirely in user space. The kernel knows nothing about them. As far as the kernel is concerned,
it is managing ordinary, single-threaded processes. The first, and most obvious, advantage is that a user-level threads package can be 
implemented on an operating system that does not support threads. All operating systems used to fall into this category, and even now some 
still do.

All of these implementations have the same general structure, which is illustrated in Fig. 2-13(a). The threads run on top of a run-time system, 
which is a collection of procedures that manage threads. We have seen four of these already: thread_create, thread_exit, thread_wait, and
thread_yield, but usually there are more.

When threads are managed in user space, each process needs its own private thread table to keep track of the threads in that process. This 
table is analogous to the kernel’s process table, except that it keeps track only of the per-thread properties such the each thread’s program 
counter stack pointer, registers, state, etc. The thread table is managed by the runtime system. When a thread is moved to ready state or 
blocked state, the information needed to restart it is stored in the thread table, exactly the same way as the kernel stores information about 
processes in the process table.

When a thread does something that may cause it to become blocked locally, for example, waiting for another thread in its process to complete 
some work, it calls a run-time system procedure. This procedure checks to see if the thread must be put into blocked state. If so, it stores the 
thread’s registers (i.e., its own) in the thread table, looks in the table for a ready thread to run and reloads the machine registers with the new 
thread’s saved values. As soon as the stack pointer and program counter have been switched, the new thread comes to life again automatically. 
If the machine has an instruction to store all the registers, and another one to load them all, the entire thread switch can be done in a handful of 
instructions. Doing thread switching like this is at least an order of magnitude faster than trapping to the kernel and is a strong argument in 
favor of user-level threads packages.

Figure 2-13. (a) A user-level threads package. (b) A threads package managed by the kernel.

However, there is one key difference with processes. When a thread is finished running for the moment, for example, when it calls
thread_yield, the code of thread_yield can save the thread’s information in the thread table itself. Furthermore, it can then call the thread 
scheduler to pick another thread to run. The procedure that saves the thread’s state and the scheduler are just local procedures, so invoking 
them is much more efficient than making a kernel call. Among other issues, no trap is needed, no context switch is needed, the memory cache 
need not be flushed, and so on. This makes thread scheduling very fast.

User-level threads also have other advantages. They allow each process to have its own customized scheduling algorithm. For some 
applications, for example, those with a garbage collector thread, not having to worry about a thread being stopped at an inconvenient moment 
is a plus. They also scale better, since kernel threads invariably require some table space and stack space in the kernel, which can be a problem 
if there are a very large number of threads.

Despite their better performance, user-level threads packages have some major problems. First among these is the problem of how blocking 
system calls are implemented. Suppose that a thread reads from the keyboard before any keys have been hit. Letting the thread actually make 
the system call is unacceptable, since this will stop all the threads. One of the main goals of having threads in the first place was to allow each 
one to use blocking calls, but to prevent one blocked thread from affecting the others. With blocking system calls, it is hard to see how this 
goal can be achieved readily.

The system calls could all be changed to be nonblocking (e.g., a read on the keyboard would just return 0 bytes if no characters were already 
buffered), but requiring changes to the operating system is unattractive. Besides, one of the arguments for user-level threads was precisely that 
they could run with existing operating systems. In addition, changing the semantics of read will require changes to many user programs.
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Another alternative is possible in the event that it is possible to tell in advance if a call will block. In some versions of UNIX, a system call 
select exists, which allows the caller to tell whether a prospective read will block. When this call is present, the library procedure read can be 
replaced with a new one that first does a select call and then only does the read call if it is safe (i.e., will not block). If the read call will block, 
the call is not made. Instead, another thread is run. The next time the run-time system gets control, it can check again to see if the read is now 
safe. This approach requires rewriting parts of the system call library, is inefficient and inelegant, but there is little choice. The code placed 
around the system call to do the checking is called a jacket or wrapper.

Somewhat analogous to the problem of blocking system calls is the problem of page faults. We will study these in Chap. 4. For the moment, it 
is sufficient to say that computers can be set up in such a way that not all of the program is in main memory at once. If the program calls or 
jumps to an instruction that is not in memory, a page fault occurs and the operating system will go and get the missing instruction (and its 
neighbors) from disk. This is called a page fault. The process is blocked while the necessary instruction is being located and read in. If a 
thread causes a page fault, the kernel, not even knowing about the existence of threads, naturally blocks the entire process until the disk I/O is
complete, even though other threads might be runnable.

Another problem with user-level thread packages is that if a thread starts running, no other thread in that process will ever run unless the first 
thread voluntarily gives up the CPU. Within a single process, there are no clock interrupts, making it impossible to schedule processes round-
robin fashion (taking turns). Unless a thread enters the run-time system of its own free will, the scheduler will never get a chance.

One possible solution to the problem of threads running forever is to have the run-time system request a clock signal (interrupt) once a second 
to give it control, but this, too, is crude and messy to program. Periodic clock interrupts at a higher frequency are not always possible, and 
even if they are, the total overhead may be substantial. Furthermore, a thread might also need a clock interrupt, interfering with the run-time 
system’s use of the clock.

Another, and probably the most devastating argument against user-level threads, is that programmers generally want threads precisely in 
applications where the threads block often, as, for example, in a multithreaded Web server. These threads are constantly making system calls. 
Once a trap has occurred to the kernel to carry out the system call, it is hardly any more work for the kernel to switch threads if the old one has 
blocked, and having the kernel do this eliminates the need for constantly making select system calls that check to see if read system calls are 
safe. For applications that are essentially entirely CPU bound and rarely block, what is the point of having threads at all? No one would 
seriously propose computing the first n prime numbers or playing chess using threads because there is nothing to be gained by doing it that 
way.

2.2.4 Implementing Threads in the Kernel

Now let us consider having the kernel know about and manage the threads. No run-time system is needed in each, as shown in Fig. 2-13(b). 
Also, there is no thread table in each process. Instead, the kernel has a thread table that keeps track of all the threads in the system. When a 
thread wants to create a new thread or destroy an existing thread, it makes a kernel call, which then does the creation or destruction by 
updating the kernel thread table.

The kernel’s thread table holds each thread’s registers, state, and other information. The information is the same as with user-level threads, but 
it is now in the kernel instead of in user space (inside the run-time system). This information is a subset of the information that traditional 
kernels maintain about each of their single-threaded processes, that is, the process state. In addition, the kernel also maintains the traditional 
process table to keep track of processes.

All calls that might block a thread are implemented as system calls, at considerably greater cost than a call to a run-time system procedure. 
When a thread blocks, the kernel, at its option, can run either another thread from the same process (if one is ready), or a thread from a 
different process. With user-level threads, the run-time system keeps running threads from its own process until the kernel takes the CPU 
away from it (or there are no ready threads left to run).

Due to the relatively greater cost of creating and destroying threads in the kernel, some systems take an environmentally correct approach and 
recycle their threads. When a thread is destroyed, it is marked as not runnable, but its kernel data structures are not otherwise affected. Later,
when a new thread must be created, an old thread is reactivated, saving some overhead. Thread recycling is also possible for user-level 
threads, but since the thread management overhead is much smaller, there is less incentive to do this.

Kernel threads do not require any new, nonblocking system calls. In addition, if one thread in a process causes a page fault, the kernel can 
easily check to see if the process has any other runnable threads, and if so, run one of them while waiting for the required page to be brought 
in from the disk. Their main disadvantage is that the cost of a system call is substantial, so if thread operations (creation, termination, etc.) are 
common, much more overhead will be incurred.

2.2.5 Hybrid Implementations

Various ways have been investigated to try to combine the advantages of user-level threads with kernel-level threads. One way is use kernel-
level threads and then multiplex user-level threads onto some or all of the kernel threads, as shown in Fig. 2-14.
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Figure 2-14. Multiplexing user-level threads onto kernel-level threads.

In this design, the kernel is aware of only the kernel-level threads and schedules those. Some of those threads may have multiple user-level 
threads multiplexed on top of them. These user-level threads are created, destroyed, and scheduled just like user-level threads in a process that 
runs on an operating system without multithreading capability. In this model, each kernel-level thread has some set of user-level threads that 
take turns using it.

2.2.6 Scheduler Activations

Various researchers have attempted to combine the advantage of user threads (good performance) with the advantage of kernel threads (not 
having to use a lot of tricks to make things work). Below we will describe one such approach devised by Anderson et al. (1992), called 
scheduler activations. Related work is discussed by Edler et al. (1988) and Scott et al. (1990).

The goals of the scheduler activation work are to mimic the functionality of kernel threads, but with the better performance and greater 
flexibility usually associated with threads packages implemented in user space. In particular, user threads should not have to make special 
nonblocking system calls or check in advance if it is safe to make certain system calls. Nevertheless, when a thread blocks on a system call or 
on a page fault, it should be possible to run other threads within the same process, if any are ready.

Efficiency is achieved by avoiding unnecessary transitions between user and kernel space. If a thread blocks waiting for another thread to do 
something, for example, there is no reason to involve the kernel, thus saving the overhead of the kernel-user transition. The user-space run-
time system can block the synchronizing thread and schedule a new one by itself.

When scheduler activations are used, the kernel assigns a certain number of virtual processors to each process and lets the (user-space) run-
time system allocate threads to processors. This mechanism can also be used on a multiprocessor where the virtual processors may be real 
CPUs. The number of virtual processors allocated to a process is initially one, but the process can ask for more and can also return processors 
it no longer needs. The kernel can also take back virtual processors already allocated in order to assign them to other, more needy, processes.

The basic idea that makes this scheme work is that when the kernel knows that a thread has blocked (e.g., by its having executed a blocking 
system call or caused a page fault), the kernel notifies the process’ run-time system, passing as parameters on the stack the number of the
thread in question and a description of the event that occurred. The notification happens by having the kernel activate the run-time system at a
known starting address, roughly analogous to a signal in UNIX. This mechanism is called an upcall.

Once activated like this, the run-time system can reschedule its threads, typically by marking the current thread as blocked and taking another 
thread from the ready list, setting up its registers, and restarting it. Later, when the kernel learns that the original thread can run again (e.g., the 
pipe it was trying to read from now contains data, or the page it faulted over bus been brought in from disk), it makes another upcall to the 
run-time system to inform it of this event. The run-time system, at its own discretion, can either restart the blocked thread immediately, or put 
it on the ready list to be run later.

When a hardware interrupt occurs while a user thread is running, the interrupted CPU switches into kernel mode. If the interrupt is caused by 
an event not of interest to the interrupted process, such as completion of another process’ I/O, when the interrupt handler has finished, it puts 
the interrupted thread back in the state it was in before the interrupt. If, however, the process is interested in the interrupt, such as the arrival of 
a page needed by one of the process’ threads, the interrupted thread is not restarted. Instead, the interrupted thread is suspended and the run-
time system started on that virtual CPU, with the state of the interrupted thread on the stack. It is then up to the run-time system to decide 
which thread to schedule on that CPU: the interrupted one, the newly ready one, or some third choice.

An objection to scheduler activations is the fundamental reliance on upcalls, a concept that violates the structure inherent in any layered 
system. Normally, layer n offers certain services that layer n + 1 can call on, but layer n may not call procedures in layer n + 1. Upcalls do not 
follow this fundamental principle.

2.2.7 Pop-Up Threads

Threads are frequently useful in distributed systems. An important example is how incoming messages, for example requests for service, are 
handled. The traditional approach is to have a process or thread that is blocked on a receive system call waiting for an incoming message. 
When a message arrives, it accepts the message and processes it.

However, a completely different approach is also possible, in which the arrival of a message causes the system to create a new thread to 
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handle the message. Such a thread is called a pop-up thread and is illustrated in Fig. 2-15. A key advantage of pop-up threads is that since 
they are brand new, they do not have any history—registers, stack, etc. that must be restored. Each one starts out fresh and each one is 
identical to all the others. This makes it possible to create such a thread quickly. The new thread is given the incoming message to process.
The result of using pop-up threads is that the latency between message arrival and the start of processing can be made very short.

Figure 2-15. Creation of a new thread when a message arrives. (a) Before the message arrives. (b) After the message arrives.

Some advance planning is needed when pop-up threads are used. For example, in which process does the thread run? If the system supports 
threads running in the kernel’s context, the thread may run there (which is why we have not shown the kernel in Fig. 2-15). Having the pop-up 
thread run in kernel space is usually easier and faster than putting it in user space. Also, a pop-up thread in kernel space can easily access all 
the kernel’s tables and the I/O devices, which may be needed for interrupt processing. On the other hand, a buggy kernel thread can do more
damage than a buggy user thread. For example, if it runs too long and there is no way to preempt it, incoming data may be lost.

2.2.8 Making Single-Threaded Code Multithreaded

Many existing programs were written for single-threaded processes. Converting these to multithreading is much trickier than it may at first 
appear. Below we will examine just a few of the pitfalls.

As a start, the code of a thread normally consists of multiple procedures, just like a process. These may have local variables, global variables, 
and procedure parameters. Local variables and parameters do not cause any trouble, but variables that are global to a thread but not global to 
the entire program do. These are variables that are global in the sense that many procedures within the thread use them (as they might use any 
global variable), but other threads should logically leave them alone.

As an example, consider the errno variable maintained by UNIX. When a process (or a thread) makes a system call that fails, the error code is 
put into errno. In Fig. 2-16, thread 1 executes the system call access to find out if it has permission to access a certain file. The operating 
system returns the answer in the global variable errno. After control has returned to thread 1, but before it has a chance to read errno, the 
scheduler decides that thread 1 has had enough CPU time for the moment and decides to switch to thread 2. Thread 2 executes an open call 
that fails, which causes errno to be overwritten and thread l’s access code to be lost forever. When thread 1 starts up later, it will read the 
wrong value and behave incorrectly.

Figure 2-16. Conflicts between threads over the use of a global variable.

Various solutions to this problem are possible. One is to prohibit global variables altogether. However worthy this ideal may be, it conflicts 
with much existing software. Another is to assign each thread its own private global variables, as shown in Fig. 2-17. In this way, each thread 
has its own private copy of errno and other global variables, so conflicts are avoided. In effect, this decision creates a new scoping level, 
variables visible to all the procedures of a thread, in addition to the existing scoping levels of variables visible only to one procedure and
variables visible everywhere in the program.
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Figure 2-17. Threads can have private global variables.

Accessing the private global variables is a bit tricky, however, since most programming languages have a way of expressing local variables 
and global variables, but not intermediate forms. It is possible to allocate a chunk of memory for the globals and pass it to each procedure in 
the thread, as an extra parameter. While hardly an elegant solution, it works.

Alternatively, new library procedures can be introduced to create, set, and read these thread-wide global variables. The first call might look 
like this:

create_global("bufptr");
It allocates storage for a pointer called bufptr on the heap or in a special storage area reserved for the calling thread. No matter where the 
storage is allocated, only the calling thread has access to the global variable. If another thread creates a global variable with the same name, it 
gets a different storage location that does not conflict with the existing one.

Two calls are needed to access global variables: one for writing them and the other for reading them. For writing, something like

set_global("bufptr", &buf);
will do. It stores the value of a pointer in the storage location previously created by the call to create_global. To read a global variable, the call 
might look like

bufptr = read_global ("bufptr");
It returns the address stored in the global variable, so its data can be accessed.

The next problem turning a single-threaded program into a multithreaded program is that many library procedures are not reentrant. That is, 
they were not designed to have a second call made to any given procedure while a previous call has not yet finished. For example, sending a 
message over the network may well be programmed to assemble the message in a fixed buffer within the library, then to trap to the kernel to
send it. What happens if one thread has assembled its message in the buffer, then a clock interrupt forces a switch to a second thread that 
immediately overwrites the buffer with its own message?

Similarly, memory allocation procedures, such as malloc in UNIX, maintain crucial tables about memory usage, for example, a linked list of 
available chunks of memory. While malloc is busy updating these lists, they may temporarily be in an inconsistent state, with pointers that 
point nowhere. If a thread switch occurs while the tables are inconsistent and a new call comes in from a different thread, an invalid pointer 
may be used, leading to a program crash. Fixing all these problems properly effectively means rewriting the entire library.

A different solution is to provide each procedure with a jacket that sets a bit to mark the library as in use. Any attempt for another thread to 
use a library procedure while a previous call has not yet completed is blocked. Although this approach can be made to work, it greatly 
eliminates potential parallelism.

Next, consider signals. Some signals are logically thread specific, whereas others are not. For example, if a thread calls alarm, it makes sense 
for the resulting signal to go to the thread that made the call. However, when threads are implemented entirely in user space, the kernel does 
not even know about threads and can hardly direct the signal to the right one. An additional complication occurs if a process may only have 
one alarm at a time pending and several threads call alarm independently.

Other signals, such as keyboard interrupt, are not thread specific. Who should catch them? One designated thread? All the threads? A newly 
created pop-up thread? Furthermore, what happens if one thread changes the signal handlers without telling other threads? And what happens 
if one thread wants to catch a particular signal (say, the user hitting CTRL-C), and another thread wants this signal to terminate the process? 
This situation can arise if one or more threads run standard library procedures and others are user-written. Clearly, these wishes are 
incompatible. In general, signals are difficult enough to manage in a single-threaded environment. Going to a multithreaded environment does 
not make them any easier to handle.

One last problem introduced by threads is stack management. In many systems, when a process’ stack overflows, the kernel just provides that 
process with more stack automatically. When a process has multiple threads, it must also have multiple stacks. If the kernel is not aware of all 
these stacks, it cannot grow them automatically upon stack fault. In fact, it may not even realize that a memory fault is related to stack growth.
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These problems are certainly not insurmountable, but they do show that just introducing threads into an existing system without a fairly 
substantial system redesign is not going to work at all. The semantics of system calls may have to be redefined and libraries have to be 
rewritten, at the very least. And all of these things must be done in such a way as to remain backward compatible with existing programs for 
the limiting case of a process with only one thread. For additional information about threads, see (Hauser et al., 1993; and Marsh et al., 1991).

2.3 INTERPROCESS COMMUNICATION

Processes frequently need to communicate with other processes. For example, in a shell pipeline, the output of the first process must be passed 
to the second process, and so on down the line. Thus there is a need for communication between processes, preferably in a well-structured way 
not using interrupts. In the following sections we will look at some of the issues related to this Interprocess Communication or IPC

Very briefly, there are three issues here. The first was alluded to above: how one process can pass information to another. The second has to 
do with making sure two or more processes do not get into each other’s way when engaging in critical activities (suppose two processes each 
try to grab the last 1 MB of memory). The third concerns proper sequencing when dependencies are present: if process A produces data and 
process B prints them, B has to wait until A has produced some data before starting to print. We will examine all three of these issues starting 
in the next section.

It is also important to mention that two of these issues apply equally well to threads. The first one—passing information—is easy for threads 
since they share a common address space (threads in different address spaces that need to communicate fall under the heading of 
communicating processes). However, the other two—keeping out of each other’s hair and proper sequencing—apply equally well to threads. 
The same problems exist and the same solutions apply. Below we will discuss the problem in the context of processes, but please keep in 
mind that the same problems and solutions also apply to threads.

2.3.1 Race Conditions

In some operating systems, processes that are working together may share some common storage that each one can read and write. The shared 
storage may be in main memory (possibly in a kernel data structure) or it may be a shared file: the location of the shared memory does not 
change the nature of the communication or the problems that arise. To see how interprocess communication works in practice, let us consider 
a simple but common example: a print spooler. When a process wants to print a file, it enters the file name in a special spooler directory. 
Another process, the printer daemon, periodically checks to see if there are any files to be printed, and if there are, it prints them and then 
removes their names from the directory.

Imagine that our spooler directory has a very large number of slots, numbered 0, 1, 2, …, each one capable of holding a file name. Also 
imagine that there are two shared variables, out, which points to the next file to be printed, and in, which points to the next free slot in the 
directory. These two variables might well be kept on a two-word file available to all processes. At a certain instant, slots 0 to 3 are empty (the 
files have already been printed) and slots 4 to 6 are full (with the names of files queued for printing). More or less simultaneously, processes A
and B decide they want to queue a file for printing. This situation is shown in Fig. 2-18.

Figure 2-18. Two processes want to access shared memory at the same time.

In jurisdictions where Murphy’s law[†] is applicable, the following might happen. Process A reads in and stores the value, 7, in a local
variable called next_free_slot. Just then a clock interrupt occurs and the CPU decides that process A has run long enough, so it switches to
process B, Process B also reads in, and also gets a 7. It too stores it in its local variable next_free_slot. At this instant both processes think that 
the next available slot is 7.

Process B now continues to run. It stores the name of its file in slot 7 and updates in to be an 8. Then it goes off and does other things.

Eventually, process A runs again, starting from the place it left off. It looks at next_free_slot, finds a 7 there, and writes its file name in slot 7, 
erasing the name that process B just put there. Then it computes next_free_slot + 1, which is 8, and sets in to 8. The spooler directory is now 
internally consistent, so the printer daemon will not notice anything wrong, but process B will never receive any output. User B will hang 
around the printer room for years, wistfully hoping for output that never comes. Situations like this, where two or more processes are reading 
or writing some shared data and the final result depends on who runs precisely when, are called race conditions. Debugging programs 
containing race conditions is no fun at all. The results of most test runs are fine, but once in a rare while something weird and unexplained
happens.
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2.3.2 Critical Regions

How do we avoid race conditions? The key to preventing trouble here and in many other situations involving shared memory, shared files, and 
shared everything else is to find some way to prohibit more than one process from reading and writing the shared data at the same time. Put in 
other words, what we need is mutual exclusion, that is, some way of making sure that if one process is using a shared variable or file, the 
other processes will be excluded from doing the same thing. The difficulty above occurred because process B started using one of the shared 
variables before process A was finished with it. The choice of appropriate primitive operations for achieving mutual exclusion is a major 
design issue in any operating system, and a subject that we will examine in great detail in the following sections.

The problem of avoiding race conditions can also be formulated in an abstract way. Part of the time, a process is busy doing internal 
computations and other things that do not lead to race conditions. However, sometimes a process have to access shared memory or files, or 
doing other critical things that can lead to races. That part of the program where the shared memory is accessed is called the critical region or 
critical section. If we could arrange matters such that no two processes were ever in their critical regions at the same time, we could avoid 
races.

Although this requirement avoids race conditions, this is not sufficient for having parallel processes cooperate correctly and efficiently using 
shared data. We need four conditions to hold to have a good solution:

1. No two processes may be simultaneously inside their critical regions.
2. No assumptions may be made about speeds or the number of CPUs.
3. No process running outside its critical region may block other processes.
4. No process should have to wait forever to enter its critical region.

In an abstract sense, the behavior that we want is shown in Fig. 2-19. Here process A enters its critical region at time T1, A little later, at time
T2 process B attempts to enter its critical region but fails because another process is already in its critical region and we allow only one at a
time. Consequently, B is temporarily suspended until time T3 when A leaves its critical region, allowing B to enter immediately. Eventually B
leaves (at T4) and we are back to the original situation with no processes in their critical regions.

Figure 2-19. Mutual exclusion using critical regions.

2.3.3 Mutual Exclusion with Busy Waiting

In this section we will examine various proposals for achieving mutual exclusion, so that while one process is busy updating shared memory 
in its critical region, no other process will enter its critical region and cause trouble.

Disabling Interrupts

The simplest solution is to have each process disable all interrupts just after entering its critical region and re-enable them just before leaving 
it. With interrupts disabled, no clock interrupts can occur. The CPU is only switched from process to process as a result of clock or other 
interrupts, after all, and with interrupts turned off the CPU will not be switched to another process. Thus, once a process has disabled 
interrupts, it can examine and update the shared memory without fear that any other process will intervene.

This approach is generally unattractive because it is unwise to give user processes the power to turn off interrupts. Suppose that one of them 
did it and never turned them on again? That could be the end of the system. Furthermore if the system is a multiprocessor, with two or more
CPUs, disabling interrupts affects only the CPU that executed the disable instruction. The other ones will continue running and can access the 
shared memory.

On the other hand, it is frequently convenient for the kernel itself to disable interrupts for a few instructions while it is updating variables or 
lists. If an interrupt occurred while the list of ready processes, for example, was in an inconsistent state, race conditions could occur. The
conclusion is: disabling interrupts is often a useful technique within the operating system itself but is not appropriate as a general mutual 
exclusion mechanism for user processes.
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Lock Variables

As a second attempt, let us look for a software solution. Consider having a single, shared (lock) variable, initially 0. When a process wants to
enter its critical region, it first tests the lock. If the lock is 0, the process sets it to 1 and enters the critical region. If the lock is already 1, the 
process just waits until it becomes 0. Thus, a 0 means that no process is in its critical region, and a 1 means that some process is in its critical
region.

Unfortunately, this idea contains exactly the same fatal flaw that we saw in the spooler directory. Suppose that one process reads the lock and 
sees that it is 0. Before it can set the lock to 1, another process is scheduled, runs, and sets the lock to 1. When the first process runs again, it 
will also set the lock to 1, and two processes will be in their critical regions at the same time.

Now you might think that we could get around this problem by first reading out the lock value, then checking it again just before storing into 
it, but that really does not help. The race now occurs if the second process modifies the lock just after the first process has finished its second 
check.

Strict Alternation

A third approach to the mutual exclusion problem is shown in Fig. 2-20. This program fragment, like nearly all the others in this book, is 
written in C. C was chosen here because real operating systems are virtually always written in C (or occasionally C++), but hardly ever in 
languages like Java, Modula 3, or Pascal. C is powerful, efficient, and predictable, characteristics critical for writing operating systems. Java, 
for example, is not predictable because it might run out of storage at a critical moment and need to invoke the garbage collector at a most 
inopportune time. This cannot happen in C because there is no garbage collection in C. A quantitative comparison of C, C++, Java, and four 
other languages is given in (Prechelt, 2000).

In Fig. 2-20, the integer variable turn, initially 0, keeps track of whose turn it is to enter the critical region and examine or update the shared 
memory. Initially, process 0 inspects turn, finds it to be 0, and enters its critical region. Process 1 also finds it to be 0 and therefore sits in a 
tight loop continually testing turn to see when it becomes 1. Continuously testing a variable until some value appears is called busy waiting. 
It should usually be avoided, since it wastes CPU time. Only when there is a reasonable expectation that the wait will be short is busy waiting 
used. A lock that uses busy waiting is called a spin lock.

Figure 2-20. A proposed solution to the critical region problem. (a) Process 0. (b) Process 1. In both cases, be sure to note the semicolons 
terminating the while statements.

When process 0 leaves the critical region, it sets turn to 1, to allow process 1 to enter its critical region. Suppose that process 1 finishes its 
critical region quickly, so both processes are in their noncritical regions, with turn set to 0. Now process 0 executes its whole loop quickly, 
exiting its critical region and setting turn to 1. At this point turn is 1 and both processes are executing in their noncritical regions.

Suddenly, process 0 finishes its noncritical region and goes back to the top of its loop. Unfortunately, it is not permitted to enter its critical
region now, because turn is 1 and process 1 is busy with its noncritical region. It hangs in its while loop until process 1 sets turn to 0. Put 
differently, taking turns is not a good idea when one of the processes is much slower than the other.

This situation violates condition 3 set out above: process 0 is being blocked by a process not in its critical region. Going back to the spooler 
directory discussed above, if we now associate the critical region with reading and writing the spooler directory, process 0 would not be 
allowed to print another file because process 1 was doing something else.

In fact, this solution requires that the two processes strictly alternate in entering their critical regions, for example, in spooling files. Neither 
one would be permitted to spool two in a row. While this algorithm does avoid all races, it is not really a serious candidate as a solution 
because it violates condition 3.

Peterson’s Solution

By combining the idea of taking turns with the idea of lock variables and warning variables, a Dutch mathematician, T. Dekker, was the first 
one to devise a software solution to the mutual exclusion problem that does not require strict alternation. For a discussion of Dekkers 
algorithm, see (Dijkstra, 1965).

In 1981, G.L. Peterson discovered a much simpler way to achieve mutual exclusion, thus rendering Dekker’s solution obsolete. Peterson’s 
algorithm is shown in Fig. 2-21. This algorithm consists of two procedures written in ANSI C, which means that function prototypes should 
be supplied for all the functions defined and used. However, to save space, we will not show the prototypes in this or subsequent examples.

#define FALSE 0
#define TRUE  1

while (TRUE) {
    while (turn != 0)   /* loop */ ;
    critical_region();
    turn = 1;
    noncritical_region();
}

while (TRUE) {
    while (turn != 1);  /* loop */ ;
    critical_region();
    turn = 0;
    noncritical_region();
}

(a) (b)
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#define N     2      /* number of processes */

int turn;      /* whose turn is it? */ 
int interested[N];  /* all values initially 0 (FALSE) */ 

void enter_region(int process)      /* process is 0 or 1 */ 
{ 
   int other;     /* number of the other process */ 

other = 1 − process;   /* the opposite of process */ 
   interested[process] = TRUE;     /* show that you are interested */ 
   turn = process;      /* set flag */ 
   while (turn == process && interested[other] == TRUE) /* null statement */; 

}

void leave_region (int process)     /* process, who is leaving */
{
   interested[process] = FALSE;    /* indicate departure from critical region */ 

}
Figure 2-21. Peterson’s solution for achieving mutual exclusion.

Before using the shared variables (i.e., before entering its critical region), each process calls enter_region with its own process number, 0 or 1, 
as parameter. This call will cause it to wait, if need be, until it is safe to enter. After it has finished with the shared variables, the process calls 
leave_region to indicate that it is done and to allow the other process to enter, if it so desires.

Let us see how this solution works. Initially neither process is in its critical region. Now process 0 calls enter_region. It indicates its interest 
by setting its array element and sets turn to 0. Since process 1 is not interested, enter_region returns immediately. If process 1 now calls 
enter_region, it will hang there until interested[0] goes to FALSE, an event that only happens when process 0 calls leave_region to exit the 
critical region.

Now consider the case that both processes call enter_region almost simultaneously. Both will store their process number in turn. Whichever 
store is done last is the one that counts; the first one is overwritten and lost. Suppose that process 1 stores last, so turn is 1. When both 
processes come to the while statement, process 0 executes it zero times and enters its critical region. Process 1 loops and does not enter its
critical region until process 0 exits its critical region.

The TSL Instruction

Now let us look at a proposal that requires a little help from the hardware. Many computers, especially those designed with multiple 
processors in mind, have an instruction

TSL RX,LOCK
(Test and Set Lock) that works as follows. It reads the contents of the memory word lock into register RX and then stores a nonzero value at 
the memory address lock. The operations of reading the word and storing into it are guaranteed to be indivisible—no other processor can
access the memory word until the instruction is finished. The CPU executing the TSL instruction locks the memory bus to prohibit other CPUs 
from accessing memory until it is done.

To use the TSL instruction, we will use a shared variable, lock, to coordinate access to shared memory. When lock is 0, any process may set it 
to 1 using the TSL instruction and then read or write the shared memory. When it is done, the process sets lock back to 0 using an ordinary 
move instruction.

How can this instruction be used to prevent two processes from simultaneously entering their critical regions? The solution is given in Fig. 2-
22. There a four-instruction subroutine in a fictitious (but typical) assembly language is shown. The first instruction copies the old value of
lock to the register and then sets lock to 1. Then the old value is compared with 0. If it is nonzero, the lock was already set, so the program just 
goes back to the beginning and tests it again. Sooner or later it will become 0 (when the process currently in its critical region is done with its 
critical region), and the subroutine returns, with the lock set. Clearing the lock is simple. The program just stores a 0 in lock. No special 
instructions are needed.

enter_region: 
   TSL REGISTER,LOCK   | copy lock to register and set lock to 1 
   CMP REGISTER,#0     | was lock zero?  
   JNE enter_region    | if it was non zero, lock was set, so loop 
   RET | return to caller; critical region entered 

leave_region: 
   MOVE LOCK,#0  | store a 0 in lock 
   RET | return to caller

Figure 2-22. Entering and leaving a critical region using the TSL instruction.
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One solution to the critical region problem is now straightforward. Before entering its critical region, a process calls enter_region, which does 
busy waiting until the lock is free; then it acquires the lock and returns. After the critical region the process calls leave_region, which stores a 
0 in lock. As with all solutions based on critical regions, the processes must call enter_region and leave_region at the correct times for the 
method to work. If a process cheats, the mutual exclusion will fail.

2.3.4 Sleep and Wakeup

Both Peterson’s solution and the solution using TSL are correct, but both have the defect of requiring busy waiting. In essence, what these 
solutions do is this: when a process wants to enter its critical region, it checks to see if the entry is allowed. If it is not, the process just sits in a 
tight loop waiting until it is.

Not only does this approach waste CPU time, but it can also have unexpected effects. Consider a computer with two processes, H, with high 
priority and L, with low priority. The scheduling rules are such that H is run whenever it is in ready state. At a certain moment, with L in its 
critical region, H becomes ready to run (e.g., an I/O operation completes). H now begins busy waiting, but since L is never scheduled while H 
is running, L never gets the chance to leave its critical region, so H loops forever. This situation is sometimes referred to as the priority 
inversion problem.

Now let us look at some interprocess communication primitives that block instead of wasting CPU time when they are not allowed to enter 
their critical regions. One of the simplest is the pair sleep and wakeup. Sleep is a system call that causes the caller to block, that is, be 
suspended until another process wakes it up. The wakeup call has one parameter, the process to be awakened. Alternatively, both sleep and 
wakeup each have one parameter, a memory address used to match up sleeps with wakeups.

The Producer-Consumer Problem

As an example of how these primitives can be used, let us consider the producer-consumer problem (also known as the bounded-buffer 
problem). Two processes share a common, fixed-size buffer. One of them, the producer, puts information into the buffer, and the other one,
the consumer, takes it out. (It is also possible to generalize the problem to have m producers and n consumers, but we will only consider the
case of one producer and one consumer because this assumption simplifies the solutions).

Trouble arises when the producer wants to put a new item in the buffer, but it is already full. The solution is for the producer to go to sleep, to 
be awakened when the consumer has removed one or more items. Similarly, if the consumer wants to remove an item from the buffer and sees 
that the buffer is empty, it goes to sleep until the producer puts something in the buffer and wakes it up.

This approach sounds simple enough, but it leads to the same kinds of race conditions we saw earlier with the spooler directory. To keep track 
of the number of items in the buffer, we will need a variable, count. If the maximum number of items the buffer can hold is N, the producer’s 
code will first test to see if count is N. If it is, the producer will go to sleep; if it is not, the producer will add an item and increment count.

The consumer’s code is similar: first test count to see if it is 0. If it is, go to sleep, if it is nonzero, remove an item and decrement the counter. 
Each of the processes also tests to see if the other should be awakened, and if so, wakes it up. The code for both producer and consumer is 
shown in Fig. 2-23.

#define N 100       /* number of slots in the buffer */
int count = 0;      /* number of items in the buffer */

void producer (void)
{
   int item;

   while (TRUE) {      /* repeat forever */
  item = produce_item();     /* generate next item */
  if (count == N) sleep();   /* if buffer is full, go to sleep */
  insert_item(item);    /* put item in buffer */
  count = count + 1;    /* increment count of items in buffer */
  if (count == 1) wakeup(consumer);  /* was buffer empty? */

   }
}

void consumer(void)
{
   int item;

   while (TRUE) {      /* repeat forever */
  if (count == 0) sleep();   /* if buffer is empty, got to sleep */
  item = remove_item();      /* take item out of buffer */
count = count − 1;  /* decrement count of items in buffer */
if (count == N − 1) wakeup(producer); /* was buffer full? */

  consume_item(item);   /* print item */
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   }
}

Figure 2-23. The producer-consumer problem with a fatal race condition.

To express system calls such as sleep and wakeup in C, we will show them as calls to library routines. They are not part of the standard C 
library but presumably would be available on any system that actually had these system calls. The procedures insert_item and remove_item,
which are not shown, handle the bookkeeping of putting items into the buffer and taking items out of the buffer.

Now let us get back to the race condition. It can occur because access to count is unconstrained. The following situation could possibly occur. 
The buffer is empty and the consumer has just read count to see if it is 0. At that instant, the scheduler decides to stop running the consumer 
temporarily and start running the producer. The producer inserts an item in the buffer, increments count, and notices that it is now 1. 
Reasoning that count was just 0, and thus the consumer must be sleeping, the producer calls wakeup to wake the consumer up.

Unfortunately, the consumer is not yet logically asleep, so the wakeup signal is lost. When the consumer next runs, it will test the value of 
count it previously read, find it to be 0, and go to sleep. Sooner or later the producer will fill up the buffer and also go to sleep.  Both will 
sleep forever.

The essence of the problem here is that a wakeup sent to a process that is not (yet) sleeping is lost. If it were not lost, everything would work. 
A quick fix is to modify the rules to add a wakeup waiting bit to the picture. When a wakeup is sent to a process that is still awake, this bit is 
set. Later, when the process tries to go to sleep, if the wakeup waiting bit is on, it will be turned off, but the process will stay awake. The 
wakeup waiting bit is a piggy bank for wakeup signals.

While the wakeup waiting bit saves the day in this simple example, it is easy to construct examples with three or more processes in which one 
wakeup waiting bit is insufficient. We could make another patch and add a second wakeup waiting bit, or maybe 8 or 32 of them, but in 
principle the problem is still there.

2.3.5 Semaphores

This was the situation in 1965, when E. W. Dijkstra (1965) suggested using an integer variable to count the number of wakeups saved for 
future use. In his proposal, a new variable type, called a semaphore, was introduced. A semaphore could have the value 0, indicating that no 
wakeups were saved, or some positive value if one or more wakeups were pending.

Dijkstra proposed having two operations, down and up (generalizations of sleep and wakeup, respectively). The down operation on a 
semaphore checks to see if the value is greater than 0. If so, it decrements the value (i.e., uses up one stored wakeup) and just continues. If the 
value is 0, the process is put to sleep without completing the down for the moment. Checking the value, changing it and possibly going to 
sleep, is all done as a single, indivisible atomic action. It is guaranteed that once a semaphore operation has started, no other process can
access the semaphore until the operation has completed or blocked. This atomicity is absolutely essential to solving synchronization problems 
and avoiding race conditions.

The up operation increments the value of the semaphore addressed. If one or more processes were sleeping on that semaphore, unable to 
complete an earlier down operation, one of them is chosen by the system (e.g., at random) and is allowed to complete its down. Thus, after an 
up on a semaphore with processes sleeping on it, the semaphore will still be 0, but there will be one fewer process sleeping on it. The 
operation of incrementing the semaphore and waking up one process is also indivisible. No process ever blocks doing an up, just as no process 
ever blocks doing a wakeup in the earlier model.

As an aside, in Dijkstra’s original paper, he used the names P and V instead of down and up, respectively, but since these have no mnemonic 
significance to people who do not speak Dutch (and only marginal significance to those who do), we will use the terms down and up instead.
These were first introduced in Algol 68.

Solving the Producer-Consumer Problem using Semaphores

Semaphores solve the lost-wakeup problem, as shown in Fig. 2-24. It is essential that they be implemented in an indivisible way. The normal 
way is to implement up and down as system calls, with the operating system briefly disabling all interrupts while it is testing the semaphore, 
updating it, and putting the process to sleep, if necessary. As all of these actions take only a few instructions, no harm is done in disabling
interrupts. If multiple CPUs are being used, each semaphore should be protected by a lock variable, with the TSL instruction used to make 
sure that only one CPU at a time examines the semaphore. Be sure you understand that using TSL to prevent several CPUs from accessing the 
semaphore at the same time is quite different from busy waiting by the producer or consumer waiting for the other to empty or fill the buffer. 
The semaphore operation will only take a few microseconds, whereas the producer or consumer might take arbitrarily long.

#define N 100        /* number of slots in the buffer */

typedef int semaphore;     /* semaphores are a special kind of int */ 
semaphore mutex = 1;       /* controls access to critical region */ 
semaphore empty = N;       /* counts empty buffer slots */ 
semaphore full = 0;        /* counts full buffer slots */ 

void producer(void) 
{ 
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   int item; 

   while (TRUE) {       /* TRUE is the constant 1 */ 
  item = produce_item(); /* generate something to put in buffer */ 
  down(&empty);    /* decrement empty count */ 
  down(&mutex);    /* enter critical region */ 
  insert_item(item);     /* put new item in buffer */ 
  up(&mutex);      /* leave critical region */ 
  up(&full);       /* increment count of full slots */ 

   } 
} 

void consumer(void) 
{ 
   int item; 

   while (TRUE) {       /* infinite loop */ 
  down(&full);     /* decrement full count */ 
  down(&mutex);    /* enter critical region */ 
  item a= remove_item(); /* take item from buffer */ 
  up(&mutex);      /* leave critical region */ 
  up(&empty);      /* increment count of empty slots */ 
  consume_item(item);    /* do something with the item */ 

   } 
}

Figure 2-24. The producer-consumer problem using semaphores.

This solution uses three semaphores: one called full for counting the number of slots that are full, one called empty for counting the number of 
slots that are empty, and one called mutex to make sure the producer and consumer do not access the buffer at the same time. Full is initially 0, 
empty is initially equal to the number of slots in the buffer, and mutex is initially 1. Semaphores that are initialized to 1 and used by two or 
more processes to ensure that only one of them can enter its critical region at the same time are called binary semaphores. If each process 
does a down just before entering its critical region and an up just after leaving it, mutual exclusion is guaranteed.

Now that we have a good interprocess communication primitive at our disposal, let us go back and look at the interrupt sequence of Fig. 2-5 
again. In a system using semaphores, the natural way to hide interrupts is to have a semaphore, initially set to 0, associated with each I/O 
device. Just after starting an I/O device, the managing process does a down on the associated semaphore, thus blocking immediately. When 
the interrupt comes in, the interrupt handler then does an up on the associated semaphore, which makes the relevant process ready to run 
again. In this model, step 5 in Fig. 2-5 consists of doing an up on the device’s semaphore, so that in step 6 the scheduler will be able to run the 
device manager. Of course, if several processes are now ready, the scheduler may choose to run an even more important process next. We will 
look at some of the algorithms used for scheduling later on in this chapter.

In the example of Fig. 2-24, we have actually used semaphores in two different ways. This difference is important enough to make explicit. 
The mutex semaphore is used for mutual exclusion. It is designed to guarantee that only one process at a time will be reading or writing the 
buffer and the associated variables. This mutual exclusion is required to prevent chaos. We will study mutual exclusion and how to achieve it 
more in the next section.

The other use of semaphores is for synchronization. The full and empty semaphores are needed to guarantee that certain event sequences do
or do not occur. In this case, they ensure that the producer stops running when the buffer is full, and the consumer stops running when it is 
empty. This use is different from mutual exclusion.

2.3.6 Mutexes

When the semaphore’s ability to count is not needed, a simplified version of the semaphore, called a mutex, is sometimes used. Mutexes are 
good only for managing mutual exclusion to some shared resource or piece of code. They are easy and efficient to implement, which makes 
them especially useful in thread packages that are implemented entirely in user space.

A mutex is a variable that can be in one of two states: unlocked or locked. Consequently, only 1 bit is required to represent it, but in practice 
an integer often is used, with 0 meaning unlocked and all other values meaning locked. Two procedures are used with mutexes. When a thread 
(or process) needs access to a critical region, it calls mutex_lock. If the mutex is current unlocked (meaning that the critical region is 
available), the call succeeds and the calling thread is free to enter the critical region.

On the other hand, if the mutex is already locked, the calling thread is blocked until the thread in the critical region is finished and calls 
mutex_unlock. If multiple threads are blocked on the mutex, one of them is chosen at random and allowed to acquire the lock.

Because mutexes are so simple, they can easily be implemented in user space if a TSL instruction is available. The code for mutex_lock and 
mutex_unlock for use with a user-level threads package are shown in Fig. 2-25.

mutex_lock: 
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   TSL REGISTER,MUTEX | copy mutex to register and set mutex to 1 
   CMP REGISTERS,#0   | was mutex zero?  
   JZE ok  | if it was zero, mutex was unlocked, so return 
   CALL thread_yield  | mutex is busy; schedule another thread 
   JMP mutex_lock     | try again later 

ok:   RET | return to caller; critical region entered 

mutex_unlock: 
   MOVE MUTEX,#0 | store a 0 in mutex 
   RET | return to caller

Figure 2-25. Implementation of mutex_lock and mutex_unlock

The code of mutex_lock is similar to the code of enter_region of Fig. 2-22 but with a crucial difference. When enter_region fails to enter the 
critical region, it keeps testing the lock repeatedly (busy waiting). Eventually, the clock runs out and some other process is scheduled to run. 
Sooner or later the process holding the lock gets to run and releases it.

With threads, the situation is different because there is no clock that stops threads that have run too long. Consequently, a thread that tries to 
acquire a lock by busy waiting will loop forever and never acquire the lock because it never allows any other thread to run and release the 
lock.

That is where the difference between enter_region and mutex_lock comes in. When the later fails to acquire a lock, it calls thread_yield to 
give up the CPU to another thread. Consequently there is no busy waiting. When the thread runs the next time, it tests the lock again.

Since thread_yield is just a call to the thread scheduler in user space, it is very fast. As a consequence, neither mutex_lock nor mutex_unlock 
requires any kernel calls. Using them, user-level threads can synchronize entirely in user space using procedures that require only a handful of 
instructions.

The mutex system that we have described above is a bare bones set of calls. With all software, there is always a demand for more features, and
synchronization primitives are no exception. For example, sometimes a thread package offers a call mutex_trylock that either acquires the lock 
or returns a code for failure, but does not block. This call gives the thread the flexibility to decide what to do next if there are alternatives to 
just waiting.

Up until now there is an issue that we have glossed over lightly but which is worth at least making explicit. With a user-space threads package 
there is no problem with multiple threads having access to the same mutex since all the threads operate in a common address space. However,
with most of the earlier solutions, such as Peterson’s algorithm and semaphores, there is an unspoken assumption that multiple processes have 
access to at least some shared memory, perhaps only one word, but something. If processes have disjoint address spaces, as we have 
consistently said, how can they share the turn variable in Peterson’s algorithm, or semaphores or a common buffer?

There are two answers. First, some of the shared data structures, such as the semaphores, can be stored in the kernel and only accessed via 
system calls. This approach eliminates the problem. Second, most modern operating systems (including UNIX and Windows) offer a way for 
processes to share some portion of their address space with other processes. In this way, buffers and other data structures can be shared. In the 
worst case, that nothing else is possible, a shared file can be used.

If two or more processes share most or all of their address spaces, the distinction between processes and threads becomes somewhat blurred 
but is nevertheless present. Two processes that share a common address space still have different open files, alarm timers, and other per-
process properties, whereas the threads within a single process share them. And it is always true that multiple processes sharing a common 
address space never have the efficiency of user-level threads since the kernel is deeply involved in their management.

2.3.7 Monitors

With semaphores interprocess communication looks easy, right? Forget it. Look closely at the order of the downs before inserting or removing 
items from the buffer in Fig. 2-24. Suppose that the two downs in the producer’s code were reversed in order, so mutex was decremented 
before empty instead of after it. If the buffer were completely full, the producer would block, with mutex set to 0. Consequently, the next time
the consumer tried to access the buffer, it would do a down on mutex, now 0, and block too. Both processes would stay blocked forever and no 
more work would ever be done. This unfortunate situation is called a deadlock. We will study deadlocks in detail in Chap. 3.

This problem is pointed out to show how careful you must be when using semaphores. One subtle error and everything comes to a grinding 
halt. It is like programming in assembly language, only worse, because the errors are race conditions, deadlocks, and other forms of 
unpredictable and irreproducible behavior.

To make it easier to write correct programs, Hoare (1974) and Brinch Hansen (1975) proposed a higher-level synchronization primitive called 
a monitor. Their proposals differed slightly, as described below. A monitor is a collection of procedures, variables, and data structures that are 
all grouped together in a special kind of module or package. Processes may call the procedures in a monitor whenever they want to, but they 
cannot directly access the monitor’s internal data structures from procedures declared outside the monitor. Figure 2-26 illustrates a monitor 
written in an imaginary language, Pidgin Pascal.

monitor example

integer i;
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condition c;

procedure producer( );

   ·

   ·

   ·

end;

procedure consumer( );

   ·      ·      ·

end;

end monitor;

Figure 2-26. A monitor.

Monitors have an important property that makes them useful for achieving mutual exclusion: only one process can be active in a monitor at 
any instant. Monitors are a programming language construct, so the compiler knows they are special and can handle calls to monitor 
procedures differently from other procedure calls. Typically, when a process calls a monitor procedure, the first few instructions of the 
procedure will check to see, if any other process is currently active within the monitor. If so, the calling process will be suspended until the 
other process has left the monitor. If no other process is using the monitor, the calling process may enter.

It is up to the compiler to implement the mutual exclusion on monitor entries, but a common way is to use a mutex or binary semaphore. 
Because the compiler, not the programmer, is arranging for the mutual exclusion, it is much less likely that something will go wrong. In any 
event, the person writing the monitor does not have to be aware of how the compiler arranges for mutual exclusion. It is sufficient to know 
that by turning all the critical regions into monitor procedures, no two processes will ever execute their critical regions at the same time.

Although monitors provide an easy way to achieve mutual exclusion, as we have seen above, that is not enough. We also need a way for 
processes to block when they cannot proceed. In the producer-consumer problem, it is easy enough to put all the tests for buffer-full and 
buffer-empty in monitor procedures, but how should the producer block when it finds the buffer full?

The solution lies in the introduction of condition variables, along with two operations on them, wait and signal. When a monitor procedure 
discovers that it cannot continue (e.g., the producer finds the buffer full), it does a wait on some condition variable, say, full. This action 
causes the calling process to block. It also allows another process that had been previously prohibited from entering the monitor to enter now.

This other process, for example, the consumer, can wake up its sleeping partner by doing a signal on the condition variable that its partner is
waiting on. To avoid having two active processes in the monitor at the same time, we need a rule telling what happens after a signal. Hoare 
proposed letting the newly awakened process run, suspending the other one. Brinch Hansen proposed finessing the problem by requiring that a 
process doing a signal must exit the monitor immediately. In other words, a signal statement may appear only as the final statement in a 
monitor procedure. We will use Brinch Hansen’s proposal because it is conceptually simpler and is also easier to implement. If a signal is 
done on a condition variable on which several processes are waiting, only one of them, determined by the system scheduler, is revived.

As an aside, there is also a third solution, not proposed by either Hoare or Brinch Hansen. This is to let the signaler continue to run and allow 
the waiting process to start running only after the signaler has exited the monitor.

Condition variables are not counters. They do not accumulate signals for later use the way semaphores do. Thus if a condition variable is 
signaled with no one waiting on it, the signal is lost forever. In other words, the wait must come before the signal. This rule makes the 
implementation much simpler. In practice it is not a problem because it is easy to keep track of the state of each process with variables, if need 
be. A process that might otherwise do a signal can see that this operation is not necessary by looking at the variables.

A skeleton of the producer-consumer problem with monitors is given in Fig. 2-27 in an imaginary language, Pidgin Pascal. The advantage of 
using Pidgin Pascal here is that it is pure and simple and follows the Hoare/Brinch Hansen model exactly.

monitor ProducerConsumer

condition full, empty;

integer count;
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procedure insert(item: integer);

begin

if count = N then wait(full);

insert_item(item);

count := count + 1:

if count = 1 then signal(empty)

end;

function remove: integer;

begin

if count = 0 then wait(empty);

remove = remove_item;

count := count − 1;

if count = N − 1 then signal(full)

end;

count := 0;

end monitor;

procedure producer;

begin

while true do

begin

item = produce_item;

ProducerConsumer.insert(item)

end

end;

procedure consumer;

begin

while true do

begin

item = ProducerConsumer.remove;

consume_item(item)

end

end;
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Figure 2-27. An outline of the producer-consumer problem with monitors. Only one monitor procedure at a time is active. The buffer has N slots.

You may be thinking that the operations wait and signal look similar to sleep and wakeup, which we saw earlier had fatal race conditions. 
They are very similar, but with one crucial difference: sleep and wakeup failed because while one process was trying to go to sleep, the other 
one was trying to wake it up. With monitors, that cannot happen. The automatic mutual exclusion on monitor procedures guarantees that if,
say, the producer inside a monitor procedure discovers that the buffer is full, it will be able to complete the wait operation without having to 
worry about the possibility that the scheduler may switch to the consumer just before the wait completes. The consumer will not even be let 
into the monitor at all until the wait is finished and the producer has been marked as no longer runnable.

Although Pidgin Pascal is an imaginary language, some real programming languages also support monitors, although not always in the form 
designed by Hoare and Brinch Hansen. One such language is Java. Java is an object-oriented language that supports user-level threads and
also allows methods (procedures) to be grouped together into classes. By adding the keyword synchronized to a method declaration, Java 
guarantees that once any thread has started executing that method, no other thread will be allowed to start executing any other synchronized
method in that class.

A solution to the producer-consumer problem using monitors in Java is given in Fig. 2-28. The solution consists of four classes. The outer 
class, ProducerConsumer, creates and starts two threads, p and c. The second and third classes, producer and consumer, respectively, contain 
the code for the producer and consumer. Finally, the class our_monitor, is the monitor. It contains two synchronized threads that are used for 
actually inserting items into the shared buffer and taking them out. Unlike in the previous examples, we have finally shown the full code of
insert and remove here.

The producer and consumer threads are functionally identical to their counterparts in all our previous examples. The producer has an infinite 
loop generating data and putting it into the common buffer. The consumer has an equally infinite loop taking data out of the common buffer 
and doing some fun thing with it.

The interesting part of this program is the class our_monitor, which contains the buffer, the administration variables, and two synchronized 
methods. When the producer is active inside insert, it knows for sure that the consumer cannot be active inside remove, making it safe to 
update the variables and the buffer without fear of race conditions. The variable count keeps track of how many items are in the buffer. It can 
take on any value from 0 through and including N − 1. The variable lo is the index of the buffer slot where the next item is to be fetched. 
Similarly, hi is the index of the buffer slot where the next item is to be placed. It is permitted that lo = hi, which means either that 0 items or N 
items are in the buffer. The value of count tells which case holds.

Synchronized methods in Java differ from classical monitors in an essential way: Java does not have condition variables. Instead, it offers two
procedures, wait and notify that are the equivalent of sleep and wakeup except that when they are used inside synchronized methods, they are 
not subject to race conditions. In theory, the method wait can be interrupted, which is what the code surrounding it is all about. Java requires 
that the exception handling be made explicit. For our purposes, just imagine that go_to_sleep is the way to go to sleep.

public class
ProducerConsumer {
   static final int N = 100;        // constant giving the buffer size
   static producer p = new producer();    // instantiate a new producer thread
   static consumer c = new consumer();    // instantiate a new consumer thread
   static our_monitor mon = new our_monitor(); // instantiate a new monitor

   public static void main(String args[ ]) {
  p.start();      // start the producer thread
  c.start();      // start the consumer thread

   }

   static class producer extends Thread {
  public void run( ) {   // run method contains the thread code

 int item;
 while(true) {     // producer loop
     item = produce_item();
     mon.insert(item);
}

  }
  private int produce_item ( ){ … }  // actually produce

   }

   static class consumer extends Thread {
  public void run() {    // run method contains the thread code

 int item;
 while(true) {     // consumer loop
     item = mon.remove();
     consume_item (item);
 }

  }
  private void consume_item (int item) { … }     // actually consume
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   }

   static class our_monitor {                 // this is a monitor
  private int buffer[ ] = new int[N];
  private int count = 0, lo = 0, hi = 0; // counters and indices

  public synchronized void insert (int val) {
 if(count == N) go_to_sleep();     //if the buffer is full, go to sleep
 buffer [hi] = val;     // insert an item into the buffer
 hi = (hi + 1) % N;     // slot to place next item in
 count = count + 1;     // one more item in the buffer now
 if(count == 1) notify( );    // if consumer was sleeping, wake it up

  }

  public synchronized int remove( ) {
 int val;
 if(count == 0) go_to_sleep( );    // if the buffer is empty, go to sleep
 val = buffer [lo];     // fetch an item from the buffer
 lo = (lo + 1) % N;     // slot to fetch next item from
count = count − 1;   // one few items in the buffer
if(count == N − 1) notify();   // if producer was sleeping, wake it up
 return val;

  }
  private void go_to_sleep() { try{wait( );} catch{ InterruptedException exc) {};}

   }
}

Figure 2-28. A solution to the producer-consumer problem in Java.

By making the mutual exclusion of critical regions automatic, monitors make parallel programming much less error-prone than with 
semaphores. Still, they too have some drawbacks. It is not for nothing that our two examples of monitors were in Pidgin Pascal and Java 
instead of C, as are the other examples in this book. As we said earlier, monitors are a programming language concept. The compiler must 
recognize them and arrange for the mutual exclusion somehow. C, Pascal, and most other languages do not have monitors, so it is 
unreasonable to expect their compilers to enforce any mutual exclusion rules. In fact, how could the compiler even know which procedures 
were in monitors and which were not?

These same languages do not have semaphores either, but adding semaphores is easy: All you need to do is add two short assembly code 
routines to the library to issue the up and down system calls. The compilers do not even have to know that they exist. Of course, the operating 
systems have to know about the semaphores, but at least if you have a semaphore-based operating system, you can still write the user 
programs for it in C or C++ (or even assembly language if you are masochistic enough). With monitors, you need a language that has them 
built in.

Another problem with monitors, and also with semaphores, is that they were designed for solving the mutual exclusion problem on one or 
more CPUs that all have access to a common memory. By putting the semaphores in the shared memory and protecting them with TSL
instructions, we can avoid races. When we go to a distributed system consisting of multiple CPUs, each with its own private memory, 
connected by a local area network, these primitives become inapplicable. The conclusion is that semaphores are too low level and monitors
are not usable except in a few programming languages. Also, none of the primitives provide for information exchange between machines. 
Something else is needed.

2.3.8 Message Passing

That something else is message passing. This method of interprocess communication uses two primitives, send and receive, which, like 
semaphores and unlike monitors, are system calls rather than language constructs. As such, they can easily be put into library procedures, such 
as

send(destination, &message);
and

receive(source, &message);

The former call sends a message to a given destination and the latter one receives a message from a given source (or from ANY, if the receiver 
does not care). If no message is available, the receiver can block until one arrives. Alternatively, it can return immediately with an error code.

Design Issues for Message Passing Systems

Message passing systems have many challenging problems and design issues that do not arise with semaphores or monitors, especially if the 
communicating processes are on different machines connected by a network. For example, messages can be lost by the network. To guard 
against lost messages, the sender and receiver can agree that as soon as a message has been received, the receiver will send back a special 
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acknowledgement message. If the sender has not received the acknowledgement within a certain time interval, it retransmits the message.

Now consider what happens if the message itself is received correctly, but the acknowledgement is lost. The sender will retransmit the 
message, so the receiver will get it twice. It is essential that the receiver be able to distinguish a new message from the retransmission of an 
old one. Usually, this problem is solved by putting consecutive sequence numbers in each original message. If the receiver gets a message 
bearing the same sequence number as the previous message, it knows that the message is a duplicate that can be ignored. Successfully 
communicating in the face of unreliable message passing is a major part of the study of computer networks. For more information, see 
(Tanenbaum, 1996).

Message systems also have to deal with the question of how processes are named, so that the process specified in a send or receive call is
unambiguous. Authentication is also an issue in message systems: how can the client tell that he is communicating with the real file server, 
and not with an imposter?

At the other end of the spectrum, there are also design issues that are important when the sender and receiver are on the same machine. One of 
these is performance. Copying messages from one process to another is always slower than doing a semaphore operation or entering a 
monitor. Much work has gone into making message passing efficient. Cheriton (1984), for example, suggested limiting message size to what 
will fit in the machine’s registers, and then doing message passing using the registers.

The Producer-Consumer Problem with Message Passing

Now let us see how the producer-consumer problem can be solved with message passing and no shared memory. A solution is given in Fig. 2-
29. We assume that all messages are the same size and that messages sent but not yet received are buffered automatically by the operating
system. In this solution, a total of N messages is used, analogous to the N slots in a shared memory buffer. The consumer starts out by sending 
N empty messages to the producer. Whenever the producer has an item to give to the consumer, it takes an empty message and sends back a 
full one. In this way, the total number of messages in the system remains constant in time, so they can be stored in a given amount of memory 
known in advance.

If the producer works faster than the consumer, all the messages will end up full, waiting for the consumer: the producer will be blocked, 
waiting for an empty to come back. If the consumer works faster, then the reverse happens: all the messages will be empties waiting for the 
producer to fill them up: the consumer will be blocked, waiting for a full message.

#define N 100     /* number of slots in the buffer */
void producer(void)
{
   int item;
   message m;    /* message buffer */

   while (TRUE) {
  item = produce_item( );       /* generate something to put in buffer */
  receive(consumer, &m);        /* wait for an empty to arrive */
  build_message (&m, item);     /* construct a message to send */
  send(consumer, &m);      /* send item to consumer */

   }
}

void consumer(void) {
   int item, i;
   message m;

   for (i = 0; i < N; i++) send(producer, &m);  /* send N empties */
   while (TRUE) {

  receive(producer, &m);         /* get message containing item */
  item = extract_item(&m);       /* extract item from message */
  send(producer, &m);       /* send back empty reply */
  consume_item(tem);        /* do something with the item */

   }
}

Figure 2-29. The producer-consumer problem with N messages.

Many variants are possible with message passing. For starters, let us look at how messages are addressed. One way is to assign each process a 
unique address and have messages be addressed to processes. A different way is to invent a new data structure, called a mailbox. A mailbox is 
a place to buffer a certain number of messages, typically specified when the mailbox is created. When mailboxes are used, the address 
parameters, in the send and receive calls, are mailboxes, not processes. When a process tries to send to a mailbox that is full, it is suspended 
until a message is removed from that mailbox, making room for a new one.

For the producer-consumer problem, both the producer and consumer would create mailboxes large enough to hold N messages. The producer 
would send messages containing data to the consumer’s mailbox, and the consumer would send empty messages to the producer’s mailbox. 
When mailboxes are used, the buffering mechanism is clear: the destination mailbox holds messages that have been sent to the destination 
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process but have not yet been accepted.

The other extreme from having mailboxes is to eliminate all buffering. When this approach is followed, if the send is done before the receive, 
the sending process is blocked until the receive happens, at which time the message can be copied directly from the sender to the receiver, 
with no intermediate buffering. Similarly, if the receive is done first, the receiver is blocked until a send happens. This strategy is often known 
as a rendezvous. It is easier to implement than a buffered message scheme but is less flexible since the sender and receiver are forced to run 
in lockstep.

Message passing is commonly used in parallel programming systems. One well-known message-passing system, for example, is MPI
(Message-Passing Interface). It is widely used for scientific computing. For more information about it, see for example (Gropp et al., 1994;
and Snir et al., 1996).

2.3.9 Barriers

Our last synchronization mechanism is intended for groups of processes rather than two-process producer-consumer type situations. Some
applications are divided into phases and have the rule that no process may proceed into the next phase until all processes are ready to proceed 
to the next phase. This behavior may be achieved by placing a barrier at the end of each phase. When a process reaches the barrier, it is 
blocked until all processes have reached the barrier. The operation of a barrier is illustrated in Fig. 2-30.

In Fig. 2-30(a) we see four processes approaching a barrier. What this means is that they are just computing and have not reached the end of 
the current phase yet. After a while, the first process finishes all the computing required of it during the first phase. It then executes the barrier
primitive, generally by calling a library procedure. The process is then suspended. A little later, a second and then a third process finish the 
first phase and also execute the barrier primitive. This situation is illustrated in Fig. 2-30(b). Finally, when the last process, C, hits the barrier, 
all the processes are released, as shown in Fig. 2-30(c).

Figure 2-30. Use of a barrier. (a) Processes approaching a barrier. (b) All processes but one blocked at the barrier. (c) When the last process 
arrives at the barrier, all of them are let through.

As an example of a problem requiring barriers, consider a typical relaxation problem in physics or engineering. There is typically a matrix that 
contains some initial values. The values might represent temperatures at various points on a sheet of metal. The idea might be to calculate how 
long it takes for the effect of a flame placed at one corner to propagate throughout the sheet.

Starting with the current values, a transformation is applied to the matrix to get the second version of the matrix, for example, by applying the 
laws of thermodynamics to see what all the temperatures are ΔT later. Then the processes is repeated over and over, giving the temperatures at 
the sample points as a function of time as the sheet heats up. The algorithm thus produces a series of matrices over time.

Now imagine that the matrix is very large (say, 1 million by 1 million), so that parallel processes are needed (possibly on a multiprocessor) to 
speed up the calculation. Different processes work on different parts of the matrix, calculating the new matrix elements from the old ones 
according to the laws of physics. However, no process may start on iteration n + 1 until iteration n is complete, that is, until all processes have 
finished their current work. The way to achieve this goal is to program each process to execute a barrier operation after it has finished its part 
of the current iteration. When all of them are done, the new matrix (the input to the next iteration) will be finished, and all processes will be 
simultaneously released to start the next iteration.

2.4 CLASSICAL IPC PROBLEMS

The operating systems literature is full of interesting problems that have been widely discussed and analyzed using a variety of 
synchronization methods. In the following sections we will examine three of the better-known problems.

2.4.1 The Dining Philosophers Problem

In 1965, Dijkstra posed and solved a synchronization problem he called the dining philosophers problem. Since that time, everyone 
inventing yet another synchronization primitive has felt obligated to demonstrate how wonderful the new primitive is by showing how 
elegantly it solves the dining philosophers problem. The problem can be stated quite simply as follows. Five philosophers are seated around a 
circular table. Each philosopher has a plate of spaghetti. The spaghetti is so slippery that a philosopher needs two forks to eat it. Between each 
pair of plates is one fork. The layout of the table is illustrated in Fig. 2-31.
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Figure 2-31. Lunch time in the Philosophy Department.

The life of a philosopher consists of alternate periods of eating and thinking. (This is something of an abstraction, even for philosophers, but 
the other activities are irrelevant here.) When a philosopher gets hungry, she tries to acquire her left and right fork, one at a time, in either 
order. If successful in acquiring two forks, she eats for a while, then puts down the forks, and continues to think. The key question is: Can you 
write a program for each philosopher that does what it is supposed to do and never gets stuck? (It has been pointed out that the two-fork 
requirement is somewhat artificial; perhaps we should switch from Italian food to Chinese food, substituting rice for spaghetti and chopsticks 
for forks.)

Figure 2-32 shows the obvious solution. The procedure take_fork waits until the specified fork is available and then seizes it. Unfortunately, 
the obvious solution is wrong. Suppose that all five philosophers take their left forks simultaneously. None will be able to take their right
forks, and there will be a deadlock.

#define N 5     /* number of philosophers */

void philosopher(int i)    /* i: philosopher number, from 0 to 4 */
{
   while (TRUE) {

  think( );   /* philosopher is thinking */
  take_fork(i);    /* take left fork */
  take_fork((i+1) % N);  /* take right fork; % is modulo operator */
  eat();     /* yum-yum, spaghetti */
  put_fork(i);     /* Put left fork back on the table */
  put_fork((i+1) % N);   /* put right fork back on the table */

   }
}

Figure 2-32. A nonsolution to the dining philosophers problem.

We could modify the program so that after taking the left fork, the program checks to see if the right fork is available. If it is not, the 
philosopher puts down the left one, waits for some time, and then repeats the whole process. This proposal too, fails, although for a different 
reason. With a little bit of bad luck, all the philosophers could start the algorithm simultaneously, picking up their left forks, seeing that their 
right forks were not available, putting down their left forks, waiting, picking up their left forks again simultaneously, and so on, forever. A
situation like this, in which all the programs continue to run indefinitely but fail to make any progress is called starvation. (It is called 
starvation even when the problem does not occur in an Italian or a Chinese restaurant.)

Now you might think, “if the philosophers would just wait a random time instead of the same time after failing to acquire the right-hand fork, 
the chance that everything would continue in lockstep for even an hour is very small.” This observation is true, and in nearly all applications
trying again later is not a problem. For example, in the popular Ethernet local area network, if two computers send a packet at the same time, 
each one waits a random time and tries again; in practice this solution works fine. However, in a few applications one would prefer a solution 
that always works and cannot fail due to an unlikely series of random numbers. Think about safety control in a nuclear power plant.

One improvement to Fig. 2-32 that has no deadlock and no starvation is to protect the five statements following the call to think by a binary 
semaphore. Before starting to acquire forks, a philosopher would do a down on mutex. After replacing the forks, she would do an up on mutex. 
From a theoretical viewpoint, this solution is adequate. From a practical one, it has a performance bug: only one philosopher can be eating at 
any instant. With five forks available, we should be able to allow two philosophers to eat at the same time.

The solution presented in Fig. 2-33 is deadlock-free and allows the maximum parallelism for an arbitrary number of philosophers. It uses an 
array, state, to keep track of whether a philosopher is eating, thinking, or hungry (trying to acquire forks). A philosopher may move only into 
eating state if neither neighbor is eating. Philosopher i’s neighbors are defined by the macros LEFT and RICHT. In other words, if i is 2, LEFT
is 1 and RIGHT is 3.

The program uses an array of semaphores, one per philosopher, so hungry philosophers can block if the needed forks are busy. Note that each 
process runs the procedure philosopher as its main code, but the other procedures, take_forks, put_forks, and test are ordinary procedures and 
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not separate processes.

#define N   5   /* number of philosophers */
#define LEFT     (i+N−1)%N /* number of i's left neighbor */
#define RIGHT    (i+1)%N /* number of i's right neighbor */
#define THINKING 0   /* philosopher is thinking */
#define HUNGRY   1   /* philosopher is trying to get forks */
#define EATING   2   /* philosopher is eating */
typedef int semaphore;     /* semaphores are a special kind of int */
int state[N];        /* array to keep track of everyone's state */
semaphore mutex = 1;       /* mutual exclusion for critical regions */
semaphore s[N];      /* one semaphore per philosopher */

void philosopher (int i)   /* i: philosopher number, from 0 to N−1 */
{
   while (TRUE) {         /* repeat forever */

  think();     /* philosopher is thinking */
  take_forks(i);     /* acquire two forks or block */
  eat();       /* yum-yum, spaghetti */
  put_forks(i);      /* put both forks back on table */

   }
}

void take_forks(int i) /* i: philosopher number, from 0 to N−1 */
{
   down(&mutex);     /* enter critical region */
   state[i] = HUNGRY;     /* record fact that philosopher i is hungry */
   test(i);         /* try to acquire 2 forks */
   up(&mutex);      /* exit critical region */
   down(&s[i]);     /* block if forks were not acquired */

}

void put_forks(i) /* i: philosopher number, from 0 to N−1 */
{
   down(&mutex);     /* enter critical region */
   state[i] = THINKING;   /* philosopher has finished eating */
   test(LEFT);      /* see if left neighbor can now eat */
   test(RIGHT);     /* see if right neighbor can now eat */
   up(&mutex);      /* exit critical region */

}

void test(i)     /* i: philosopher number, from 0 to N−1 */
{
 if (state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
   state[i] = EATING;
   up(&s[i]);

  }
}

Figure 2-33. A solution to the dining philosophers problem.

2.4.2 The Readers and Writers Problem

The dining philosophers problem is useful for modeling processes that are competing for exclusive access to a limited number of resources, 
such as I/O devices. Another famous problem is the readers and writers problem (Courtois et al., 1971), which models access to a database.
Imagine, for example, an airline reservation system, with many competing processes wishing to read and write it. It is acceptable to have 
multiple processes reading the database at the same time, but if one process is updating (writing) the database, no other processes may have 
access to the database, not even readers. The question is how do you program the readers and the writers? One solution is shown in Fig. 2-34.

In this solution, the first reader to get access to the database does a down on the semaphore db. Subsequent readers merely increment a 
counter, rc. As readers leave, they decrement the counter and the last one out does an up on the semaphore, allowing a blocked writer, if there 
is one, to get in.

The solution presented here implicitly contains a subtle decision that is worth commenting on. Suppose that while a reader is using the 
database, another reader comes along. Since having two readers at the same time is not a problem, the second reader is admitted. A third and 
subsequent readers can also be admitted if they come along.

Now suppose that a writer comes along. The writer cannot be admitted to the database, since writers must have exclusive access, so the writer 
is suspended. Later, additional readers show up. As long as at least one reader is still active, subsequent readers are admitted. As a 
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consequence of this strategy, as long as there is a steady supply of readers, they will all get in as soon as they arrive. The writer will be kept 
suspended until no reader is present. If a new reader arrives, say, every 2 seconds, and each reader takes 5 seconds to do its work, the writer 
will never get in.

To prevent this situation, the program could be written slightly differently: when a reader arrives and a writer is waiting, the reader is 
suspended behind the writer instead of being admitted immediately. In this way, a writer has to wait for readers that were active when it 
arrived to finish but does not have to wait for readers that came along after it. The disadvantage of this solution is that it achieves less 
concurrency and thus lower performance. Courtois et al. present a solution that gives priority to writers. For details, we refer you to the paper.

typedef int semaphore;   /* use your imagination */
semaphore mutex = 1;     /* controls access to 'rc' */
semaphore db = 1;   /* controls access to the database */
int rc = 0;   /* # of processes reading or wanting to */

void reader(void)
{
   while (TRUE) {       /* repeat forever */

  down(&mutex);    /* get exclusive access to 'rc' */
  rc = rc + 1;     /* one reader more now */
  if (re == 1) down(&db);    /* if this is the first reader… */
up{&mutex);      /* release exclusive access to 'rc' */

  read_data_base();      /* access the data */
  down(&mutex);    /* get exclusive access to 'rc' */
rc = rc − 1;    /* one reader fewer now */

  if (rc == 0) up(&db);  /* if this is the last reader… */
up(&mutex);      /* release exclusive access to 'rc' */

  use_data_read();       /* noncritical region */
   }

}

void writer(void)
{
   while (TRUE) {       /* repeat forever */

  think_up_data();       /* noncritical region */
  down(&db);       /* get exclusive access */
  write_data_base();     /* update the data */
  up(&db);   /* release exclusive access */

   }
}

Figure 2-34. A solution to the readers and writers problem.

2.4.3 The Sleeping Barber Problem

Another classical IPC problem takes place in a barber shop. The barber shop has one barber, one barber chair, and n chairs for waiting 
customers, if any, to sit on. If there are no customers present, the barber sits down in the barber chair and falls asleep, as illustrated in Fig. 2-
35. When a customer arrives, he has to wake up the sleeping barber. If additional customers arrive while the barber is cutting a customer’s
hair, they either sit down (if there are empty chairs) or leave the shop (if all chairs are full). The problem is to program the barber and the
customers without getting into race conditions. This problem is similar to various queueing situations, such as a multiperson helpdesk with a 
computerized call waiting system for holding a limited number of incoming calls.
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Figure 2-35. The sleeping barber.

Our solution uses three semaphores: customers, which counts waiting customers (excluding the customer in the barber chair, who is not
waiting), barbers, the number of barbers (0 or 1) who are idle, waiting for customers, and mutex, which is used for mutual exclusion. We also
need a variable, waiting, which also counts the waiting customers. It is essentially a copy of customers. The reason for having waiting is that 
there is no way to read the current value of a semaphore. In this solution, a customer entering the shop has to count the number of waiting 
customers. If it is less than the number of chairs, he stays; otherwise, he leaves.

Our solution is shown in Fig. 2-36. When the barber shows up for work in the morning, he executes the procedure barber, causing him to 
block on the semaphore customers because it is initially 0. The barber then goes to sleep, as shown in Fig. 2-35. He stays asleep until the first 
customer shows up.

#define CHAIRS 5   /* # chairs for waiting customers */
typedef int semaphore;   /* use your imagination */
semaphore customers = 0;       /* # of customers waiting for service */
semaphore barbers = 0;   /* # of barbers waiting for customers */
semaphore mutex = 1;     /* for mutual exclusion */
int waiting = 0;   /* customers are waiting (not being cut) */

void barber(void)
{
   white (TRUE) {

  down(&customers);      /* go to sleep if # of customers is 0 */
  down(&mutex);    /* acquire access to 'waiting' */
waiting = waiting − 1; /* decrement count of waiting customers */

  up(&barbers);    /* one barber is now ready to cut hair */
  up(&mutex);      /* release 'waiting' */
  cut_hair();      /* cut hair (outside critical region) */

   }
}

void customer(void)
{
   down(&mutex);   /* enter critical region */
   if (waiting < CHAIRS) {    /* if there are no free chairs, leave */

  waiting = waiting + 1; /* increment count of waiting customers */
  up(&customers);   /* wake up barber if necessary */
  up(&mutex);      /* release access to 'waiting' */
  down(&barbers);   /* go to sleep if # of free barbers is 0 */
  get_haircut();   /* be seated and be serviced */

   } else {
  up(&mutex);      /* shop is full; do not wait */

   }
}
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Figure 2-36. A solution to the sleeping barber problem.

When a customer arrives, he executes customer, starting by acquiring mutex to enter a critical region. If another customer enters shortly 
thereafter, the second one will not be able to do anything until the first one has released mutex. The customer then checks to see if the number 
of waiting customers is less than the number of chairs. If not, he releases mutex and leaves without a haircut.

If there is an available chair, the customer increments the integer variable, waiting. Then he does an up on the semaphore customers, thus 
waking up the barber. At this point, the customer and barber are both awake. When the customer releases mutex, the barber grabs it, does 
some housekeeping, and begins the haircut.

When the haircut is over, the customer exits the procedure and leaves the shop. Unlike our earlier examples, there is no loop for the customer 
because each one gets only one haircut. The barber loops, however, to try to get the next customer. If one is present, another haircut is given. 
If not, the barber goes to sleep.

As an aside, it is worth pointing out that although the readers and writers and sleeping barber problems do not involve data transfer, they are
still belong to the area of IPC because they involve synchronization between multiple processes.

2.5 SCHEDULING

When a computer is multiprogrammed, it frequently has multiple processes competing for the CPU at the same time. This situation occurs 
whenever two or more processes are simultaneously in the ready state. If only one CPU is available, a choice has to be made which process to 
run next. The part of the operating system that makes the choice is called the scheduler and the algorithm it uses is called the scheduling 
algorithm. These topics form the subject matter of the following sections.

Many of the same issues that apply to process scheduling also apply to thread scheduling, although some are different. Initially we will focus 
on process scheduling. Later on we will explicitly look at thread scheduling.

2.5.1 Introduction to Scheduling

Back in the old days of batch systems with input in the form of card images on a magnetic tape, the scheduling algorithm was simple: just run 
the next job on the tape. With timesharing systems, the scheduling algorithm became more complex because there were generally multiple
users waiting for service. Some mainframes still combine batch and timesharing service, requiring the scheduler to decide whether a batch job 
or an interactive user at a terminal should go next. (As an aside, a batch job may be a request to run multiple programs in succession, but for 
this section, we will just assume it is a request to run a single program.) Because CPU time is a scarce resource on these machines, a good 
scheduler can make a big difference in perceived performance and user satisfaction. Consequently, a great deal of work has gone into devising 
clever and efficient scheduling algorithms.

With the advent of personal computers, the situation changed in two ways. First, most of the time there is only one active process. A user 
entering a document on a word processor is unlikely to be simultaneously compiling a program in the background. When the user types a 
command to the word processor, the scheduler does not have to do much work to figure out which process to run—the word processor is the 
only candidate.

Second, computers have gotten so much faster over the years that the CPU is rarely a scarce resource any more. Most programs for personal 
computers are limited by the rate at which the user can present input (by typing or clicking), not by the rate the CPU can process it. Even 
compilations, a major sink of CPU cycles in the past, take just a few seconds at most nowadays. Even when two programs are actually running 
at once, such as a word processor and a spreadsheet, it hardly matters which goes first since the user is probably waiting for both of them to 
finish. As a consequence, scheduling does not matter much on simple PCs. [Of course, there are applications that practically eat the CPU 
alive: rendering one hour of high-resolution video may require industrial-strength image processing on each of 108,000 frames in NTSC 
(90,000 in PAL), but these applications are the exception rather than the rule.]

When we turn to high-end networked workstations and servers, the situation changes. Here multiple processes often do compete for the CPU, 
so scheduling matters again. For example, when the CPU has to choose between running a process that updates the screen after a user has 
closed a window and running a process that sends out queued email, it makes a huge difference in the perceived response. If closing the 
window were to take 2 sec while the email was being sent, the user would probably regard the system as extremely sluggish, whereas having 
the email delayed by 2 sec would not even be noticed. In this case, process scheduling matters very much.

In addition to picking the right process to run, the scheduler also has to worry about making efficient use of the CPU because process 
switching is expensive. To start with, a switch from user mode to kernel mode must occur. Then the state of the current process must be saved,
including storing its registers in the process table so they can be reloaded later. In many systems, the memory map (e.g., memory reference 
bits in the page table) must be saved as well. Next a new process must be selected by running the scheduling algorithm. After that, the MMU 
must be reloaded with the memory map of the new process. Finally, the new process must be started. In addition to all that, the process switch 
usually invalidates the entire memory cache, forcing it to be dynamically reloaded from the main memory twice (upon entering the kernel and 
upon leaving it). All in all, doing too many process switches per second can chew up a substantial amount of CPU time, so caution is advised.

Process Behavior

Nearly all processes alternate bursts of computing with (disk) I/O requests, as shown in Fig. 2-37. Typically the CPU runs for a while without 
stopping, then a system call is made to read from a file or write to a file. When the system call completes, the CPU computes again until it 
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needs more data or has to write more data and so on. Note that some I/O activities count as computing. For example, when the CPU copies 
bits to a video RAM to update the screen, it is computing, not doing I/O, because the CPU is in use. I/O in this sense is when a process enters 
the blocked state waiting for an external device to complete its work.

Figure 2-37. Bursts of CPU usage alternate with periods of waiting for I/O. (a) A CPU-bound process. (b) An I/O-bound process.

The important thing to notice about Fig. 2-37 is that some processes, such as the one in Fig. 2-37(a), spend most of their time computing, 
while others, such as the one in Fig. 2-37(b), spend most of their time waiting for I/O. The former are called compute-bound; the latter are
called I/O-bound. Compute-bound processes typically have long CPU bursts and thus infrequent I/O waits, whereas I/O-bound processes 
have short CPU bursts and thus frequent I/O waits. Note that the key factor is the length of the CPU burst, not the length of the I/O burst. I/O-
bound processes are I/O bound because they do not compute much between I/O requests, not because they have especially long I/O requests. 
It takes the same time to read a disk block no matter how much or how little time it takes to process the data after they arrive.

It is worth noting that as CPUs get faster, processes tend to get more I/O-bound. This effect occurs because CPUs are improving much faster 
than disks. As a consequence, the scheduling of I/O-bound processes is likely to become a more important subject in the future. The basic idea 
here is that if an I/O-bound process wants to run, it should get a chance quickly so it can issue its disk request and keep the disk busy.

When to Schedule

A key issue related to scheduling is when to make scheduling decisions. It turns out that there are a variety of situations in which scheduling is 
needed. First, when a new process is created, a decision needs to be made whether to run the parent process or the child process. Since both 
processes are in ready state, it is a normal scheduling decision and it can go either way, that is, the scheduler can legitimately choose to run 
either the parent or the child next.

Second, a scheduling decision must be made when a process exits. That process can no longer run (since it no longer exists), so some other 
process must be chosen from the set of ready processes. If no process is ready, a system-supplied idle process is normally run.

Third, when a process blocks on I/O, on a semaphore, or for some other reason, another process has to be selected to run. Sometimes the 
reason for blocking may play a role in the choice. For example, if A is an important process and it is waiting for B to exit its critical region,
letting B run next will allow it to exit its critical region and thus let A continue. The trouble, however, is that the scheduler generally does not 
have the necessary information to take this dependency into account.

Fourth, when an I/O interrupt occurs, a scheduling decision may be made. If the interrupt came from an I/O device that has now completed its 
work, some process that was blocked waiting for the I/O may now be ready to run. It is up to the scheduler to decide if the newly ready 
process should be run, if the process that was running at the time of the interrupt should continue running, or if some third process should run.

If a hardware clock provides periodic interrupts at 50 Hz, 60 Hz, or some other frequency, a scheduling decision can be made at each clock 
interrupt or at every k-th clock interrupt. Scheduling algorithms can be divided into two categories with respect to how they deal with clock 
interrupts. A nonpreemptive scheduling algorithm picks a process to run and then just lets it run until it blocks (either on I/O or waiting for 
another process) or until it voluntarily releases the CPU. Even if it runs for hours, it will not be forceably suspended. In effect, no scheduling 
decisions are made during clock interrupts. After clock interrupt processing has been completed, the process that was running before the
interrupt is always resumed.

In contrast, a preemptive scheduling algorithm picks a process and lets it run for a maximum of some fixed time. If it is still running at the 
end of the time interval, it is suspended and the scheduler picks another process to run (if one is available). Doing preemptive scheduling 
requires having a clock interrupt occur at the end of the time interval to give control of the CPU back to the scheduler. If no clock is available, 
nonpreemptive scheduling is the only option.

Categories of Scheduling Algorithms

Not surprisingly, in different environments different scheduling algorithms are needed. This situation arises because different application 
areas (and different kinds of operating systems) have different goals. In other words, what the scheduler should optimize for is not the same in 
all systems. Three environments worth distinguishing are

1. Batch.
2. Interactive.
3. Real time.
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In batch systems, there are no users impatiently waiting at their terminals for a quick response. Consequently, nonpreemptive algorithms, or 
preemptive algorithms with long time periods for each process are often acceptable. This approach reduces process switches and thus 
improves performance.

In an environment with interactive users, preemption is essential to keep one process from hogging the CPU and denying service to the others. 
Even if no process intentionally ran forever, due to a program bug, one process might shut out all the others indefinitely. Preemption is needed 
to prevent this behavior.

In systems with real-time constraints, preemption is, oddly enough, sometimes not needed because the processes know that they may not run 
for long periods of time and usually do their work and block quickly. The difference with interactive systems is that real-time systems run 
only programs that are intended to further the application at hand. Interactive systems are general purpose and may run arbitrary programs that 
are not cooperative or even malicious.

Scheduling Algorithm Goals

In order to design a scheduling algorithm, it is necessary to have some idea of what a good algorithm should do. Some goals depend on the 
environment (batch, interactive, or real time), but there are also some that are desirable in all cases. Some goals are listed in Fig. 2-38. We will 
discuss these in turn below.

All systems 
Fairness - giving each process a fair share of the CPU 
Policy enforcement - seeing that stated policy is carried out
Balance - keeping all parts of the system busy 

Batch systems
Throughput - maximize jobs per hour 
Turnaround time - minimize time between submission and termination 
CPU utilization - keep the CPU busy all the time 

Interactive systems 
Response time - respond to requests quickly 
Proportionality - meet users’ expectations 

Real-time systems
Meeting deadlines - avoid losing data 
Predictability - avoid quality degradation in multimedia systems 

Figure 2-38. Some goals of the scheduling algorithm under different circumstances.

Under all circumstances, fairness is important. Comparable processes should get comparable service. Giving one process much more CPU 
time than an equivalent one is not fair. Of course, different categories of processes may be treated very differently. Think of safety control and 
doing the payroll at a nuclear reactor’s computer center.

Somewhat related to fairness is enforcing the system’s policies. If the local policy is that safety control processes get to run whenever they 
want to, even if it means the payroll is 30 sec late, the scheduler has to make sure this policy is enforced.

Another general goal is keeping all parts of the system busy when possible. If the CPU and all the I/O devices can be kept running all the time, 
more work gets done per second than if some of the components are idle, in a batch system, for example, the scheduler has control of which 
jobs are brought into memory to run. Having some CPU-bound processes and some I/O-bound processes in memory together is a better idea 
than first loading and running all the CPU-bound jobs and then when they are finished loading and running all the I/O-bound jobs. If the latter 
strategy is used, when the CPU-bound processes are running, they will tight for the CPU and the disk will be idle. Later, when the I/O-bound 
jobs come in, they will fight for the disk and the CPU will be idle. Better to keep the whole system running at once by a careful mix of 
processes.

The managers of large computer centers that run many batch jobs typically look at three metrics to see how well their systems are performing: 
throughput, turnaround time, and CPU utilization. Throughput is the number of jobs per hour that the system completes. All things 
considered, finishing 50 jobs per hour is better than finishing 40 jobs per hour. Turnaround time is the statistically average time from the
moment that a batch job is submitted until the moment it is completed. It measures how long the average user has to wait for the output. Here 
the rule is: Small is Beautiful.

A scheduling algorithm that maximizes throughput may not necessarily minimize turnaround time. For example, given a mix of short jobs and 
long jobs, a scheduler that always ran short jobs and never ran long jobs might achieve an excellent throughput (many short jobs per hour) but 
at the expense of a terrible turnaround time for the long jobs. If short jobs kept arriving at a steady rate, the long jobs might never run, making
the mean turnaround time infinite while achieving a high throughput.

CPU utilization is also an issue with batch systems because on the big mainframes where batch systems run, the CPU is still a major expense. 
Thus computer center managers feel guilty when it is not running all the time. Actually though, this is not such a good metric. What really 
matters is how many jobs per hour come out of the system (throughput) and how long it takes to get a job back (turnaround time). Using CPU 
utilization as a metric is like rating cars based on how many times per hour the engine turns over.

For interactive systems, especially timesharing systems and servers, different goals apply. The most important one is to minimize response
time, that is the time between issuing a command and getting the result. On a personal computer where a background process is running (for 
example, reading and storing email from the network), a user request to start a program or open a file should take precedence over the 
background work. Having all interactive requests go first will be perceived as good service.

A somewhat related issue is what might be called proportionality. Users have an inherent (but often incorrect) idea of how long things should 
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take. When a request that is perceived as complex takes a long time, users accept that, but when a request that is perceived as simple takes a 
long time, users get irritated. For example, if clicking on a icon that calls up an Internet provider using an analog modem takes 45 seconds to 
establish a connection, the user will probably accept that as a fact of life. On the other hand, if clicking on an icon that breaks the connection 
takes 45 seconds, the user will probably be swearing a blue streak by the 30-sec mark and frothing at the mouth by 45 sec. This behavior is 
due to the common user perception that placing a phone call and getting a connection is supposed to take a lot longer than just hanging up. In
some cases (such as this one), the scheduler cannot do anything about the response time, but in other cases it can, especially when the delay is 
due to a poor choice of process order.

Real-time systems have different properties than interactive systems, and thus different scheduling goals. They are characterized by having 
deadlines that must or at least should be met. For example, if a computer is controlling a device that produces data at a regular rate, failure to 
run the data-collection process on time may result in lost data. Thus the foremost need in a real-time system is meeting all (or most) deadlines.

In some real-time systems, especially those involving multimedia, predictability is important. Missing an occasional deadline is not fatal, but 
if the audio process runs too erratically, the sound quality will deteriorate rapidly. Video is also an issue, but the ear is much more sensitive to 
jitter than the eye. To avoid this problem, process scheduling must be highly predictable and regular. We will study batch and interactive
scheduling algorithms in this chapter but defer most of our study of real-time scheduling until we come to multimedia operating systems in 
Chap. 7.

2.5.2 Scheduling in Batch Systems

It is now time to turn from general scheduling issues to specific scheduling algorithms. In this section we will look at algorithms used in batch 
systems. In the following ones we will examine interactive and real-time systems. It is worth pointing out that some algorithms are used in 
both batch and interactive systems. We will study these later. Here we will focus on algorithms that are only suitable in batch systems.

First-Come First-Served

Probably the simplest of all scheduling algorithms is nonpreemptive first-come first-served. With this algorithm, processes are assigned the 
CPU in the order they request it. Basically, there is a single queue of ready processes. When the first job enters the system from the outside in 
the morning, it is started immediately and allowed to run as long as it wants to. As other jobs come in, they are put onto the end of the queue. 
When the running process blocks, the first process on the queue is run next. When a blocked process becomes ready, like a newly arrived job, 
it is put on the end of the queue.

The great strength of this algorithm is that it is easy to understand and equally easy to program. It is also fair in the same sense that allocating 
scarce sports or concert tickets to people who are willing to stand on line starting at 2 A.M. is fair. With this algorithm, a single linked list 
keeps track of all ready processes. Picking a process to run just requires removing one from the front of the queue. Adding a new job or 
unblocked process just requires attaching it to the end of the queue. What could be simpler?

Unfortunately, first-come first-served also has a powerful disadvantage. Suppose that there is one compute-bound process that runs for 1 sec 
at a time and many I/O-bound processes that use little CPU time but each have to perform 1000 disk reads to complete. The compute-bound 
process runs for 1 sec, then it reads a disk block. All the I/O processes now run and start disk reads. When the compute-bound process gets its 
disk block, it runs for another 1 sec, followed by all the I/O-bound processes in quick succession.

The net result is that each I/O-bound process gets to read 1 block per second and will take 1000 sec to finish. With a scheduling algorithm that 
preempted the compute-bound process every 10 msec, the I/O-bound processes would finish in 10 sec instead of 1000 sec, and without 
slowing down the compute-bound process very much.

Shortest Job First

Now let us look at another nonpreemptive batch algorithm that assumes the run times are known in advance. In an insurance company, for 
example, people can predict quite accurately how long it will take to run a batch of 1000 claims, since similar work is done every day. When
several equally important jobs are sitting in the input queue waiting to be started, the scheduler picks the shortest job first. Look at Fig. 2-39.
Here we find four jobs A, B, C, and D with run times of 8, 4, 4, and 4 minutes, respectively. By running them in that order, the turnaround 
time for A is 8 minutes, for B is 12 minutes, for C is 16 minutes, and for D is 20 minutes for an average of 14 minutes.

Figure 2-39. An example of shortest job first scheduling. (a) Running four jobs in the original order. (b) Running them in shortest job first order.

Now let us consider running these four jobs using shortest job first, as shown in Fig. 2-39(b). The turnaround times are now 4, 8, 12, and 20 
minutes for an average of 11 minutes. Shortest job first is provably optimal. Consider the case of four jobs, with run times of a, b, c, and d, 
respectively. The first job finishes at time a, the second finishes at time a + b, and so on. The mean turnaround time is (4a + 3b + 2c + d)/4. It
is clear that a contributes more to the average than the other times, so it should be the shortest job, with b next, then c, and finally d as the 
longest as it affects only its own turnaround time. The same argument applies equally well to any number of jobs.

It is worth pointing out that shortest job first is only optimal when all the jobs are available simultaneously. As a counterexample, consider 
five jobs, A through E, with run times of 2, 4, 1, 1, and 1, respectively. Their arrival times are 0, 0, 3, 3, and 3. Initially, only A or B can be
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chosen, since the other three jobs have not arrived yet. Using shortest job first we will run the jobs in the order A, B, C, D, E, for an average 
wait of 4.6. However, running them in the order B, C, D, E, A has an average wait of 4.4.

Shortest Remaining Time Next

A preemptive version of shortest job first is shortest remaining time next. With this algorithm, the scheduler always chooses the process 
whose remaining run time is the shortest. Again here, the run time has to be known in advance. When a new job arrives, its total time is 
compared to the current process’ remaining time. If the new job needs less time to finish than the current process, the current process is 
suspended and the new job started. This scheme allows new short jobs to get good service.

Three-Level Scheduling

From a certain perspective, batch systems allow scheduling at three different levels, as illustrated in Fig. 2-40. As jobs arrive at the system, 
they are initially placed in an input queue stored on the disk. The admission scheduler decides which jobs to admit to the system. The others 
are kept in the input queue until they are selected. A typical algorithm for admission control might be to look for a mix of compute-bound jobs
and I/O-bound jobs. Alternatively, short jobs could be admitted quickly whereas longer jobs would have to wait. The admission scheduler is 
free to hold some jobs in the input queue and admit jobs that arrive later if it so chooses.

Figure 2-40. Three-level scheduling.

Once a job has been admitted to the system, a process can be created for it and it can contend for the CPU. However, it might well happen that 
the number of processes is so large that there is not enough room for all of them in memory. In that case, some of the processes have to be 
swapped out to disk. The second level of scheduling is deciding which processes should be kept in memory and which ones kept on disk. We 
will call this scheduler the memory scheduler, since it determines which processes are kept in memory and which on the disk.

This decision has to be reviewed frequently to allow the processes on disk to get some service. However, since bringing a process in from disk 
is expensive, the review probably should not happen more often than once per second, maybe less often. If the contents of main memory are
shuffled too often, a large amount of disk bandwidth will be wasted, slowing down file I/O.

To optimize system performance as a whole, the memory scheduler might want to carefully decide how many processes it wants in memory, 
called the degree of multiprogramming, and what kind of processes. If it has information about which processes are compute bound and
which are I/O bound, it can try to keep a mix of these process types in memory. As a very crude approximation, if a certain class of process 
computes about 20% of the time, keeping five of them around is roughly the right number to keep the CPU busy. We will look at a slightly 
better multiprogramming model in Chap. 4.

To make its decisions, the memory scheduler periodically reviews each process on disk to decide whether or not to bring it into memory.
Among the criteria that it can use to make its decision are the following ones:

1. How long has it been since the process was swapped in or out?
2. How much CPU time has the process had recently?
3. How big is the process? (Small ones do not get in the way.)
4. How important is the process?

The third level of scheduling is actually picking one of the ready processes in main memory to run next. Often this is called the CPU 
scheduler and is the one people usually mean when they talk about the “scheduler.” Any suitable algorithm can be used here, either
preemptive or nonpreemptive. These include the ones described above as well as a number of algorithms to be described in the next section.

2.5.3 Scheduling in Interactive Systems

We will now look at some algorithms that can be used in interactive systems. All of these can also be used as the CPU scheduler in batch 
systems as well. While three-level scheduling is not possible here, two-level scheduling (memory scheduler and CPU scheduler) is possible 
and common. Below we will focus on the CPU scheduler.
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Round-Robin Scheduling

Now let us look at some specific scheduling algorithms. One of the oldest, simplest, fairest, and most widely used algorithms is round robin. 
Each process is assigned a time interval, called its quantum, which it is allowed to run. If the process is still running at the end of the
quantum, the CPU is preempted and given to another process. If the process has blocked or finished before the quantum has elapsed, the CPU 
switching is done when the process blocks, of course. Round robin is easy to implement. All the scheduler needs to do is maintain a list of 
runnable processes, as shown in Fig. 2-41(a). When the process uses up its quantum, it is put on the end of the list, as shown in Fig. 2-41 (b).

Figure 2-41. Round-robin scheduling. (a) The list of runnable processes. (b) The list of runnable processes after B uses up its quantum.

The only interesting issue with round robin is the length of the quantum. Switching from one process to another requires a certain amount of 
time for doing the administration—saving and loading registers and memory maps, updating various tables and lists, flushing and reloading 
the memory cache, etc. Suppose that this process switch or context switch, as it is sometimes called, takes 1 msec, including switching 
memory maps, flushing and reloading the cache, etc. Also suppose that the quantum is set at 4 msec. With these parameters, after doing 4
msec of useful work, the CPU will have to spend 1 msec on process switching. Twenty percent of the CPU time will be wasted on 
administrative overhead. Clearly this is too much.

To improve the CPU efficiency, we could set the quantum to, say, 100 msec. Now the wasted time is only 1 percent. But consider what 
happens on a timesharing system if ten interactive users hit the carriage return key at roughly the same time. Ten processes will be put on the 
list of runnable processes. If the CPU is idle, the first one will start immediately, the second one may not start until 100 msec later, and so on. 
The unlucky last one may have to wait 1 sec before getting a chance, assuming all the others use their full quanta. Most users will perceive a 
1-sec response to a short command as sluggish.

Another factor is that if the quantum is set longer than the mean CPU burst, preemption will rarely happen. Instead, most processes will 
perform a blocking operation before the quantum runs out, causing a process switch. Eliminating preemption improves performance because 
process switches then only happen when they are logically necessary, that is, when a process blocks and cannot continue.

The conclusion can be formulated as follows: setting the quantum too short causes too many process switches and lowers the CPU efficiency, 
but setting it too long may cause poor response to short interactive requests. A quantum around 20-50 msec is often a reasonable compromise.

Priority Scheduling

Round robin scheduling makes the implicit assumption that all processes are equally important. Frequently, the people who own and operate 
multiuser computers have different ideas on that subject. At a university, the pecking order may be deans first, then professors, secretaries,
janitors, and finally students. The need to take external factors into account leads to priority scheduling. The basic idea is straightforward: 
each process is assigned a priority, and the runnable process with the highest priority is allowed to run.

Even on a PC with a single owner, there may be multiple processes, some more important than others. For example, a daemon process sending 
electronic mail in the background should be assigned a lower priority than a process displaying a video film on the screen in real time.

To prevent high-priority processes from running indefinitely, the scheduler may decrease the priority of the currently running process at each 
clock tick (i.e., at each clock interrupt). If this action causes its priority to drop below that of the next highest process, a process switch occurs. 
Alternatively, each process may be assigned a maximum time quantum that it is allowed to run. When this quantum is used up, the next
highest priority process is given a chance to run.

Priorities can be assigned to processes statically or dynamically. On a military computer, processes started by generals might begin at priority 
100, processes started by colonels at 90, majors at 80, captains at 70, lieutenants at 60, and so on. Alternatively, at a commercial computer 
center, high-priority jobs might cost 100 dollars an hour, medium priority 75 dollars an hour, and low priority 50 dollars an hour. The UNIX 
system has a command, nice, which allows a user to voluntarily reduce the priority of his process, in order to be nice to the other users. 
Nobody ever uses it.

Priorities can also be assigned dynamically by the system to achieve certain system goals. For example, some processes are highly I/O bound 
and spend most of their time waiting for I/O to complete. Whenever such a process wants the CPU, it should be given the CPU immediately, 
to let it start its next I/O request which can then proceed in parallel with another process actually computing. Making the I/O bound process
wait a long time for the CPU will just mean having it around occupying memory for an unnecessarily long time. A simple algorithm for giving 
good service to I/O bound processes is to set the priority, to 1/f, where f is the fraction of the last quantum that a process used. A process that 
used only 1 msec of its 50 msec quantum would get priority 50, while a process that ran 25 msec before blocking would get priority 2, and a 
process that used the whole quantum would get priority 1.

It is often convenient to group processes into priority classes and use priority scheduling among the classes but round-robin scheduling within 
each class. Figure 2-42 shows a system with four priority classes. The scheduling algorithm is as follows: as long as there are runnable 
processes in priority class 4, just run each one for one quantum, round-robin fashion, and never bother with lower priority classes, if priority
class 4 is empty, then run the class 3 processes round robin. If classes 4 and 3 are both empty, then run class 2 round robin, and so on. If 
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priorities are not adjusted occasionally, lower priority classes may all starve to death.

Figure 2-42. A scheduling algorithm with four priority classes.

Multiple Queues

One of the earliest priority schedulers was in CTSS (Corbató et al., 1962). CTSS had the problem that process switching was very slow 
because the 7094 could hold only one process in memory. Each switch meant swapping the current process to disk and reading in a new one 
from disk. The CTSS designers quickly realized that it was more efficient to give CPU-bound, processes a large quantum once in a while, 
rather than giving them, small quanta frequently (to reduce swapping). On the other hand, giving all processes a large quantum would mean 
poor response time, as we have already seen. Their solution was to set up priority classes. Processes in the highest class were run for one 
quantum. Processes in the next highest class were run for two quanta. Processes in the next class were run for four quanta, and so on. 
Whenever a process used up all the quanta allocated to it, it was moved down one class.

As an example, consider a process that needed to compute continuously for 100 quanta. It would initially be given one quantum, then swapped 
out. Next time it would get two quanta before being swapped out. On succeeding runs it would get 4, 8, 16, 32, and 64 quanta although it 
would have used only 37 of the final 64 quanta to complete its work. Only 7 swaps would be needed (including the initial load) instead of 100 
with a pure round-robin algorithm. Furthermore, as the process sank deeper and deeper into the priority queues, it would be run less and less
frequently, saving the CPU for short, interactive processes.

The following policy was adopted to prevent a process that needed to run for a long time when it first started but became interactive later, 
from being punished forever. Whenever a carriage return was typed at a terminal, the process belonging to that terminal was moved to the 
highest priority class, on the assumption that it was about to become interactive. One fine day, some user with a heavily CPU-bound process 
discovered that just sitting at the terminal and typing carriage returns at random every few seconds did wonders for his response time. He told 
all his friends. Moral of the story: getting it right in practice is much harder than getting it right in principle.

Many other algorithms have been used for assigning processes to priority classes. For example, the influential XDS 940 system (Lampson, 
1968), built at Berkeley, had four priority classes, called terminal, I/O, short quantum, and long quantum. When a process that was waiting for 
terminal input was finally awakened, it went into the highest priority class (terminal). When a process waiting for a disk block became ready, 
it went into the second class. When a process was still running when its quantum ran out, it was initially placed in the third class. However, if 
a process used up its quantum too many times in a row without blocking for terminal or other I/O, it was moved down to the bottom queue. 
Many other systems use something similar to favor interactive users and processes over background ones.

Shortest Process Next

Because shortest job first always produces the minimum average response time for batch systems, it would be nice if it could be used for 
interactive processes as well. To a certain extent, it can be. Interactive processes generally follow the pattern of wait for command, execute
command, wait for command, execute command, and so on. If we regard the execution of each command as a separate “job,” then we could 
minimize overall response time by running the shortest one first. The only problem is figuring out which of the currently runnable processes is 
the shortest one.

One approach is to make estimates based on past behavior and run the process with the shortest estimated running time. Suppose that the 
estimated time per command for some terminal is T0. Now suppose its next run is measured to be T1. We could update our estimate by taking
a weighted sum of these two numbers, that is, aT0 + (1 − a)T1. Through the choice of a we can decide to have the estimation process forget
old runs quickly, or remember them for a long time. With a = 1/2, we get successive estimates of

T0, T0/2 + T1/2, T0/4 + T1/4 + T2/2, T0/8 + T1/8 + T2/4 + T3/2

After three new runs, the weight of T0 in the new estimate has dropped to 1/8.

The technique of estimating the next value in a series by taking the weighted average of the current measured value and the previous estimate 
is sometimes called aging. It is applicable to many situations where a prediction must be made based on previous values. Aging is especially 
easy to implement when a = 1/2. All that is needed is to add the new value to the current estimate and divide the sum by 2 (by shifting it right 
1 bit).

Guaranteed Scheduling

A completely different approach to scheduling is to make real promises to the users about performance and then live up to them. One promise 
that is realistic to make and easy to live up to is this: If there are n users logged in while you are working, you will receive about 1/n of the 
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CPU power. Similarly, on a single user system with n processes running, all things being equal, each one should get 1/n of the CPU cycles.

To make good on this promise, the system must keep track of how much CPU each process has had since its creation. It then computes the 
amount of CPU each one is entitled to, namely the time since creation divided by n. Since the amount of CPU time each process has actually 
had is also known, it is straightforward to compute the ratio of actual CPU time consumed to CPU time entitled. A ratio of 0.5 means that a 
process has only had half of what it should have had, and a ratio of 2.0 means that a process has had twice as much as it was entitled to. The 
algorithm is then to run the process with the lowest ratio until its ratio has moved above its closest competitor.

Lottery Scheduling

While making promises to the users and then living up to them is a fine idea, it is difficult to implement. However, another algorithm can be 
used to give similarly predictable results with a much simpler implementation. It is called lottery scheduling (Waldspurger and Weihl, 1994).

The basic idea is to give processes lottery tickets for various system resources, such as CPU time. Whenever a scheduling decision has to be
made, a lottery ticket is chosen at random, and the process holding that ticket gets the resource. When applied to CPU scheduling, the system 
might hold a lottery 50 times a second, with each winner getting 20 msec of CPU time as a prize.

To paraphrase George Orwell: “All processes are equal, but some processes are more equal.” More important processes can be given extra
tickets, to increase their odds of winning. If there are 100 tickets outstanding, and one process holds 20 of them, it will have a 20 percent 
chance of winning each lottery. In the long run, it will get about 20 percent of the CPU. In contrast to a priority scheduler, where it is very 
hard to state what having a priority of 40 actually means, here the rule is clear: a process holding a fraction f of the tickets will get about a 
fraction f of the resource in question.

Lottery scheduling has several interesting properties. For example, if a new process shows up and is granted some tickets, at the very next 
lottery it will have a chance of winning in proportion to the number of tickets it holds. In other words, lottery scheduling is highly responsive.

Cooperating processes may exchange tickets if they wish. For example, when a client process sends a message to a server process and then 
blocks, it may give all of its tickets to the server, to increase the chance of the server running next. When the server is finished, it returns the 
tickets so the client can run again. In fact, in the absence of clients, servers need no tickets at all.

Lottery scheduling can be used to solve problems that are difficult to handle with other methods. One example is a video server in which 
several processes are feeding video streams to their clients, but at different frame rates. Suppose that the processes need frames at 10, 20, and 
25 frames/sec. By allocating these processes 10, 20, and 25 tickets, respectively, they will automatically divide the CPU in approximately the 
correct proportion, that is, 10 : 20 : 25.

Fair-Share Scheduling

So far we have assumed that each process is scheduled on its own, without regard to who its owner is. As a result, if user 1 starts up 9 
processes and user 2 starts up 1 process, with round robin or equal priorities, user 1 will get 90% of the CPU and user 2 will get only 10% of 
it.

To prevent this situation, some systems take into account who owns a process before scheduling it. In this model, each user is allocated some 
fraction of the CPU and the scheduler picks processes in such a way as to enforce it. Thus if two users have each been promised 50% of the 
CPU, they will each get that, no matter how many processes they have in existence.

As an example, consider a system with two users, each of which has been promised 50% of the CPU. User 1 has four processes, A, B, C, and 
D, and user 2 has only 1 process, E. If round-robin scheduling is used, a possible scheduling sequence that meets all the constraints is this one:

A E B E C E D E A E B E C E D E ...

On the other hand, if user 1 is entitled to twice as much CPU time as user 2, we might get

A B E C D E A B E C D E ...

Numerous other possibilities exist of course, and can be exploited, depending on what the notion of fairness is.

2.5.4 Scheduling in Real-Time Systems

A real-time system is one in which time plays an essential role. Typically, one or more physical devices external to the computer generate 
stimuli, and the computer must react appropriately to them within a fixed amount of time. For example, the computer in a compact disc player 
gets the bits as they come off the drive and must convert them into music within a very tight time interval. If the calculation takes too long, the 
music will sound peculiar. Other real-time systems are patient monitoring in a hospital intensive-care unit, the autopilot in an aircraft, and 
robot control in an automated factory. In all these cases, having the right answer but having it too late is often just as bad as not having it at 
all.

Real-time systems are generally categorized as hard real time, meaning there are absolute deadlines that must be met, or else, and soft real
time, meaning that missing an occasional deadline is undesirable, but nevertheless tolerable. In both cases, real-time behavior is achieved by
dividing the program into a number of processes, each of whose behavior is predictable and known in advance. These processes are generally 
short lived and can run to completion in well under a second. When an external event is detected, it is the job of the scheduler to schedule the 
processes in such a way that all deadlines are met.
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The events that a real-time system may have to respond to can be further categorized us periodic (occurring at regular intervals) or aperiodic
(occurring unpredictably). A system may have to respond to multiple periodic event streams. Depending on how much time each event 
requires for processing, it may not even be possible to handle them all. For example, if there are m periodic events and event i occurs with 
period Pi and requires Ci seconds of CPU time to handle each event, then the load can only be handled if

A real-time system that meets this criteria is said to be schedulable.

As an example, consider a soft real-time system with three periodic events, with periods of 100, 200, and 500 msec, respectively. If these 
events require 50, 30, and 100 msec of CPU time per event, respectively, the system is schedulable because 0.5 + 0.15 + 0.2 < 1. If a fourth 
event with a period of 1 sec is added, the system will remain schedulable as long as this event does not need more than 150 msec of CPU time
per event. Implicit in this calculation is the assumption that the context-switching overhead is so small that it can be ignored.

Real-time scheduling algorithms can be static or dynamic. The former make their scheduling decisions before the system starts running. The 
latter make their scheduling decisions at run time. Static scheduling only works when there is perfect information available in advance about 
the work needed to be done and the deadlines that have to be met. Dynamic scheduling algorithms do not have these restrictions. We will 
defer our study of specific algorithms until we treat realtime multimedia systems in Chap. 7.

2.5.5 Policy versus Mechanism

Up until now, we have tacitly assumed that all the processes in the system belong to different users and are thus competing for the CPU. 
While this is often true, sometimes it happens that one process has many children running under its control. For example, a database
management system process may have many children. Each child might be working on a different request, or each one might have some 
specific function to perform (query parsing, disk access, etc.). It is entirely possible that the main process has an excellent idea of which of its 
children are the most important (or time critical) and which the least. Unfortunately, none of the schedulers discussed above accept any input 
from user processes about scheduling decisions. As a result, the scheduler rarely makes the best choice.

The solution to this problem is to separate the scheduling mechanism from the scheduling policy. What this means is that the scheduling 
algorithm is parameterized in some way, but the parameters can be filled in by user processes. Let us consider the database example once 
again. Suppose that the kernel uses a priority scheduling algorithm but provides a system call by which a process can set (and change) the 
priorities of its children. In this way the parent can control in detail how its children are scheduled, even though it itself does not do the 
scheduling. Here the mechanism is in the kernel but policy is set by a user process.

2.5.6 Thread Scheduling

When several processes each have multiple threads, we have two levels of parallelism present: processes and threads. Scheduling in such 
systems differs substantially depending on whether user-level threads or kernel-level threads (or both) are supported.

Let us consider user-level threads first. Since the kernel is not aware of the existence of threads, it operates as it always does, picking a 
process, say, A, and giving A control for its quantum. The thread scheduler inside A decides which thread to run, say A1. Since there are no
clock interrupts to multiprogram threads, this thread may continue running as long as it wants to. If it uses up the process’ entire quantum, the 
kernel will select another process to run.

When the process A finally runs again, thread A1 will resume running. It will continue to consume all of A’s time until it is finished. However, 
its antisocial behavior will not affect other processes. They will get whatever the scheduler considers their appropriate share, no matter what is 
going on inside process A.

Now consider the case that A’s threads have relatively little work to do per CPU burst, for example, 5 msec of work within a 50-msec 
quantum. Consequently, each one runs for a little while, then yields the CPU back to the thread scheduler. This might lead to the sequence A1,
A2, A3, A1, A2, A3, A1, A2, A3, A1, before the kernel switches to process B. This situation is illustrated in Fig. 2-43(a).

The scheduling algorithm used by the run-time system can be any of the ones described above. In practice, round-robin scheduling and 
priority scheduling are most common. The only constraint is the absence of a clock to interrupt a thread that has run too long.

Now consider the situation with kernel-level threads. Here the kernel picks a particular thread to run. It does not have to take into account 
which process the thread belongs to, but it can if it wants to. The thread is given a quantum and is forceably suspended if it exceeds the 
quantum. With a 50-msec quantum but threads that block after 5 msec, the thread order for some period of 30 msec might be A1, B1, A2, B2,
A3, B3, something not possible with these parameters and user-level threads. This situation is partially depicted in Fig. 2-43(b).
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Figure 2-43. (a) Possible scheduling of user-level threads with a 50-msec process quantum and threads that run 5 msec per CPU burst. (b) Possible 
scheduling of kernel-level threads with the same characteristics as (a).

A major difference between user-level threads, and kernel-level threads is the performance. Doing a thread switch with user-level threads 
takes a handful of machine instructions. With kernel-level threads it requires a full context switch, changing the memory map, and
invalidating the cache, which is several orders of magnitude slower. On the other hand, with kernel-level threads, having a thread block on I/O 
does not suspend the entire process as it does with user-level threads.

Since the kernel knows that switching from a thread in process A to a thread in process B is more expensive that running a second thread in 
process A (due to having to change the memory map and having the memory cache spoiled), it can take this information into account when 
making a decision. For example, given two threads that are otherwise equally important, with one of them belonging to the same process as a 
thread that just blocked and one belonging to a different process, preference could be given to the former.

Another important factor is that user-level threads can employ an application-specific thread scheduler. Consider, for example, the Web server 
of Fig. 2-10. Suppose that a worker thread has just blocked and the dispatcher thread and two worker threads are ready. Who should run next? 
The run-time system, knowing what all the threads do, can easily pick the dispatcher to run next, so it can start another worker running. This 
strategy maximizes the amount of parallelism in an environment where workers frequently block on disk I/O. With kernel-level threads, the 
kernel would never know what each thread did (although they could be assigned different priorities). In general, however, application-specific 
thread schedulers can tune an application better than the kernel can.

2.6 RESEARCH ON PROCESSES AND THREADS

In Chap. 1, we looked at some of the current research in operating system structure. In this and subsequent chapters we will look at more 
narrowly focused research, starting with processes. As will become clear in time, some subjects are much more settled than others. Most of the 
research tends to be on the new topics, rather than ones that have been around for decades.

The concept of a process is an example of something that is well settled. Almost every system has some notion of a process as a container for
grouping together related resources, such as an address space, threads, open files, protection permissions, etc. Different systems do the 
grouping slightly differently, but these are just engineering differences. The basic idea is not very controversial any more and there is little 
new research on the subject.

Threads are a newer idea than processes, so there is still some research going on about them, Hauser et al. (1993) looked at how real programs 
actually use threads and came up with 10 different paradigms for thread usage. Thread scheduling (both uniprocessor and multiprocessor) still 
a topic near and dear to the heart of some researchers (Blumofe and Leiserson, 1994; Buchanan and Chien, 1997; Corbalán et al., 2000; 
Chandra et al., 2000; Duda and Cheriton, 1999; Ford and Susarla, 1996; and Petrou at al., 1999). However, few actual system designers are 
walking around all day wringing their hands for lack of a decent thread scheduling algorithm, so it appears this type of research is more 
researcher push than demand pull.

Closely related to threads is thread synchronization and mutual exclusion. In the 1970s and 1980s that subject was mined for all it was worth, 
so there is not much current work on the subject and what there is tends to be focuses on performance (e.g., Liedtke; 1993), tools for detecting 
synchronization errors (Savage et al, 1997) or modifying old concept in new ways (Tai and Carver, 1996, Trono, 2000). Finally new POSIX 
conformant threads packages are still being produced and reported in (Alfieri, 1994, and Miller, 1999).

2.7 SUMMARY

To hide the effects of interrupts, operating systems provide a conceptual model consisting of sequential processes running in parallel. 
Processes can be created and terminated dynamically. Each process has its own address space.

For some applications it is useful to have multiple threads of control within a single process. These threads are scheduled independently and 
each one has its own stack, but all the threads in a process share a common address space. Threads can be implemented in user space or in the 
kernel.

Processes can communicate with each other using interprocess communication primitives, such as semaphores, monitors, or messages. These 
primitives are used to ensure that no two processes are ever in their critical regions at the same time, a situation that leads to chaos. A process 
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can be running, runnable or blocked and can change state when it or another process executes one of the interprocess communication 
primitives. Interthread communication is similar.

Interprocess communication primitives can be used to solve such problems as the producer-consumer, dining philosophers, reader-writer, and 
sleeping barber. Even with these primitives, care has to be taken to avoid errors and deadlocks.

Many scheduling algorithms are known. Some of these are primarily used for batch systems, such as shortest job first. Others are common in 
both batch systems and interactive systems. These include round robin, priority scheduling, multilevel queues, guaranteed scheduling, lottery 
scheduling, and fair-share scheduling. Some systems make a clean separation between the scheduling mechanism and the scheduling policy, 
which allows users to have control of the scheduling algorithm.

PROBLEMS

1. In Fig. 2-2, three process states are shown. In theory, with three states, there could be six transition, two out of each state. However, only four
transitions are shown. Are there any circumstances in which either or both of the missing transitions might occur? 

2. Suppose that you were to design an advanced computer architecture that did process switching in hardware, instead of having interrupts. What
information would the CPU need? Describe how the hardware process switching might work. 

3. On all current computers, at least part of the interrupt handlers are written in assembly language. Why? 

4. When an interrupt or a system call transfers control to the operating system, a kernel stack area separate from the stack of the interrupted process is
generally used. Why?

5. In the text it was stated that the model of Fig. 2-6(a) was not suited to a file server using a cache in memory. Why not? Could each process have its
own cache? 

6. In Fig. 2-7 the register set is listed as a per-thread rather than a per-process item. Why? After all, the machine has only one set of registers. 

7. If a multithreaded process forks, a problem occurs if the child gets copies of all the parent’s threads. Suppose that one of the original threads was
waiting for keyboard input. Now two threads are waiting for keyboard input, one in each process. Does this problem ever occur in single-threaded
processes? 

8. In Fig. 2-10, a multithreaded Web server is shown. If the only way to read from a file is the normal blocking read system call, do you think user-
level threads or kernel-level threads are being used for the Web server? Why? 

9. Why would a thread ever voluntarily give up the CPU by calling thread_yeld? After all, since there is no periodic clock interrupt, it may never get
the CPU back.

10. Can a thread ever be preempted by a clock interrupt? If so, under what circumstances? If not, why not? 

11. In this problem you are to compare reading a file using a single-threaded file server and a multithreaded server. It takes 15 msec to get a request for
work, dispatch it, and do the rest of the necessary processing, assuming that the data needed are in the block cache. If a disk operation is needed, as
is the case one-third of the time, an additional 75 msec is required, during which time the thread sleeps. How many requests/sec can the server
handle if it is single threaded? If it is multithreaded? 

12. In the text, we described a multithreaded Web server, showing why it is better than a single-threaded server and a finite-state machine server. Are
there any circumstances in which a single-threaded server might be better? Give an example. 

13. In the discussion on global variables in threads, we used a procedure create_global to allocate storage for a pointer to the variable, rather than the
variable itself. Is this essential, or could the procedures work with the values themselves just as well? 

14. Consider a system in which threads are implemented entirely in user space, with the run-time system getting a clock interrupt once a second.
Suppose that a clock interrupt occurs while some thread is executing in the run-time system. What problem might occur? Can you suggest a way to
solve it? 

15. Suppose that an operating system does not have anything like the select system call to see in advance if it is safe to read from a file, pipe, or device,
but it does allow alarm clocks to be set that interrupt blocked system calls. Is it possible to implement a threads package in user space under these
conditions? Discuss. 

16. Can the priority inversion problem discussed in Sec. 2.3.4 happen with user-level threads? Why or why not?

17. In a system with threads, is there one stack per thread or one stack per process when user-level threads are used? What about when kernel-level
threads are used? Explain. 

18. What is a race condition? 

19. When a computer is being developed, it is usually first simulated by a program that runs one instruction at a time. Even multiprocessors are
simulated strictly sequentially like this. Is it possible for a race condition to occur when there are no simultaneous events like this?

20. Does the busy waiting solution using the turn variable (Fig. 2-20) work when the two processes are running on a shared-memory multiprocessor,
that is, two CPUs sharing a common memory? 

21. Does Peterson’s solution to the mutual exclusion problem shown in Fig. 2-21 work when process scheduling is preemptive? How about when it is
nonpreemptive?

22. Consider a computer that does not have a TSL instruction but does have an instruction to swap the contents of a register and a memory word in a
single indivisible action. Can that be used to write a routine enter_region such as the one found in Fig. 2-22? 

23. Give a sketch of how an operating system that can disable interrupts could implement semaphores. 

24. Show how counting semaphores (i.e., semaphores that can hold an arbitrary value) can be implemented using only binary semaphores and ordinary
machine instructions.

25. If a system has only two processes, does it make sense to use a barrier to synchronize them? Why or why not? 
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26. In Sec. 2.3.4, a situation with a high-priority process, H, and a low-priority process, L; was described, which led to H looping forever. Does the
same problem occur if round-robin scheduling is used instead of priority scheduling? Discuss. 

27. Can two threads in the same process synchronize using a kernel semaphore if the threads are implemented by the kernel? What if they are
implemented in user space? Assume that no threads in any other processes have access to the semaphore. Discuss your answers. 

28. Synchronization within monitors uses condition variables and two special operations, wait and signal. A more general form of synchronization
would be to have a single primitive, waituntil, that had an arbitrary Boolean predicate as parameter. Thus, one could say, for example, 

waituntil x < 0 or y + z < n

The signal primitive would no longer be needed. This scheme is clearly more general than that of Hoare or Brinch Hansen, but it is not used. Why 
not? Hint: Think about the implementation.

29. A fast food restaurant has four kinds of employees: (1) order takers, who take customers’ orders; (2) cooks, who prepare the food; (3) packaging
specialists, who stuff the food into bags; and (4) cashiers, who give the bags to customers and take their money. Each employee can be regarded as a 
communicating sequential process. What form of interprocess communication do they use? Relate this model to processes in UNIX. 

30. Suppose that we have a message-passing system using mailboxes. When sending to a full mailbox or trying to receive from an empty one, a process
does not block. Instead, it gets an error code back. The process responds to the error code by just trying again, over and over, until it succeeds. Does 
this scheme lead to race conditions? 

31. In the solution to the dining philosophers problem (Fig. 2-33), why is the state variable set to HUNGRY in the procedure take_forks? 

32. Consider the procedure put_forks in Fig. 2-33. Suppose that the variable state[i] was set to THINKING after the two calls to test, rather than before.
How would this change affect the solution?

33. The readers and writers problem can be formulated in several ways with regard to which category of processes can be started when. Carefully
describe three different variations of the problem, each one favoring (or not favoring) some category of processes. For each variation, specify what
happens when a reader or a writer becomes ready to access the database, and what happens when a process is finished using the database.

34. The CDC 6600 computers could handle up to 10 I/O processes simultaneously using an interesting form of round-robin scheduling called processor 
sharing. A process switch occurred after each instruction, so instruction 1 came from process 1, instruction 2 came from process 2, etc. The process
switching was done by special hardware, and the overhead was zero. If a process needed T sec to complete in the absence of competition, how much
time would it need if processor sharing was used with n processes? 

35. Round-robin schedulers normally maintain a list of all runnable processes, with each process occurring exactly once in the list. What would happen
if a process occurred twice in the list? Can you think of any reason for allowing this? 

36. Can a measure of whether a process is likely to be CPU bound or I/O bound be determined by analyzing source code? How can this be determined
at run time? 

37. In the section “When to Schedule.” it was mentioned that sometimes scheduling could be improved if an important process could play a role in
selecting the next process to run when it blocks. Give a situation where this could be used and explain how. 

38. Measurements of a certain system have shown that the average process runs for a time T before blocking on I/O. A process switch requires a time S, 
which is effectively wasted (overhead). For round-robin scheduling with quantum Q, give a formula for the CPU efficiency for each of the
following: 

(a) Q = ∞
(b) Q > T
(c) S < Q < T
(d) Q = S
(e) Q nearly 0

39. Five jobs are waiting to be run. Their expected run times are 9, 6, 3, 5, and X. In what order should they be run to minimize average response time?
(Your answer will depend on X.)

40. Five batch jobs A through E, arrive at a computer center at almost the same time. They have estimated running times of 10, 6, 2, 4, and 8 minutes.
Their (externally determined) priorities are 3, 5, 2, 1, and 4, respectively, with 5 being the highest priority. For each of the following scheduling 
algorithms, determine the mean process turnaround time. Ignore process switching overhead. 

(a) Round robin.
(b) Priority scheduling.
(c) First-come, first-served (run in order 10, 6, 2, 4, 8).
(d) Shortest job first.

For (a), assume that the system is multiprogrammed, and that each job gets its fair share of the CPU. For (b) through (d) assume that only one job at 
a time runs, until it finishes. All jobs are completely CPU bound.

41. A process running on CTSS needs 30 quanta to complete. How many times must it be swapped in, including the very first time (before it has run at
all)? 

42. Can you think of a way to save the CTSS priority system from being fooled by random carriage returns? 

43. The aging algorithm with a = 1/2 is being used to predict run times. The previous four runs, from oldest to most recent, are 40, 20, 40, and 15 msec.
What is the prediction of the next time? 

44. A soft real-time system has four periodic events with periods of 50, 100, 200, and 250 msec each. Suppose that the four events require 35, 20, 10,
and x msec of CPU time, respectively. What is the largest value of x for which the system is schedulable? 

45. Explain why two-level scheduling is commonly used. 

46. Consider a system in which it is desired to separate policy and mechanism for the scheduling of kernel threads. Propose a means of achieving this
goal.

47. Write a shell script that produces a file of sequential numbers by reading the last number in the file, adding 1 to it, and then appending it to the file.
Run one instance of the script in the background and one in the foreground, each accessing the same file. How long does it take before a race
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condition manifests itself? What is the critical region? Modify the script to prevent the race (hint: use 

ln file file.lock

to lock the data file).

48. Assume that you have an operating system that provides semaphores. Implement a message system. Write the procedures for sending and receiving
messages. 

49. Solve the dining philosophers probbbb using monitors instead of semaphores. 

50. Suppose that a university wants to show off how politically correct it is by applying the U.S. Supreme Court’s “Separate but equal is inherently
unequal” doctrine to gender as well as race, ending its long-standing practice of gender-segregated bath rooms on campus. However, as a
concession to tradition, it decrees that when a woman is in a bathroom, other women may enter, but no men, and vice versa. A sign with a sliding
marker on the door of each bathroom indicates which of three possible slates it is currently in: 

Empty
Women present
Men present

In your favorite programming language, write the following procedures: woman_wants_to_enter, man_wants_to_enter, woman_leaves, man_leaves. 
You may use whatever counters and synchronization techniques you like.

51. Rewrite the program of Fig. 2-20 to handle more than two processes. 

52. Write a producer-consumer problem that uses threads and shares a common buffer. However, do not use semaphores or any other synchronization
primitives to guard the shared data structures. Just let each thread access them when it wants to. Use sleep and wakeup to handle the full and empty
conditions. See how long it takes for a fatal race condition to occur. For example, you might have the producer print a number once in a while. Do
not print more than one number every minute because the I/O could affect the race conditions. 

53. A process can be put into a round-robin queue more than once to give it a higher priority. Running multiple instances of a program each working on
a different part of a data pool can have the same effect. First write a program that tests a list of numbers for primarily. Then devise a method to
allow multiple instances of the program to run at once in such a way that no two instances of the program will work on the same number. Can you
in fact get through the list faster by running multiple copies of the program? Note that your results will depend upon what else your computer is
doing: on a personal computer running only instances of this program you would not expect an improvement, but on a system with other processes,
you should be able to grab a bigger share of the CPU this way. 

[†] If something can go wrong, it will.
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