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DEADLOCKS

Computer systems are full of resources that can only be used by one process at a time. 
Common examples include printers, tape drives, and slots in the system’s internal tables. 
Having two processes simultaneously writing to the printer leads to gibberish. Having two 
processes using the same file system table slot will invariably lead to a corrupted file 
system. Consequently, all operating systems have the ability to (temporarily) grant a 
process exclusive access to certain resources.

For many applications, a process needs exclusive access to not one resource, but several. 
Suppose, for example, two processes each want to record a scanned document on a CD. 
Process A requests permission to use the scanner and is granted it. Process B is 
programmed differently and requests the CD recorder first and is also granted it. Now A 
asks for the CD recorder, but the request is denied until B releases it. Unfortunately, 
instead of releasing the CD recorder B asks for the scanner. At this point both processes 
are blocked and will remain so forever. This situation is called a deadlock.

Deadlocks can also occur across machines. For example, many offices have a local area 
network with many computers connected to it. Often devices such as scanners, CD 
recorders, printers, and tape drives are connected to the network as shared resources,
available to any user on any machine. If these devices can be reserved remotely (i.e., from 
the user’s home machine), the same kind of deadlocks can occur as described above. More 
complicated situations can cause deadlocks involving three, four, or more devices and 
users.

Deadlocks can occur in a variety of situations besides requesting dedicated I/O devices. In 
a database system, for example, a program may have to lock several records it is using, to
avoid race conditions. If process A locks record R1 and process B locks record R2, and 
then each process tries to lock the other one’s record, we also have a deadlock. Thus 
deadlocks can occur on hardware resources or on software resources.

In this chapter, we will look at deadlocks more closely, see how they arise, and study 
some ways of preventing or avoiding them. Although this material is about deadlocks in 
the context of operating systems, they also occur in database systems and many other
contexts in computer science, so this material is actually applicable to a wide variety of 
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multiprocess systems. A great deal has been written about deadlocks. Two bibliographies 
on the subject have appeared in Operating Systems Review and should be consulted for 
references (Newton, 1979; and Zobel, 1983). Although these bibliographies are old, most 
of the work on deadlocks was done well before 1980, so they are still useful.

3.1 RESOURCES

Deadlocks can occur when processes have been granted exclusive access to devices, files, 
and so forth. To make the discussion of deadlocks as general as possible, we will refer to 
the objects granted as resources. A resource can be a hardware device (e.g., a tape drive) 
or a piece of information (e.g., a locked record in a database). A computer will normally 
have many different resources that can be acquired. For some resources, several identical 
instances may be available, such as three tape drives. When several copies of a resource 
are available, any one of them can be used to satisfy any request for the resource. In short, 
a resource is anything that can be used by only a single process at any instant of time.

3.1.1 Preemptable and Nonpreemptable Resources

Resources come in two types: preemptable and nonpreemptable. A preemptable resource 
is one that can be taken away from the process owning it with no ill effects. Memory is an 
example of a preemptable resource. Consider, for example, a system with 32 MB of user 
memory, one printer, and two 32-MB processes that each want to print something. Process 
A requests and gets the printer, then starts to compute the values to print. Before it has 
finished with the computation, it exceeds its time quantum and is swapped out.

Process B now runs and tries, unsuccessfully, to acquire the printer. Potentially, we now 
have a deadlock situation, because A has the printer and B has the memory, and neither 
can proceed without the resource held by the other. Fortunately, it is possible to preempt 
(take away) the memory from B by swapping it out and swapping A in. Now A can run, do 
its printing, and then release the printer. No deadlock occurs.

A nonpreemptable resource, in contrast, is one that cannot be taken away from its 
current owner without causing the computation to fail. If a process has begun to burn a 
CD-ROM, suddenly taking the CD recorder away from it and giving it to another process 
will result in a garbled CD, CD recorders are not preemptable at an arbitrary moment.

In general, deadlocks involve nonpreemptable resources. Potential deadlocks that involve 
preemptable resources can usually be resolved by reallocating resources from one process 
to another. Thus our treatment will focus on nonpreemptable resources.

The sequence of events required to use a resource is given below in an abstract form.
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1. Request the resource.
2. Use the resource.
3. Release the resource.

If the resource is not available when it is requested, the requesting process is forced to 
wait. In some operating systems, the process is automatically blocked when a resource 
request fails, and awakened when it becomes available. In other systems, the request fails 
with an error code, and it is up to the calling process to wait a little while and try again.

A process whose resource request has just been denied will normally sit in a tight loop
requesting the resource, then sleeping, then trying again. Although this process is not 
blocked, for all intents and purposes, it is as good as blocked, because it cannot do any 
useful work. In our further treatment, we will assume that when a process is denied a 
resource request, it is put to sleep.

The exact nature of requesting a resource is highly system dependent. In some systems, a 
request system call is provided to allow processes to explicitly ask for resources. In 
others, the only resources that the operating system knows about are special files that only 
one process can have open at a time. These are opened by the usual open call. If the file is 
already in use, the caller is blocked until its current owner closes it.

3.1.2 Resource Acquisition

For some kinds of resources, such as records in a database system, it is up to the user 
processes to manage resource usage themselves. One possible way of allowing user 
management of resources is to associate a semaphore with each resource. These 
semaphores are all initialized to 1. Mutexes can be used equally well. The three steps 
listed above are then implemented as a down on the semaphore to acquire the resource, 
using the resource, and finally an up on the resource to release it. These steps are shown in 
Fig. 3-1(a).

typedef int semaphore;
semaphore resource_1;

void process_A(void)
{
    down(&resource_1);
    use_resource_1();
    up(&resource_1);
}

typedef int semaphore;
semaphore resource_1;
semaphore resource_2;

void process_A(void)
{
    down(&resource_1);
    down(&resource_2);
    use_both_resources();
    up(&resource_2);
    up(&resource_1);
}

(a) (b)
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Figure 3-1. Using a semaphore to protect resources. (a) One resource. (b) Two resources.

Sometimes processes need two or more resources. They can be acquired sequentially, as
shown in Fig. 3-1(b). If more than two resources are needed, they are just acquired one 
after another.

So far, so good. As long as only one process is involved, everything works fine. Of course, 
with only one process, there is no need to formally acquire resources, since there is no
competition for them.

Now let us consider a situation with two processes, A and B, and two resources. Two 
scenarios are depicted in Fig. 3-2. In Fig. 3-2(a), both processes ask for the resources in 
the same order. In Fig. 3-2(b), they ask for them in a different order. This difference may 
seem minor, but it is not.

Figure 3-2. (a) Deadlock-free code. (b) Code with a potential deadlock.

In Fig. 3-2(a), one of the processes will acquire the first resource before the other one. 
That process will then successfully acquire the second resource and do its work. If the 
other process attempts to acquire resource 1 before it has been released, the other process
will simply block until it becomes available.

In Fig. 3-2(b), the situation is different. It might happen that one of the processes acquires
both resources and effectively blocks out the other process until it is done. However, it 
might also happen that process A acquires resource 1 and process B acquires resource 2. 
Each one will now block when trying the acquire the other one. Neither process will ever 

typedef int semaphore;
semaphore resource_1;
semaphore resource_2;

void process_A(void) {
    down(&resource_1);
    down(&resource_2);
    use_both_resources( );
    up(&resource_2);
    up(&resource_1);
}

void process_B{void) {
    down(&resource_1);
    down(&resource_2);
    use_both_resources( );
    up(&resource_2);
    up(&resource_1);
}

typedef int semaphore;
semaphore resource_1;
semaphore resource_2;

void process_A(void) {
    down(&resource_1);
    down(&resource_2);
    use_both_resources( );
    up(&resource_2);
    up(&resource_1);
}

void process_B{void) {
    down(&resource_2);
    down(&resource_1);
    use_both_resources();
    up(&resource_1);
    up(&resource_2);
}

(a) (b)
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run again. This situation is a deadlock.

Here we see how what appears to be a minor difference in coding style— which resource 
to acquire first—turns out to make the difference between the program working and the 
program failing in a hard-to-detect way. Because deadlocks can occur so easily, a lot of 
research has gone into ways to deal them. This chapter discusses deadlocks in detail and 
what can be done about them.

3.2 INTRODUCTION TO DEADLOCKS

Deadlock can be defined formally as follows:

A set of processes is deadlocked if each process in the set is waiting for an event that 
only another process in the set can cause.

Because all the processes are waiting, none of them will ever cause any of the events that 
could wake up any of the other members of the set, and all the processes continue to wait 
forever. For this model, we assume that processes have only a single thread and that there 
are no interrupts possible to wake up a blocked process. The no-interrupts condition is
needed to prevent an otherwise deadlocked process from being awakened by, say, an 
alarm, and then causing events that release other processes in the set.

In most cases, the event that each process is waiting for is the release of some resource 
currently possessed by another member of the set. In other words, each member of the set 
of deadlocked processes is waiting for a resource that is owned by a deadlocked process. 
None of the processes can run, none of them can release any resources, and none of them 
can be awakened. The number of processes and the number and kind of resources 
possessed and requested are unimportant. This result holds for any kind of resource, 
including both hardware and software.

3.2.1 Conditions for Deadlock

Coffman et al. (1971) showed that four conditions must hold for there to be a deadlock:

1. Mutual exclusion condition. Each resource is either currently assigned to
exactly one process or is available.

2. Hold and wait condition. Processes currently holding resources granted earlier
can request new resources.

3. No preemption condition. Resources previously granted cannot be forcibly
taken away from a process. They must be explicitly released by the process
holding them.
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4. Circular wait condition. There must be a circular chain of two or more
processes, each of which is waiting for a resource held by the next member of
the chain.

All four of these conditions must be present for a deadlock to occur. If one of them is 
absent, no deadlock is possible.

It is worth noting that each condition relates to a policy that a system can have or not have. 
Can a given resource be assigned to more than one process at once? Can a process hold a 
resource and ask for another? Can resources be preempted? Can circular waits exist? Later 
on we will see how deadlocks can be attacked by trying to negate some of these
conditions.

3.2.2 Deadlock Modeling

Holt (1972) showed how these four conditions can be modeled using directed graphs. The 
graphs have two kinds of nodes: processes, shown as circles, and resources, shown as 
squares. An arc from a resource node (square) to a process node (circle) means that the 
resource has previously been requested by, granted to, and is currently held by that 
process. In Fig. 3-3(a), resource R is currently assigned to process A.

An arc from a process to a resource means that the process is currently blocked waiting for
that resource. In Fig. 3-3(b), process B is waiting for resource S. In Fig. 3-3(c) we see a 
deadlock: process C is waiting for resource T, which is currently held by process D. 
Process D is not about to release resource T because it is waiting for resource U, held by 
C. Both processes will wait forever. A cycle in the graph means that there is a deadlock 
involving the processes and resources in the cycle (assuming that there is one resource of 
each kind). In this example, the cycle is C–T–D–U–C.

Figure 3-3. Resource allocation graphs. (a) Holding a resource. (b) Requesting a 
resource. (c) Deadlock.

Now let us look at an example of how resource graphs can be used. Imagine that we have 
three processes, A, B, and C, and three resources R, S, and T. The requests and releases of
the three processes are given in Fig. 3-4(a)-(c). The operating system is free to run any 
unblocked process at any instant, so it could decide to run A until A finished all its work, 
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then run B to completion, and finally run C.

This ordering does not lead to any deadlocks (because there is no competition for 
resources) but it also has no parallelism at all. In addition to requesting and releasing 
resources, processes compute and do I/O. When the processes are run sequentially, there is 
no possibility that while one process is waiting for I/O, another can use the CPU. Thus 
running the processes strictly sequentially may not be optimal. On the other hand, if none
of the processes do any I/O at all, shortest job first is better than round robin, so under 
some circumstances running all processes sequentially may be the best way.

Let us now suppose that the processes do both I/O and computing, so that round robin is a 
reasonable scheduling algorithm. The resource requests might occur in the order of Fig. 3-
4(d). If these six requests are carried out in that order, the six resulting resource graphs are 
shown in Fig. 3-4(e)-(j), After request 4 has been made, A blocks waiting for S, as shown 
in Fig. 3-4(h). In the next two steps B and C also block, ultimately leading to a cycle and 
the deadlock of Fig. 3-4(j).

However, as we have already mentioned, the operating system is not required to run the 
processes in any special order. In particular, if granting a particular request might lead to 
deadlock, the operating system can simply suspend the process without granting the 
request (i.e., just not schedule the process) until it is safe. In Fig. 3-4, if the operating 
system knew about the impending deadlock, it could suspend B instead of granting it S. By 
running only A and C, we would get the requests and releases of Fig. 3-4(k) instead or Fig. 
3-4(d). This sequence leads to the resource graphs of Fig. 3-4(l)-(q), which do not lead to 
deadlock.

After step (q), process B can be granted S because A is finished and C has everything it 
needs. Even if B should eventually block when requesting T no deadlock can occur. B will 
just wait until C is finished.

3 DEADLOCKS



Figure 3-4. An example of how deadlock occurs and how it can be avoided.
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Later in this chapter we will study a detailed algorithm for making allocation decisions 
that do not lead to deadlock. For the moment, the point to understand is that resource 
graphs are a tool that let us see if a given request/release sequence leads to deadlock. We 
just carry out the requests and releases step by step, and after every step check the graph to 
see if it contains any cycles. If so, we have a deadlock; if not, there is no deadlock. 
Although our treatment of resource graphs has been for the case of a single resource of 
each type, resource graphs can also be generalized to handle multiple resources of the 
same type (Holt, 1972). In general, four strategies are used for dealing with deadlocks.

1. Just ignore the problem altogether. Maybe if you ignore it, it will ignore you.
2. Detection and recovery. Let deadlocks occur, detect them, and take action.
3. Dynamic avoidance by careful resource allocation.
4. Prevention, by structurally negating one of the four conditions necessary to

cause a deadlock.

We will examine each of these methods in turn in the next four sections.

3.3 THE OSTRICH ALGORITHM

The simplest approach is the ostrich algorithm: stick your head in the sand and pretend 

there is no problem at all
[†]

 . Different people react to this strategy in different ways. 
Mathematicians find it totally unacceptable and say that deadlocks must be prevented at 
all costs. Engineers ask how often the problem is expected, how often the system crashes
for other reasons, and how serious a deadlock is. If deadlocks occur on the average once 
every five years, but system crashes due to hardware failures, compiler errors, and 
operating system bugs occur once a week, most engineers would not be willing to pay a 
large penalty in performance or convenience to eliminate deadlocks.

To make this contrast more specific, most operating systems potentially suffer from 
deadlocks that are not even detected, let alone automatically broken. The total number of 
processes in a system is determined by the number of entries in the process table. Thus 
process table slots are finite resources. If a fork fails because the table is full, a reasonable 
approach for the program doing the fork is to wait a random time and try again.

Now suppose that a UNIX system has 100 process slots. Ten programs are running, each 
of which needs to create 12 (sub)processes. After each process has created 9 processes, the 
10 original processes and the 90 new processes have exhausted the table. Each of the 10 
original processes now sits in an endless loop forking and failing—a deadlock. The 
probability of this happening is minuscule, but it could happen. Should we abandon 
processes and the fork call to eliminate the problem?
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The maximum number of open files is similarly restricted by the size of the i-node table, 
so a similar problem occurs when it fills up. Swap space on the disk is another limited 
resource. In fact, almost every table in the operating system represents a finite resource. 
Should we abolish all of these because it might happen that a collection of n processes 
might each claim 1/n of the total, and then each try to claim another one?

Most operating systems, including UNIX and Windows, just ignore the problem on the
assumption that most users would prefer an occasional deadlock to a rule restricting all 
users to one process, one open file, and one of everything. If deadlocks could be 
eliminated for free, there would not be much discussion. The problem is that the price is 
high, mostly in terms of putting inconvenient restrictions on processes, as we will see 
shortly. Thus we are faced with an unpleasant trade-off between convenience and 
correctness, and a great deal of discussion about which is more important, and to whom. 
Under these conditions, general solutions are hard to find.

3.4 DEADLOCK DETECTION AND RECOVERY

A second technique is detection and recovery. When this technique is used, the system 
does not attempt to prevent deadlocks from occurring. Instead, it lets them occur, tries to 
detect when this happens, and then takes some action to recover after the fact. In this 
section we will look at some of the ways deadlocks can be detected and some of the ways 
recovery from them can be handled.

3.4.1 Deadlock Detection with One Resource of Each Type

Let us begin with the simplest case: only one resource of each type exists. Such a system 
might have one scanner, one CD recorder, one plotter, and one tape drive, but no more 
than one of each class of resource. In other words, we are excluding systems with two 
printers for the moment. We will treat them later using a different method.

For such a system, we can construct a resource graph of the sort illustrated in Fig. 3-3. If 
this graph contains one or more cycles, a deadlock exists. Any process that is part of a 
cycle is deadlocked. If no cycles exist, the system is not deadlocked.

As an example of a more complex system than the ones we have looked at so far, consider 
a system with seven processes, A though G, and six resources, R through W. The state of
which resources are currently owned and which ones are currently being requested is as 
follows:

1. Process A holds R and wants S.
2. Process B holds nothing but wants T.
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3. Process C holds nothing but wants S.
4. Process D holds U and wants S and T.
5. Process E holds T and wants V.
6. Process F holds W and wants S.
7. Process G holds V and wants U.

The question is: “Is this system deadlocked, and if so, which processes are involved?”

To answer this question, we can construct the resource graph of Fig. 3-5(a). This graph 
contains one cycle, which can be seen by visual inspection. The cycle is shown in Fig. 3-5
(b). From this cycle, we can see that processes D, E, and G are all deadlocked. Processes 
A, C, and F are not deadlocked because S can be allocated to any one of them, which then 
finishes and returns it. Then the other two can take it in turn and also complete.

Figure 3-5. (a) A resource graph. (b) A cycle extracted from (a).

Although it is relatively simple to pick out the deadlocked processes by eye from a simple 
graph, for use in actual systems we need a formal algorithm for detecting deadlocks. Many 
algorithms for detecting cycles in directed graphs are known. Below we will give a simple 
one that inspects a graph and terminates either when it has found a cycle or when it has 
shown that none exist. It uses one data structure, L, a list of nodes. During the algorithm, 
arcs will be marked to indicate that they have already been inspected, to prevent repeated 
inspections.

The algorithm operates by carrying out the following steps as specified:

1. For each node, N in the graph, perform the following 5 steps with N as the
starting node.

2. Initialize L to the empty list, and designate all the arcs as unmarked.
3. Add the current node to the end of L and check to see if the node now appears
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in L two times. If it does, the graph contains a cycle (listed in L) and the
algorithm terminates. 

4. From the given node, see if there are any unmarked outgoing arcs. If so, go to
step 5; if not, go to step 6.

5. Pick an unmarked outgoing arc at random and mark it. Then follow it to the
new current node and go to step 3.

6. We have now reached a dead end. Remove it and go back to the previous
node, that is, the one that was current just before this one, make that one the
current node, and go to step 3. If this node is the initial node, the graph does
not contain any cycles and the algorithm terminates.

What this algorithm does is take each node, in turn, as the root of what it hopes will be a 
tree, and does a depth-first search on it. If it ever comes back to a node it has already 
encountered, then it has found a cycle. If it exhausts all the arcs from any given node, it 
backtracks to the previous node. If it backtracks to the root and cannot go further, the 
subgraph reachable from the current node does not contain any cycles. If this property
holds for all nodes, the entire graph is cycle free, so the system is not deadlocked.

To see how the algorithm works in practice, let us use it on the graph of Fig. 3-5(a). The 
order of processing the nodes is arbitrary, so let us just inspect them from left to right, top 
to bottom, first running the algorithm starting at R then successively, A, B, C, S, D, T, E, 
F, and so forth. If we hit a cycle, the algorithm stops.

We start at R and initialize L to the empty list. Then we add R to the list and move to the 
only possibility, A, and add it to L, giving L = [R, A]. From A we go to S, giving L = [R, A, 
S]. S has no outgoing arcs, so it is a dead end, forcing us to backtrack to A. Since A has no
unmarked outgoing arcs, we backtrack to R, completing our inspection of R.

Now we restart the algorithm starting at A, resetting L to the empty list. This search, too, 
quickly stops, so we start again at B. From B we continue to follow outgoing arcs until we 
get to D, at which time L = [B, T, E, V, G, U, D]. Now we must make a (random) choice. 
If we pick S we come to a dead end and backtrack to D. The second time we pick T and 
update L to be [B, T, E, V, G, U, D, T], at which point we discover the cycle and stop the 
algorithm.

This algorithm is far from optimal. For a better one, see (Even, 1979). Nevertheless, it 
demonstrates that an algorithm for deadlock detection exists.

3.4.2 Deadlock Detection with Multiple Resource of Each Type

When multiple copies of some of the resources exist, a different approach is needed to 
detect deadlocks. We will now present a matrix-based algorithm for detecting deadlock 
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among n processes. P1 through Pn. Let the number of resource classes be m, with E1
resources of class 1, E2 resources of class 2, and generally, Ei resources of class i
(1 < i < m). E is the existing resource vector. It gives the total number of instances of 
each resource in existence. For example, if class 1 is tape drives, then E1 = 2 means the
system has two tape drives.

At any instant, some of the resources are assigned and are not available. Let A be the
available resource vector, with Ai giving the number of instances of resource i that are
currently available (i.e., unassigned). If both of our two tape drives are assigned, A1 will
be 0.

Now we need two arrays, C, the current allocation matrix, and R, the request matrix. 
The i-th row of C tells how many instances of each resource class Pi currently holds. Thus
Cij is the number of instances of resource j that are held by process i. Similarly, Rij is the
number of instances of resource j that Pi wants. These four data structures are shown in
Fig. 3-6.

Figure 3-6. The four data structures needed by the deadlock detection algorithm.

An important invariant holds for these four data structures. In particular, every resource is 
either allocated or is available. This observation means that

In other words, if we add up all the instances of the resource j that have been allocated and 
to this add all the instances that are available, the result is the number of instances of that 
resource class that exist.
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The deadlock detection algorithm is based on comparing vectors. Let us define the relation
A ≤ B on two vectors A and B to mean that each element of A is less than or equal to the 
corresponding element of B. Mathematically, A ≤ B holds if and only if Ai ≤ Bi for
1 < i < m.

Each process is initially said to be unmarked. As the algorithm progresses, processes will 
be marked, indicating that they are able to complete and are thus not deadlocked. When 
the algorithm terminates, any unmarked processes are known to be deadlocked.

The deadlock detection algorithm can now be given, as follows.

1. Look for an unmarked process, Pi, for which the i-th row of R is less than or
equal to A.

2. If such a process is found, add the i-th row of C to A, mark the process, and
go back to step 1.

3. If no such process exists, the algorithm terminates.

When the algorithm finishes, all the unmarked processes, if any, are deadlocked.

What the algorithm is doing in step 1 is looking for a process that can be run to 
completion. Such a process is characterized as having resource demands that can be met 
by the currently available resources. The selected process is then run until it finishes, at
which time it returns the resources it is holding to the pool of available resources. It is then 
marked as completed. If all the processes are ultimately able to run, none of them are 
deadlocked. If some of them can never run, they are deadlocked. Although the algorithm 
is nondeterministic (because it may run the processes in any feasible order), the result is 
always the same.

As an example of how the deadlock detection algorithm works, consider Fig. 3-7. Here we 
have three processes and four resource classes, which we have arbitrarily labeled tape 
drives, plotters, scanner, and CD-ROM drive. Process 1 has one scanner. Process 2 has 
two tape drives and a CD-ROM drive. Process 3 has a plotter and two scanners. Each 
process needs additional resources, as shown by the R matrix.
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Figure 3-7. An example for the deadlock detection algorithm.

To run the deadlock detection algorithm, we look for a process whose resource request can 
be satisfied. The first one cannot be satisfied because there is no CD-ROM drive available. 
The second cannot be satisfied either, because there is no scanner free. Fortunately, the 
third one can be satisfied, so process 3 runs and eventually returns all its resources, giving

A = (2 2 2 0)

At this point process 2 can run and return its resources, giving

A = (4 2 2 1)

Now the remaining process can run. There is no deadlock in the system.

Now consider a minor variation of the situation of Fig. 3-7. Suppose that process 2 needs a 
CD-ROM drive as well as the two tape drives and the plotter. None of the requests can be 
satisfied, so the entire system is deadlocked.

Now that we know how to detect deadlocks, the question of when to look for them comes 
up. One possibility is to check every time a resource request is made. This is certain to 
detect them as early as possible, but it is potentially expensive in terms of CPU time. An
alternative strategy is to check every k minutes, or perhaps only when the CPU utilization 
has dropped below some threshold. The reason for considering the CPU utilization is that 
if enough processes are deadlocked, there will be few runnable processes, and the CPU 
will often be idle.

3.4.3 Recovery from Deadlock

Suppose that our deadlock detection algorithm has succeeded and detected a deadlock. 
What next? Some way is needed to recover and get the system going again. In this section 
we will discuss various ways of recovering from deadlock. None of them are especially 
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attractive, however.

Recovery through Preemption

In some cases it may be possible to temporarily take a resource away from its current 
owner and give it to another process. In many cases, manual intervention may be required, 
especially in batch processing operating systems running on mainframes.

For example, to take a laser printer away from its owner, the operator can collect all the 
sheets already printed and put them in a pile. Then the process can be suspended (marked 
as not runnable). At this point the printer can be assigned to another process. When that 
process finishes, the pile of printed sheets can be put back in the printer’s output tray and 
the original process restarted.

The ability to take a resource away from a process, have another process use it, and then 
give it back without the process noticing it is highly dependent on the nature of the 
resource. Recovering this way is frequently difficult or impossible. Choosing the process 
to suspend depends largely on which ones have resources that can easily be taken back.

Recovery through Rollback

If the system designers and machine operators know that deadlocks are likely, they can 
arrange to have processes checkpointed periodically. Checkpointing a process means that 
its state is written to a file so that it can be restarted later. The checkpoint contains not 
only the memory image, but also the resource state, that is, which resources are currently 
assigned to the process. To be most effective, new checkpoints should not overwrite old 
ones but should be written to new files, so as the process executes, a whole sequence of 
checkpoint files are accumulated.

When a deadlock is detected, it is easy to see which resources are needed. To do the 
recovery, a process that owns a needed resource is rolled back to a point in time before it 
acquired some other resource by starting one of its earlier checkpoints. All the work done 
since the checkpoint is lost (e.g., output printed since the checkpoint must be discarded,
since it will be printed again). In effect, the process is reset to an earlier moment when it 
did not have the resource, which is now assigned to one of the deadlocked processes. If 
the restarted process tries to acquire the resource again, it will have to wait until it 
becomes available.

Recovery through Killing Processes

The crudest, but simplest way to break a deadlock is to kill one or more processes. One 
possibility is to kill a process in the cycle. With a little luck, the other processes will be 
able to continue. If this does not help, it can be repeated until the cycle is broken.
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Alternatively, a process not in the cycle can be chosen as the victim in order to release its 
resources. In this approach, the process to be killed is carefully chosen because it is 
holding resources that some process in the cycle needs. For example, one process might
hold a printer and want a plotter, with another process holding a plotter and wanting a 
printer. These two are deadlocked. A third process may hold another identical printer and 
another identical plotter and be happily running. Killing the third process will release 
these resources and break the deadlock involving the first two.

Where possible, it is best to kill a process that can be rerun from the beginning with no ill 
effects. For example, a compilation can always be rerun because all it does is read a 
source file and produce an object file. If it is killed part way through, the first run has no
influence on the second run.

On the other hand, a process that updates a database cannot always be run a second time 
safely. If the process adds 1 to some record in the database, running it once, killing it, and 
then running it again will add 2 to the record, which is incorrect.

3.5 DEADLOCK AVOIDANCE

In the discussion of deadlock detection, we tacitly assumed that when a process asks for 
resources, it asks for them all at once (the R matrix of Fig. 3-6). In most systems, however, 
resources are requested one at a time. The system must be able to decide whether granting 
a resource is safe or not and only make the allocation when it is safe. Thus the question 
arises: Is there an algorithm that can always avoid deadlock by making the right choice all 
the time? The answer is a qualified yes—we can avoid deadlocks, but only if certain 
information is available in advance. In this section we examine ways to avoid deadlock by
careful resource allocation.

3.5.1 Resource Trajectories

The main algorithms for doing deadlock avoidance are based on the concept of safe states. 
Before describing the algorithms, we will make a slight digression to look at the concept 
of safety in a graphic and easy-to-understand way. Although the graphical approach does 
not translate directly into a usable algorithm, it gives a good intuitive feel for the nature of 
the problem.

In Fig. 3-8 we see a model for dealing with two processes and two resources, for example, 
a printer and a plotter. The horizontal axis represents the number of instructions executed 
by process A. The vertical axis represents the number of instructions executed by process 
B. At I1 A requests a printer; at I2 it needs a plotter. The printer and plotter are released at
I3 and I4, respectively. Process B needs the plotter from I5 to I7 and the printer from I6 to
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I8.

Every point in the diagram represents a joint state of the two processes. Initially, the state 
is at p, with neither process having executed any instructions. If the scheduler chooses to
run A first, we get to the point q, in which A has executed some number of instructions, 
but B has executed none. At point q the trajectory becomes vertical, indicating that the 
scheduler has chosen to run B. With a single processor, all paths must be horizontal or 
vertical, never diagonal. Furthermore, motion is always to the north or east, never to the
south or west (processes cannot run backward).

When A crosses the I1 line on the path from r to s, it requests and is granted the printer.
When B reaches point t, it requests the plotter.

Figure 3-8. Two process resource trajectories.

The regions that are shaded are especially interesting. The region with lines slanting from 
southwest to northeast represents both processes having the printer. The mutual exclusion 
rule makes it impossible to enter this region. Similarly, the region shaded the other way
represents both processes having the plotter, and is equally impossible.

If the system ever enters the box bounded by I1 and I2 on the sides and I5 and I6 top and
bottom, it will eventually deadlock when it gets to the intersection of I2 and I6. At this
point A is requesting the plotter and B is requesting the printer, and both are already 
assigned. The entire box is unsafe and must not be entered. At point t the only safe thing 
to do is run process A until it gels to I4. Beyond that, any trajectory to u will do.

The important thing to see here is at point t B is requesting a resource. The system must 
decide whether to grant it or not. If the grant is made, the system will enter an unsafe 
region and eventually deadlock. To avoid the deadlock, B should be suspended until A has 
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requested and released the plotter.

3.5.2 Safe and Unsafe States

The deadlock avoidance algorithms that we will study use the information of Fig. 3-6. At 
any instant of time, there is a current state consisting of E, A, C, and R. A state is said to 
be safe if it is not deadlocked and there is some scheduling order in which every process 
can run to completion even if all of them suddenly request their maximum number of 
resources immediately. It is easiest to illustrate this concept by an example using one 
resource. In Fig. 3-9(a) we have a state in which A has 3 instances of the resource but may 
need as many as 9 eventually. B currently has 2 and may need 4 altogether, later.
Similarly, C also has 2 but may need an additional 5. A total of 10 instances of the 
resource exist, so with 7 resources already allocated, there are 3 still free.

Figure 3-9. Demonstration that the state in (a) is safe.

The state of Fig. 3-9(a) is safe because there exists a sequence of allocations that allows all 
processes to complete. Namely, the scheduler could simply run B exclusively, until it
asked for and got two more instances of the resource, leading to the state of Fig. 3-9(b). 
When B completes, we get the state of Fig. 3-9(c). Then the scheduler can run C leading 
eventually to Fig. 3-9(d). When C completes, we get Fig. 3-9(e). Now A can get the six 
instances of the resource it needs and also complete. Thus the state of Fig. 3-9(a) is safe
because the system, by careful scheduling, can avoid deadlock.

Now suppose we have the initial state shown in Fig. 3-10(a), but this time A requests and 
gets another resource, giving Fig. 3-10(b). Can we find a sequence that is guaranteed to 
work? Let us try. The scheduler could run B until it asked for all its resources, as shown in 
Fig. 3-10(c).

Figure 3-10. Demonstration that the state in (b) is not safe.
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Eventually, B completes and we get the situation of Fig. 3-10(d). At this point we are 
stuck. We only have four instances of the resource free, and each of the active processes 
needs five. There is no sequence that guarantees completion. Thus the allocation decision
that moved the system from Fig. 3-10(a) to Fig. 3-10(b) went from a safe state to an 
unsafe state. Running A or C next starting at Fig. 3-10(b) does not work either. In 
retrospect, A’s request should not have been granted.

It is worth noting that an unsafe state is not a deadlocked state. Starting at Fig. 3-10(b), the 
system can run for a while. In fact, one process can even complete. Furthermore, it is 
possible that A might release a resource before asking for any more, allowing C to
complete and avoiding deadlock altogether. Thus the difference between a safe state and 
an unsafe state is that from a safe state the system can guarantee that all processes will 
finish; from an unsafe state, no such guarantee can be given.

3.5.3 The Banker’s Algorithm for a Single Resource

A scheduling algorithm that can avoid deadlocks is due to Dijkstra (1965) and is known as 
the banker’s algorithm and is an extension of the deadlock detection algorithm given in 
Sec. 3.4.1. It is modeled on the way a small-town banker might deal with a group of 
customers to whom he has granted lines of credit. What the algorithm does is check to see 
if granting the request leads to an unsafe state. If it does, the request is denied. If granting 
the request leads to a safe state, it is carried out. In Fig. 3-11(a) we see four customers. A, 
B, C and D, each of whom has been granted a certain number of credit units (e.g., 1 unit is
1K dollars). The banker knows that not all customers will need their maximum credit 
immediately, so he has reserved only 10 units rather than 22 to service them. (In this 
analogy, customers are processes, units are, say, tape drives, and the banker is the 
operating system.)

Figure 3-11. Three resource allocation states: (a) Safe. (b) Safe (c) Unsafe.

The customers go about their respective businesses, making loan requests from time to 
time (i.e., asking for resources). At a certain moment, the situation is as shown in Fig. 3-
11(b). This state is safe because with two units left, the banker can delay any requests 
except C’s, thus letting C finish and release all four of his resources. With four units in 
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hand, the banker can let either D or B have the necessary units, and so on.

Consider what would happen if a request from B for one more unit were granted in Fig. 3-
11(b). We would have situation Fig. 3-11(c), which is unsafe. If all the customers 
suddenly asked for their maximum loans, the banker could not satisfy any of them, and we 
would have a deadlock. An unsafe state does not have to lead to deadlock, since a 
customer might not need the entire credit line available, but the banker cannot count on 
this behavior.

The banker’s algorithm considers each request as it occurs, and see if granting it leads to a 
safe state. If it does, the request is granted; otherwise, it is postponed until later. To see if a 
state is safe, the banker checks to see if he has enough resources to satisfy some customer. 
If so, those loans are assumed to be repaid, and the customer now closest to the limit is 
checked, and so on. If all loans can eventually be repaid, the state is safe and the initial 
request can be granted.

3.5.4 The Banker’s Algorithm for Multiple Resources

The banker’s algorithm can be generalized to handle multiple resources. Figure 3-12 
shows how it works.

Figure 3-12. The banker’s algorithm with multiple resources.

In Fig. 3-12 we see two matrices. The one on the left shows how many of each resource 
are currently assigned to each of the five processes. The matrix on the right shows how 
many resources each process still needs in order to complete. These matrices are just C 
and R from Fig. 3-6. As in the single resource case, processes must state their total
resource needs before executing, so that the system can compute the right-hand matrix at 
each instant.

The three vectors at the right of the figure show the existing resources, E, the possessed 
resources, P, and the available resources, A, respectively. From E we see that the system 
has six tape drives, three plotters, four printers, and two CD-ROM drives. Of these, five 
tape drives, three plotters, two printers, and two CD-ROM drives are currently assigned. 
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This fact can be seen by adding up the four resource columns in the left-hand matrix. The 
available resource vector is simply the difference between what the system has and what is 
currently in use.

The algorithm for checking to see if a state is safe can now be stated.

1. Look for a row, R, whose unmet resource needs are all smaller than or equal
to A. If no such row exists, the system will eventually deadlock since no
process can run to completion.

2. Assume the process of the row chosen requests all the resources it needs
(which is guaranteed to be possible) and finishes. Mark that process as
terminated and add all its resources to the A vector.

3. Repeat steps 1 and 2 until either all processes are marked terminated, in
which case the initial state was safe, or until a deadlock occurs, in which case
it was not.

If several processes are eligible to be chosen in step 1, it does not matter which one is 
selected: the pool of available resources either gets larger, or at worst, stays the same.

Now let us get back to the example of Fig. 3-12. The current state is safe. Suppose that 
process B now requests a printer. This request can be granted because the resulting state is 
still safe (process D can finish, and then processes A or E, followed by the rest).

Now imagine that after giving B one of the two remaining printers, E wants the last 
printer. Granting that request would reduce the vector of available resources to (1 0 0 0), 
which leads to deadlock. Clearly E’s request must be deferred for a while.

The banker’s algorithm was first published by Dijkstra in 1965. Since that time, nearly 
every book on operating systems has described it in detail. Innumerable papers have been 
written about various aspects of it. Unfortunately, few authors have had the audacity to 
point out that although in theory the algorithm is wonderful, in practice it is essentially 
useless because processes rarely know in advance what their maximum resource needs 
will be. In addition, the number of processes is not fixed, but dynamically varying as new 
users log in and out. Furthermore, resources that were thought to be available can 
suddenly vanish (tape drives can break). Thus in practice, few, if any, existing systems use 
the banker’s algorithm for avoiding deadlocks.

3.6 DEADLOCK PREVENTION

Having seen that deadlock avoidance is essentially impossible, because it requires 
information about future requests, which is not known, how do real systems avoid 
deadlock? The answer is to go back to the four conditions stated by Coffman et al. (1971) 

3 DEADLOCKS



to see if they can provide a clue. If we can ensure that at least one of these conditions is 
never satisfied, then deadlocks will be structurally impossible (Havender, 1968).

3.6.1 Attacking the Mutual Exclusion Condition

First let us attack the mutual exclusion condition. If no resource were ever assigned 
exclusively to a single process, we would never have deadlocks. However, it is equally 
clear that allowing two processes to write on the printer at the same time will lead to 
chaos. By spooling printer output, several processes can generate output at the same time.
In this model, the only process that actually requests the physical printer is the printer 
daemon. Since the daemon never requests any other resources, we can eliminate deadlock 
for the printer.

Unfortunately, not all devices can be spooled (the process table does not lend itself well to 
being spooled). Furthermore, competition for disk space for spooling can itself lead to 
deadlock. What would happen if two processes each filled up half of the available 
spooling space with output and neither was finished producing output? If the daemon was 
programmed to begin printing even before all the output was spooled, the printer might lie 
idle if an output process decided to wait several hours after the first burst of output. For 
this reason, daemons are normally programmed to print only after the complete output file 
is available. In this case we have two processes that have each finished part, but not all, of 
their output, and cannot continue. Neither process will ever finish, so we have a deadlock 
on the disk.

Nevertheless, there is a germ of an idea here that is frequently applicable. Avoid assigning 
a resource when that is not absolutely necessary, and try to make sure that as few 
processes as possible may actually claim the resource.

3.6.2 Attacking the Hold and Wait Condition

The second of the conditions stated by Coffman et al. looks slightly more promising. If we 
can prevent processes that hold resources from waiting for more resources, we can 
eliminate deadlocks. One way to achieve this goal is to require all processes to request all 
their resources before starting execution. If everything is available, the process will be 
allocated whatever it needs and can run to completion. If one or more resources are busy, 
nothing will be allocated and the process would just wait.

An immediate problem with this approach is that many processes do not know how many 
resources they will need until they have started running. In fact, if they knew, the banker’s 
algorithm could be used. Another problem is that resources will not be used optimally 
with this approach. Take, as an example, a process that reads data from an input tape, 
analyzes it for an hour, and then writes an output tape as well as plotting the results. If all
resources must be requested in advance, the process will tie up the output tape drive and 
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the plotter for an hour.

Nevertheless, some mainframe batch systems require the user to list all the resources on 
the first line of each job. The system then acquires all resources immediately and keeps 
them until the job finishes. While this method puts a burden on the programmer and
wastes resources, it does prevent deadlocks.

A slightly different way to break the hold-and-wait condition is to require a process
requesting a resource to first temporarily release all the resources it currently holds. Then 
it tries to get everything it needs all at once.

3.6.3 Attacking the No Preemption Condition

Attacking the third condition (no preemption) is even less promising than attacking the 
second one. If a process has been assigned the printer and is in the middle of printing its 
output, forcibly taking away the printer because a needed plotter is not available is tricky 
at best and impossible at worst.

3.6.4 Attacking the Circular Wait Condition

Only one condition is left. The circular wait can be eliminated in several ways. One way is 
simply to have a rule saying that a process is entitled only to a single resource at any 
moment. If it needs a second one, it must release the first one. For a process that needs to 
copy a huge file from a tape to a printer, this restriction is unacceptable.

Another way to avoid the circular wait is to provide a global numbering of all the 
resources, as shown in Fig. 3-13(a). Now the rule is this: processes can request resources
whenever they want to, but all requests must be made in numerical order. A process may 
request first a printer and then a tape drive, but it may not request first a plotter and then a 
printer.

Figure 3-13. (a) Numerically ordered resources. (b) A resource graph.

With this rule, the resource allocation graph can never have cycles. Let us see why this is 
true for the case of two processes, in Fig. 3-13(b). We can get a deadlock only if A 
requests resource j and B requests resource i. Assuming i and j are distinct resources, they 
will have different numbers. If i > j, then A is not allowed to request j because that is lower 
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than what it already has. If i < j, then B is not allowed to request i because that is lower 
than what it already has. Either way, deadlock is impossible.

With multiple processes, the same logic holds. At every instant, one of the assigned 
resources will be highest. The process holding that resource will never ask for a resource 
already assigned. It will either finish, or at worst, request even higher numbered resources, 
all of which are available. Eventually, it will finish and free its resources. At this point,
some other process will hold the highest resource and can also finish. In short, there exists 
a scenario in which all processes finish, so no deadlock is present.

A minor variation of this algorithm is to drop the requirement that resources be acquired in 
strictly increasing sequence and merely insist that no process request a resource lower than 
what it is already holding. If a process initially requests 9 and 10, and then releases both of
them, it is effectively starting all over so there is no reason to prohibit it from now 
requesting resource 1.

Although numerically ordering the resources eliminates the problem of deadlocks, it may 
be impossible to find an ordering that satisfies everyone. When the resources include 
process table slots, disk spooler space, locked database records, and other abstract
resources, the number of potential resources and different uses may be so large that no 
ordering could possibly work.

The various approaches to deadlock prevention are summarized in Fig. 3-14.

Figure 3-14. Summary of approaches, to deadlock prevention.

3.7 OTHER ISSUES

In this section we will discuss a few miscellaneous issues related to deadlocks. These
include two-phase locking, nonresource deadlocks, and starvation.

3.7.1 Two-Phase Locking

Although both avoidance and prevention are not terribly promising in the general case, for
specific applications, many excellent special-purpose algorithms are known. As an 
example, in many database systems, an operation that occurs frequently is requesting 
locks on several records and then updating all the locked records. When multiple 
processes are running at the same time, there is a real danger of deadlock.

Condition Approach
Mutual exclusion Spool everything
Hold and wait Request all resources initially
No preemption Take resources away
Circular wait Order resources numerically
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The approach often used is called two-phase locking. In the first phase the process tries to 
lock all the records it needs, one at a time. If it succeeds, it begins the second phase, 
performing its updates and releasing the locks. No real work is done in the first phase.

If during the first phase, some record is needed that is already locked the process just 
releases all its locks and starts the first phase all over. In a certain sense, this approach is 
similar to requesting all the resources needed in advance, or at least before anything 
irreversible is done. In some versions of two-phase locking, there is no release and restart 
if a lock is encountered during the first phase. In these versions, deadlock can occur.

However, this strategy is not applicable in general. In real-time systems and process 
control systems, for example, it is not acceptable to just terminate a process partway 
through because a resource is not available and start all over again. Neither is it acceptable 
to start over if the process hits read or written messages to the network, updated files, or 
anything else that cannot be safely repealed. The algorithm works only in those situations
where the programmer has very carefully arranged things so that the program can be 
stopped at any point during the first phase and restarted. Many applications cannot be 
structured this way.

3.7.2 Nonresource Deadlocks

All of our work so far has concentrated on resource deadlocks. One process wants 
something that another process has and must wait until the first one gives it up. Deadlocks 
can also occur in other situations, however, including those not involving resources at all.

For example, it can happen that two processes deadlock each waiting for the other one to 
do something. This often happens with semaphores. In Chap. 2 we saw examples in which 
a process had to do a down on two semaphores, typically mutex and another one. If these 
are done in the wrong order, deadlock can result.

3.7.3 Starvation

A problem closely related to deadlock is starvation. In a dynamic system, requests for 
resources happen all the time. Some policy is needed to make a decision about who gets 
which resource when. This policy, although seemingly reasonable, may lead to some 
processes never getting service even though they are not deadlocked.

As an example, consider allocation of the printer. Imagine that the system uses some kind 
of algorithm to ensure that allocating the printer does not lead to deadlock. Now suppose 
that several processes all want it at once. Which one should get it?

One possible allocation algorithm is to give it to the process with the smallest file to print 

3 DEADLOCKS



(assuming this information is available). This approach maximizes the number of happy 
customers and seems fair. Now consider what happens in a busy system when one process 
has a huge file to print. Every time the printer is free, the system will look around and
choose the process with the shortest file. If there is a constant stream of processes with 
short files, the process with the huge file will never be allocated the printer. It will simply 
starve to death (be postponed indefinitely, even though it is not blocked).

Starvation can be avoided by using a first-come, first-serve, resource allocation policy. 
With this approach, the process waiting the longest gets served next. In due course of 
time, any given process will eventually become the oldest and thus get the needed 
resource.

3.8 RESEARCH ON DEADLOCKS

If ever there was a subject that was investigated mercilessly during the early days of 
operating systems, it was deadlocks. The reason for this is that deadlock detection is a nice 
little graph theory problem that one mathematically-inclined graduate student can get his 
jaws around and chew on for 3 or 4 years. All kinds of algorithms were devised, each one 
more exotic and less practical than the previous one. Essentially, all this research has died
out, with only a very occasional new paper appearing (e.g., Karacali et al., 2000). When 
an operating system wants to do deadlock detection or prevention, which few of them do, 
they use one of the methods discussed in this chapter.

There is still a little research on distributed deadlock detection, however. We will not treat 
that here because (1) it is outside the scope of this book, and (2) none of it is even 
remotely practical in real systems. Its main function seems to be keeping otherwise 
unemployed graph theorists off the streets.

3.9 SUMMARY

Deadlock is a potential problem in any operating system. It occurs when a group of 
processes each have been granted exclusive access to some resources, and each one wants 
yet another resource that belongs to another process in the group. All of them are blocked 
and none will ever run again.

Deadlock can be avoided by keeping track of which states are safe and which are unsafe. 
A safe state is one in which there exists a sequence of events that guarantee that all 
processes can finish. An unsafe state has no such guarantee. The banker’s algorithm 
avoids deadlock by not granting a request if that request will put the system in an unsafe 
state.
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Deadlock can be structurally prevented by building the system in such a way that it can 
never occur by design. For example, by allowing a process to hold only one resource at 
any instant the circular wait condition required for deadlock is broken. Deadlock can also 
be prevented by numbering all the resources, and making processes request them in 
strictly increasing order. Starvation can be avoided by a first-come, first-served allocation 
policy.

PROBLEMS

1. Give an example of a deadlock taken from politics.

2. Students working at individual PCs in a computer laboratory send their files to be printed
by a server which spools the files on its hard disk. Under what conditions may a deadlock
occur if the disk space for the print spool is limited? How may the deadlock be avoided?

3. In the preceding question which resources are preemptable and which are
nonpreemptable?

4. In Fig. 3-1 the resources are returned in the reverse order of their acquisition. Would
giving them back in the other order be just as good?

5. Fig. 3-3 shows the concept of a resource graph. Do illegal graphs exist, that is graphs that
structurally violate the model we have used of resource image? If so, give an example of
one.

6. The discussion of the ostrich algorithm mentions the possibility of process table slots or
other system tables filling up. Can you suggest a way to enable a system administrator to
recover from such a situation?

7. Consider Fig. 3-4. Suppose that in step (o) C requested S instead of requesting R. Would
this lead to deadlock? Suppose that it requested both S and R?

8. At a crossroads with STOP signs on all four approaches, the rule is that each driver yields
the right of way to the driver on his right. This rule is not adequate when four vehicles
arrive simultaneously. Fortunately, humans are sometimes capable of acting more
intelligently than computers and the problem is usually resolved when one driver signals
the driver to his left to go ahead. Can you draw an analogy between this behavior and any
of the ways of recovering from deadlock described in Sec. 3.4.3? Why is a problem with
such a simple solution in the human world so difficult to apply to a computer system?

9. Suppose that in Fig, 3-6 Cij + Rij > Ej for some i. What implications does this have for all
the processes finishing without deadlock?

10. All the trajectories in Fig. 3-8 are horizontal or vertical. Can you envision any
circumstances in which diagonal trajectories were also possible?

11. Can the resource trajectory scheme of Fig. 3-8 also be used to illustrate the problem of
deadlocks with three processes and three resources? If so, how can this be done? If not,
why not?
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12. In theory, resource trajectory graphs could be used to avoid deadlocks. By clever
scheduling, the operating system could avoid unsafe regions. Suggest a practical problem
with actually doing this.

13. Take a careful look at Fig. 3-11(b). If D asks for one more unit, does this lead to a safe
state or an unsafe one? What if the request came from C instead of D?

14. Can a system be in a state that is neither deadlocked nor safe? If so, give an example. If
not, prove that all states are either deadlocked or safe.

15. A system has two processes and three identical resources. Each process needs a maximum
of two resources. Is deadlock possible? Explain your answer.

16. Consider the previous problem again, but how with p processes each needing a maximum
of m resources and a total of r resources available. What condition must hold to make the
system deadlock free?

17. Suppose that process A in Fig. 3-12 requests the last tape drive. Does this action lead to a
deadlock?

18. A computer has six tape drives, with n processes competing for them. Each process may
need two drives. For which values of n is the system deadlock free?

19. The banker’s algorithm is being run in a system with m resource classes and n processes.
In the limit of large m and n, the number of operations that must be performed to check a
state for safety is proportional to manb. What are the values of a and b?

20. A system has four processes and five allocatable resources. The current allocation and
maximum needs are as follows:

What is the smallest value of x for which this is a safe state?

21. A distributed system using mailboxes has two IPC primitives, send and receive. The
latter primitive specifies a process to receive from and blocks if no message from that
process is available, even though messages may be waiting from other processes. There
are no shared resources, but processes need to communicate frequently about other
matters. Is deadlock possible? Discuss.

22. Two processes, A and B, each need three records, 1, 2. and 3, in a database. If A asks for
them in the order 1, 2, 3, and B asks for them in the same order, deadlock is not possible.
However, if B asks for them in the order 3, 2, 1, then deadlock is possible. With three
resources, there are 3! or 6 possible combinations each process can request the resources.
What fraction of all the combinations are guaranteed to be deadlock free?

23. Now reconsider the above problem, but using two-phase locking. Will that eliminate the
potential for deadlock? Does it have any other undesirable characteristics, however? If so,
which ones?

24. In an electronic funds transfer system, there are hundreds of identical processes that work
as follows. Each process reads an input line specifying an amount of money, the account

Allocated Maximum Available
Process A
Process B
Process C
Process D

1 0 2 1 1
2 0 1 1 0
1 1 0 1 0
1 1 1 1 0

1 1 2 1 3
2 2 2 1 0
2 1 3 1 0
1 1 2 2 1

0 0 x 1 1
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to be credited, and the account to be debited. Then it locks both accounts and transfers the 
money, releasing the locks when done. With many processes running in parallel, there is a 
very real danger that having locked account x it will be unable to lock y because y has 
been locked by a process now waiting for x. Devise a scheme that avoids deadlocks. Do 
not release an account record until you have completed the transactions. (In other words, 
solutions that lock one account and then release it immediately if the other is locked are 
not allowed.) 

25. One way to prevent deadlocks is to eliminate the hold-and-wait condition. In the text it
was proposed that before asking for a new resource, a process must first release whatever
resources it already holds (assuming that is possible). However, doing so introduces the
danger that it may get the new resource but lose some of the existing ones to competing
processes. Propose an improvement to this scheme.

26. A computer science student assigned to work on deadlocks thinks of the following brilliant
way to eliminate deadlocks. When a process requests a resource, it specifies a time limit.
If the process blocks because the resource is not available, a timer is started. If the time
limit is exceeded, the process is released and allowed to run again. If you were the
professor, what grade would you give this proposal and why.

27. Cinderella and the Prince are getting divorced. To divide their property, they have agreed
on the following algorithm. Every morning, each one may send a letter to the other’s
lawyer requesting one item of property. Since it takes a day for letters to be delivered, they
have agreed that if both discover that they have requested the same item on the same day,
the next day they will send a letter canceling the request. Among their property is their
dog. Woofer. Woofer’s doghouse, their canary. Tweeter, and Tweeter’s cage. The animals
love their houses, so it has been agreed that any division of property separating an animal
from its house is invalid, requiring the whole division to start over from scratch. Both
Cinderella and the Prince desperately want Woofer. So they can go on (separate)
vacations, each spouse has programmed a personal computer to handle the negotiation.
When they come back from vacation, the computers are still negotiating. Why? Is
deadlock possible? Is starvation possible? Discuss.

28. A student majoring in anthropology and minoring in computer science has embarked on a
research project to see if African baboons can be taught about deadlocks. He locates a
deep canyon and fastens a rope across it, so the baboons can cross hand-over-hand.
Several baboons can cross at the same time, provided that they are all going in the same
direction. If eastward moving and westward moving baboons ever get onto the rope at the
same time, a deadlock will result (the baboons will get stuck in the middle) because it is
impossible for one baboon to climb over another one while suspended over the canyon. If
a baboon wants to cross the canyon, he must check to see that no other baboon is currently
crossing in the opposite direction. Write a program using semaphores that avoids
deadlock. Do not worry about a series of eastward moving baboons holding up the
westward moving baboons indefinitely.

29. Repeat the previous problem, but now avoid starvation. When a baboon that wants to cross
to the east arrives at the rope and finds baboons crossing to the west, he waits until the
rope is empty, but no more westward moving baboons are allowed to start until at least
one baboon has crossed the other way.

30. Program a simulation of the banker’s algorithm. Your program should cycle through each
of the bank clients asking for a request and evaluating whether it is safe or unsafe. Output
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a log of requests and decisions to a file. 

[†]
 Actually, this bit of folklore is nonsense. Ostriches can run at 60 km/hour and their kick is powerful enough to kill any lion with 

visions of a big chicken dinner.
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