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Agenda

• Programming distributed memory systems
• MPI and friends

• Literature
• Peter Pacheco, An Introduction to Parallel Programming, Elsevier, 

2011 (Ch. 3)
• Alexander Supalov, Inside the message passing interface, DeGruyter



Distributed memory systems





Programming 
Distributed 
Memory systems

Need for a different 
model than shared 
memory systems
• loosely coupled 

systems
• no (physical) shared 

memory
• communication/coordi

nation by hand or 
using a framework/tool



Message Passing 
Interface

A unified approach to the design and implementation of distributed applications
• an industry standard, stewarded by the MPI Forum (over 40 organizations)
• similar roles (different tools) as OpenMP for shared memory programming

A standard of distributed applications (not only) for HPC
• apps very often (but not exclusively) following the SPMD model
• syntax and semantics of a standard set of library functions covering common 

communication scenarios
• Interface and implementation de-coupled

• Open-source vs. Commercial MPIs
• Bindings) for C/C++, Fortran 77/95
• M(VA)PICH(2), LAM/MPI, OpenMPI



MPI: Main features

Standardization 
• the only message passing library that can be considered a standard. It is 

supported on virtually all HPC platforms, has replaced all previous message 
passing libraries.

Portability
• Little or no need to modify your source code when you port your application to 

a different platform that supports (and is compliant with) the MPI standard.
Performance Opportunities 
• Vendor implementations can exploit native hardware features to optimize 

performance. Any implementation is free to develop optimized algorithms.
Functionality 
• over 430 routines defined in MPI-3 (superset of MPI-2 and MPI-1).  Most MPI 

programs can be written using a dozen or less routines.



MPI: Historical 
perspective

Apr 1992: Workshop on Standards for 
Message Passing in a Distributed Memory 
Environment, sponsored by the Center for 
Research on Parallel Computing, 
Williamsburg, Virginia.

Nov 1992: Working group meets in 
Minneapolis. MPI draft proposal (MPI1), 
formation of the MPI Forum

Nov 1993: draft MPI standard presented  at 
Supercomputing’93
• May 1994: Final version of MPI-1.0 released

(1.1: 1995; 1.2: 1997; 1.3: 2008)
• 1998: MPI-2

(2.1: 2008; 2.2: 2009)
• Sep 2012: The MPI-3.0

(3.1: 2015)



MPI: An application and its world

• collection of processes that exchange 
data in the form of messages

• (usually) a general-purpose SPMD 
application that can scale well

• coordination of IO operations

• the communicator and group
concepts to define the hierarchy of 
communicating processes



The MPI Ecosystem

Rank
• an ID of a process within a 

communicator (numerical, 
starting 0)

• source and destination 
‘address’ of messages

Size
• no. of processes within a 

communicator



MPI operations and communication

blocking operations
• when they return, all resources are ready for another use
• all state changes are finished

non-blocking operations
• may return before all operations are finished
• call of a non-blocking operation initiates the operation

synchronous comm.
• sending is finished when receiving process gets the message

asynchronous comm.
• no synchronization of sending and receiving



Point-2-point communication

Information exchange between 2 MPI ranks

Workflow

• Initialization
• MPI_Init, MPI_Comm_rank,
• MPI_Comms ize

• Message transmission
• MPI_Send, MPI_Receive,
• MPI_Sendrcv - blocking

• Finalization and clean-up

• vs. non-blocking, sync.

• vs. async.



Collective and global communication

Information exchange between 
all ranks in a communicator
• broadcasts (MPI_Bcast())
• reductions (MPI_Reduce) -

operations: max, min, sum, 
logic, bit ops.,

• user defined reductions
• gather (MPI_Gather)
• scatter (MPI_Scatter)



Collective and global communication

Information exchange between 
all ranks in a communicator
• broadcasts (MPI_Bcast())
• reductions (MPI_Reduce) -

operations: max, min, sum, 
logic, bit ops.,

• user defined reductions
• gather (MPI_Gather)
• scatter (MPI_Scatter)



MPI Caveats

• order of messages (not guaranteed)

• deadlocks

• implementation and runtime agnostic programs



MPI Implementations



Partitioned Global Address Space 



Partitioned global address space

Motivation
• MPI provides an industry standard for programming of distributed 

systems
• its bare-bones nature makes the app development for MPI harder 

than dev. for shared memory systems (longer code = more space 
for errors)

• there are efforts to bring shared memory programming concepts to 
distributed  memory programming

• data and computation locality must be considered



Partitioned global 
address space

Partitioned global address space (PGAS)
• an abstract parallel programming 

model implemented by several 
languages

• built around the concept of (virtual) 
distributed shared memory

MPI

MPI+OpenMP

PGAS



Partitioned global address space



PGAS application

Structure
• each application is composed of multiple threads, each of them 

knows its identity
• barriers, loop work sharing, parallel control libraries

Memory
• private and shared memory
• each thread has its own private memory
• each thread can access any data in the shared memory; this, 

however, might be much more expensive 
• shared and private pointers



PGAS properties

Global address space memory model 
• Each thread can write memory anywhere in the system (convenience of 

shared memory)

Information about the locality of data
• Some data is (guaranteed) local, some is global, potentially

further away (locality 
and scalability of 
message passing)



PGAS design goals

Application
• convenient distributed programming of irregular codes

• graphs, Hash tables, Sparse matrices, Adaptive (hierarchical) meshes
Hardware
• expose the best available performance on a given machine

• low latency for small messages
• high bandwidth even for medium sized messages
• high injection bandwidth



PGAS communication backbone(s)

PGAS languages are built on top of several low-level communication libraries
• Primitives that implement Remote Memory Access (for PGAS)
• MPI, OpenSH-MEM, ARMCI, GASNet

GASNet
• language independent, low-level networking
• network-independent high-performance 

communication  primitives
• support of HPC networking hardware and standards 

(IVB verbs, Cray Gemini interconnects)
• support for portable networking 

(mpi, udp conduits)



PGAS languages

• Coarray Fortran
• UPC
• UPC++



An example based on UPC

• a minimalistic parallel extension to ANSI C implementing PGAS
• shared arrays sliced by blocks (default block size = 1)



An example based on UPC

• a minimalistic parallel extension to ANSI C implementing PGAS
• shared arrays sliced by blocks (default block size = 1)

Example

shared int x;
shared int y[THREADS];
int z;

Example

shared int A[4][THREADS];



An example based on UPC

Example

#include <upc_relaxed.h>
#define N 100* THREADS
shared int v1[N], v2[N], v1v2[N];
void main()
{
  int i;
  for(i=THREAD; i < N; i+=THREADS)

v1v2[i] = v1[i] + v2[i];
}



An example based on UPC

Example
#include <upc_relaxed.h>
#define N 100* THREADS

shared int a [THREADS] [THREADS];
shared int b [THREADS], c [THREADS];
void main()
{
  int i, j;

upc_forall(i=0; i < N; i++; i)
  {
     c[i] = 0;
     for (j = 0; j< THREADS; j++)

c[i] += a[i][j] * b[j];
  }
}



An example based on UPC

Example
#include <upc_relaxed.h>
#define N 100* THREADS

shared [THREADS] int a [THREADS] [THREADS];
shared int b [THREADS], c [THREADS];
void main()
{
  int i, j;

upc_forall(i=0; i < N; i++; i)
  {
     c[i] = 0;
     for (j = 0; j< THREADS; j++)

c[i] += a[i][j] * b[j];
  }
}



Recent development in PGAS

• UPC++
• a template-based approach, “compiler-free” PGAS

• XCalableMP
• a directive-based approach; 

omni-compiler

• Parallel Computing in Java
• Java style PGAS



Bulk Synchronous Parallel



Bulk Synchronous Parallel

An iterative share-nothing
parallel computing model

Three stages of parallel  
computation, repeated  until 
completion:
• Computation
• Communication
• Synchronization

Executes Business logic in 
concurrent tasks, applied to 

subsets of data

Messages (possibly) transported 
between compute units, data sent 
at iteration i available at iteration 

i+1



Bulk Synchronous Parallel

BSP advantages

• simplifies parallel computation

• automated balancing and scaling

• suitable for heterogeneous environments

MAPREDUCE

BSP disadvantages

• restrictive model (code must be 
autonomous and independent)

• explicit synchronization hard to 
achieve

• slow computing units slow the 
whole computation

Sounds familiar?

But also 
Pregel, 

SPARK etc.



MapReduce

A general-purpose distributed system with automatic scalability and fault 
tolerance
Achieved through 2 user-defined operators, mappers and reducers



Structure of a MapReduce job

• processing of data divided into 
two phases, mapping and reducing

• map function processes a 
key/value pair to generate a set of 
intermediate key/value pairs

• reduce function merges all 
intermediate values associated 
with the same intermediate key

• embraces distribution of data and 
parallel processing as well as 
aggregation of similar patterns Config



An Apache Hadoop
-based example
Hadoop filesystem
• a write-only filesystem-like application 

with data distributed across multiple 
nodes

• supports replication, is fault-tolerant, 
and highly scalable

• can deal with outages and is optimized 
for throughput

• implemented using data nodes (store 
data), namenode (control of metadata) , 
and secondary namenode (not a backup 
but bookkeeping)

MapReduce layer
• An API for writing MapReduce workflows 

in Java
• A set of services for managing the 

execution of these workflows

Example
public void map(Object key, Text value, Context context )
throws IOException, InterruptedException {
  StringTokenizer itr = new     
  StringTokenizer(value.toString());
  while (itr.hasMoreTokens()) {
    word.set(itr.nextToken());
    context.write(word, one);
  }
}
...
job.setCombinerClass(IntSumReducer.class);
...
public void reduce(Text key, Iterable<IntWritable> 
values, Context context)
throws IOException, InterruptedException {
  int sum = 0;
  for (IntWritable val : values) {
    sum += val.get();
  }
  result.set(sum);
  context.write(key, result);
}



Python: DASK



Python: disturbed distribution

The strengths
• de-facto language of data science
• fast and optimized (native code, accelerators)
• an existing ecosystem

The headaches
• limited to single thread 
• limited to in-memory data
• an existing ecosystem



DASK

DASK is a flexible parallel computing paradigm for Python
• Scales up and down well, resilient, responsive, realtime

Two essential parts
• Dynamic task scheduling 

– optimization of 
computation

• Big Data Collections 
– parallel containers



Low(er)-level 
API

Task 
scheduling

High-level API



Dask.distributed

Centrally managed, distributed, dynamic task scheduler

Works on moderate-sized clusters

Low latency, complex scheduling, data locality

Warning: a relatively new project …
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