
Parallel and
Distributed
Systems / 6

Pavel Krömer,
Dept. of Computer Science,
VSB – Technical University of
Ostrava

Agenda

• Programming distributed memory systems
• MPI and friends

• Literature
• Peter Pacheco, An Introduction to Parallel Programming, Elsevier,

2011 (Ch. 3)
• Alexander Supalov, Inside the message passing interface, DeGruyter

Distributed memory systems

Programming
Distributed
Memory systems

Need for a different
model than shared
memory systems
• loosely coupled

systems
• no (physical) shared

memory
• communication/coordi

nation by hand or
using a framework/tool

Message Passing
Interface

A unified approach to the design and implementation of distributed applications
• an industry standard, stewarded by the MPI Forum (over 40 organizations)
• similar roles (different tools) as OpenMP for shared memory programming

A standard of distributed applications (not only) for HPC
• apps very often (but not exclusively) following the SPMD model
• syntax and semantics of a standard set of library functions covering common

communication scenarios
• Interface and implementation de-coupled

• Open-source vs. Commercial MPIs
• Bindings) for C/C++, Fortran 77/95
• M(VA)PICH(2), LAM/MPI, OpenMPI

MPI: Main features

Standardization
• the only message passing library that can be considered a standard. It is

supported on virtually all HPC platforms, has replaced all previous message
passing libraries.

Portability
• Little or no need to modify your source code when you port your application to

a different platform that supports (and is compliant with) the MPI standard.
Performance Opportunities
• Vendor implementations can exploit native hardware features to optimize

performance. Any implementation is free to develop optimized algorithms.
Functionality
• over 430 routines defined in MPI-3 (superset of MPI-2 and MPI-1). Most MPI

programs can be written using a dozen or less routines.

MPI: Historical
perspective

Apr 1992: Workshop on Standards for
Message Passing in a Distributed Memory
Environment, sponsored by the Center for
Research on Parallel Computing,
Williamsburg, Virginia.

Nov 1992: Working group meets in
Minneapolis. MPI draft proposal (MPI1),
formation of the MPI Forum

Nov 1993: draft MPI standard presented at
Supercomputing’93
• May 1994: Final version of MPI-1.0 released

(1.1: 1995; 1.2: 1997; 1.3: 2008)
• 1998: MPI-2

(2.1: 2008; 2.2: 2009)
• Sep 2012: The MPI-3.0

(3.1: 2015)

MPI: An application and its world

• collection of processes that exchange
data in the form of messages

• (usually) a general-purpose SPMD
application that can scale well

• coordination of IO operations

• the communicator and group
concepts to define the hierarchy of
communicating processes

The MPI Ecosystem

Rank
• an ID of a process within a

communicator (numerical,
starting 0)

• source and destination
‘address’ of messages

Size
• no. of processes within a

communicator

MPI operations and communication

blocking operations
• when they return, all resources are ready for another use
• all state changes are finished

non-blocking operations
• may return before all operations are finished
• call of a non-blocking operation initiates the operation

synchronous comm.
• sending is finished when receiving process gets the message

asynchronous comm.
• no synchronization of sending and receiving

Point-2-point communication

Information exchange between 2 MPI ranks

Workflow

• Initialization
• MPI_Init, MPI_Comm_rank,
• MPI_Comms ize

• Message transmission
• MPI_Send, MPI_Receive,
• MPI_Sendrcv - blocking

• Finalization and clean-up

• vs. non-blocking, sync.

• vs. async.

Collective and global communication

Information exchange between
all ranks in a communicator
• broadcasts (MPI_Bcast())
• reductions (MPI_Reduce) -

operations: max, min, sum,
logic, bit ops.,

• user defined reductions
• gather (MPI_Gather)
• scatter (MPI_Scatter)

Collective and global communication

Information exchange between
all ranks in a communicator
• broadcasts (MPI_Bcast())
• reductions (MPI_Reduce) -

operations: max, min, sum,
logic, bit ops.,

• user defined reductions
• gather (MPI_Gather)
• scatter (MPI_Scatter)

MPI Caveats

• order of messages (not guaranteed)

• deadlocks

• implementation and runtime agnostic programs

MPI Implementations

Partitioned Global Address Space

Partitioned global address space

Motivation
• MPI provides an industry standard for programming of distributed

systems
• its bare-bones nature makes the app development for MPI harder

than dev. for shared memory systems (longer code = more space
for errors)

• there are efforts to bring shared memory programming concepts to
distributed memory programming

• data and computation locality must be considered

Partitioned global
address space

Partitioned global address space (PGAS)
• an abstract parallel programming

model implemented by several
languages

• built around the concept of (virtual)
distributed shared memory

MPI

MPI+OpenMP

PGAS

Partitioned global address space

PGAS application

Structure
• each application is composed of multiple threads, each of them

knows its identity
• barriers, loop work sharing, parallel control libraries

Memory
• private and shared memory
• each thread has its own private memory
• each thread can access any data in the shared memory; this,

however, might be much more expensive
• shared and private pointers

PGAS properties

Global address space memory model
• Each thread can write memory anywhere in the system (convenience of

shared memory)

Information about the locality of data
• Some data is (guaranteed) local, some is global, potentially

further away (locality
and scalability of
message passing)

PGAS design goals

Application
• convenient distributed programming of irregular codes

• graphs, Hash tables, Sparse matrices, Adaptive (hierarchical) meshes
Hardware
• expose the best available performance on a given machine

• low latency for small messages
• high bandwidth even for medium sized messages
• high injection bandwidth

PGAS communication backbone(s)

PGAS languages are built on top of several low-level communication libraries
• Primitives that implement Remote Memory Access (for PGAS)
• MPI, OpenSH-MEM, ARMCI, GASNet

GASNet
• language independent, low-level networking
• network-independent high-performance

communication primitives
• support of HPC networking hardware and standards

(IVB verbs, Cray Gemini interconnects)
• support for portable networking

(mpi, udp conduits)

PGAS languages

• Coarray Fortran
• UPC
• UPC++

An example based on UPC

• a minimalistic parallel extension to ANSI C implementing PGAS
• shared arrays sliced by blocks (default block size = 1)

An example based on UPC

• a minimalistic parallel extension to ANSI C implementing PGAS
• shared arrays sliced by blocks (default block size = 1)

Example

shared int x;
shared int y[THREADS];
int z;

Example

shared int A[4][THREADS];

An example based on UPC

Example

#include <upc_relaxed.h>
#define N 100* THREADS
shared int v1[N], v2[N], v1v2[N];
void main()
{
 int i;
 for(i=THREAD; i < N; i+=THREADS)

v1v2[i] = v1[i] + v2[i];
}

An example based on UPC

Example
#include <upc_relaxed.h>
#define N 100* THREADS

shared int a [THREADS] [THREADS];
shared int b [THREADS], c [THREADS];
void main()
{
 int i, j;

upc_forall(i=0; i < N; i++; i)
 {
 c[i] = 0;
 for (j = 0; j< THREADS; j++)

c[i] += a[i][j] * b[j];
 }
}

An example based on UPC

Example
#include <upc_relaxed.h>
#define N 100* THREADS

shared [THREADS] int a [THREADS] [THREADS];
shared int b [THREADS], c [THREADS];
void main()
{
 int i, j;

upc_forall(i=0; i < N; i++; i)
 {
 c[i] = 0;
 for (j = 0; j< THREADS; j++)

c[i] += a[i][j] * b[j];
 }
}

Recent development in PGAS

• UPC++
• a template-based approach, “compiler-free” PGAS

• XCalableMP
• a directive-based approach;

omni-compiler

• Parallel Computing in Java
• Java style PGAS

Bulk Synchronous Parallel

Bulk Synchronous Parallel

An iterative share-nothing
parallel computing model

Three stages of parallel
computation, repeated until
completion:
• Computation
• Communication
• Synchronization

Executes Business logic in
concurrent tasks, applied to

subsets of data

Messages (possibly) transported
between compute units, data sent
at iteration i available at iteration

i+1

Bulk Synchronous Parallel

BSP advantages

• simplifies parallel computation

• automated balancing and scaling

• suitable for heterogeneous environments

MAPREDUCE

BSP disadvantages

• restrictive model (code must be
autonomous and independent)

• explicit synchronization hard to
achieve

• slow computing units slow the
whole computation

Sounds familiar?

But also
Pregel,

SPARK etc.

MapReduce

A general-purpose distributed system with automatic scalability and fault
tolerance
Achieved through 2 user-defined operators, mappers and reducers

Structure of a MapReduce job

• processing of data divided into
two phases, mapping and reducing

• map function processes a
key/value pair to generate a set of
intermediate key/value pairs

• reduce function merges all
intermediate values associated
with the same intermediate key

• embraces distribution of data and
parallel processing as well as
aggregation of similar patterns Config

An Apache Hadoop
-based example
Hadoop filesystem
• a write-only filesystem-like application

with data distributed across multiple
nodes

• supports replication, is fault-tolerant,
and highly scalable

• can deal with outages and is optimized
for throughput

• implemented using data nodes (store
data), namenode (control of metadata) ,
and secondary namenode (not a backup
but bookkeeping)

MapReduce layer
• An API for writing MapReduce workflows

in Java
• A set of services for managing the

execution of these workflows

Example
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
 StringTokenizer itr = new
 StringTokenizer(value.toString());
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 context.write(word, one);
 }
}
...
job.setCombinerClass(IntSumReducer.class);
...
public void reduce(Text key, Iterable<IntWritable>
values, Context context)
throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 result.set(sum);
 context.write(key, result);
}

Python: DASK

Python: disturbed distribution

The strengths
• de-facto language of data science
• fast and optimized (native code, accelerators)
• an existing ecosystem

The headaches
• limited to single thread
• limited to in-memory data
• an existing ecosystem

DASK

DASK is a flexible parallel computing paradigm for Python
• Scales up and down well, resilient, responsive, realtime

Two essential parts
• Dynamic task scheduling

– optimization of
computation

• Big Data Collections
– parallel containers

Low(er)-level
API

Task
scheduling

High-level API

Dask.distributed

Centrally managed, distributed, dynamic task scheduler

Works on moderate-sized clusters

Low latency, complex scheduling, data locality

Warning: a relatively new project …

	Slide 1: Parallel and Distributed Systems / 6
	Slide 2: Agenda
	Slide 3
	Slide 4
	Slide 5: Programming Distributed Memory systems
	Slide 6: Message Passing Interface
	Slide 7: MPI: Main features
	Slide 8: MPI: Historical perspective
	Slide 9: MPI: An application and its world
	Slide 10: The MPI Ecosystem
	Slide 11: MPI operations and communication
	Slide 12: Point-2-point communication
	Slide 13: Collective and global communication
	Slide 14: Collective and global communication
	Slide 15: MPI Caveats
	Slide 16: MPI Implementations
	Slide 17
	Slide 18: Partitioned global address space
	Slide 19: Partitioned global address space
	Slide 20: Partitioned global address space
	Slide 21: PGAS application
	Slide 22: PGAS properties
	Slide 23: PGAS design goals
	Slide 24: PGAS communication backbone(s)
	Slide 25: PGAS languages
	Slide 26: An example based on UPC
	Slide 27: An example based on UPC
	Slide 28: An example based on UPC
	Slide 29: An example based on UPC
	Slide 30: An example based on UPC
	Slide 31: Recent development in PGAS
	Slide 32
	Slide 33: Bulk Synchronous Parallel
	Slide 34: Bulk Synchronous Parallel
	Slide 35: MapReduce
	Slide 36: Structure of a MapReduce job
	Slide 37: An Apache Hadoop -based example
	Slide 38
	Slide 39: Python: disturbed distribution
	Slide 40: DASK
	Slide 41
	Slide 42: Dask.distributed

