
Parallel and
Distributed Systems

/ 3

Pavel Krömer,
Dept. of Computer Science,
VSB – Technical University of Ostrava

Agenda

• Major topics
• Shared memory systems, open multiprocessing, OpenMP

• Literature
• Barbara Chapman, Gabriele Jost, Ruud van der Pas, Using OpenMP Portable

Shared Memory Parallel Programming, MIT Press, 2008

• Peter Pacheco, An Introduction to Parallel Programming, Elsevier, 2011 (Ch. 4,
5)

Shared memory systems

Shared memory systems

Tightly coupled systems

All processors have access to the complete memory
(as a global [shared] address space)

Processors can operate independently but share memory resources and I/O

Changes in memory caused by one processor are visible to all other

Shared memory systems

Uniform memory access (UMA)

• AKA Symmetric Multiprocessors (SMPs)

• Systems of identical processors with equal access
and access times to memory

• Sometimes called Cache Coherent UMA (CC-UMA)
• if one processor updates a location in shared memory, all the other

processors know about the update

• cache memories that provide access to these variables are kept consistent

• accomplished at the hardware level (snoopy/sniffy bus protocol)

Shared memory systems

Non-uniform memory access (NUMA)

• One SMP can directly access memory of another SMP

• Not all processors have equal access time to all memories

• Memory access across link is slower

• Cache Coherent NUMA (CC-NUMA) if cache coherency is achieved

Shared memory systems
SGI UV 3000 SMP system scales
up to 256 sockets /x16 cores/ and
64TB of coherent shared memory
with industry-standard Intel® Xeon®
v3 processors and Linux® O/S

SPARC M8-8 / 2048/ 8TB

Shared memory systems

New architectures in town

• Nvidia DGX-2(H)

Shared memory systems

Pros and cons

• Advantages
• Global address space provides a user-friendly programming access to memory

• Data sharing between tasks is both fast and uniform due to the proximity of memory to CPUs

• Disadvantages
• Lack of scalability between memory and CPUs. Adding more CPUs can geometrically increases traffic

on the shared memory-CPU path, and for cache coherent systems, geometrically increase traffic
associated with cache/memory management

• Programmer responsibility for synchronization constructs that ensure "correct" access of global
memory.

Programming shared memory systems

Shared memory systems

Basic considerations

• ability to execute data vs. task parallel programs

• SIMD vs. MIMD (wrt. SPMD)

High-level strategies

• use of some low or high-level mechanism for multi-process and/or multi-thread parallel
computation

• communication usually (but not exclusively) through shared memory

• open multiprocessing (OpenMP)

+ a plethora of platform/language/domain specific tools

Open Multiprocessing

Industry standard API for C/C++ and Fortran shared memory
parallel programming

• governed by OpenMP Architecture Review Board

• major HW/SW and compiler vendors (Intel, PGI NVidia, IBM,
AMD, Cray, Oracle, . . .)

Multiple versions

• 1.0 (Fortran ’97, C ’98) - 3.1 (2011) shared memory

• 4.0 (2013) accelerators, NUMA

• 4.5 (2015) improved memory mapping, SIMD

• 5.0 (2018) improved accelerator support

Issues dealt with

• Fortran/C++

• accelerators, offloading to device

Execution model: fork-join

Fork-join programming model

• one master thread that executes all serial regions

• master forks new worker threads at the beginning of parallel regions

• parallel threads share the work and sync at the end parallel regions

• each thread works with shared and private variables (for convenience, all in the
global shared address space)

Fork

Join

Fork

Join

Fork

Join

Implementation: directive-based

The programmer specifies what, the compiler decides how

• best practices and patterns

• automation and optimization

• portability

• single source for sequential/parallel
code

An OpenMP program consists of

• compiler directives and clauses
(#pragma omp parallel)

• library functions (omp_get_num_threads())

• environment variables (OMP_NUM_THREADS)

Implementation: directive-based

Clauses of parallel directives specify

• conditional parallelization
• to determine if the parallel construct results in

creation/use of threads if (scalar-expression)

• degree of concurrency
• to explicitly specify the number

of threads created/used
num_threads(integer-expression)

• data handling
• to indicate variable scope

(local, global, or ‘special’)
private(variable-list)
shared(variable-list)
firstprivate(variable-list)
default(shared j none)

The parallel directive

Indicates a parallel region

• creates a group of threads (OMP_NUM_THREADS,
omp_set_num_threads(nthreads))

• each thread executes the structured block of code (possibly the same code!)

Examples

pragma omp parallel if (is_parallel == 1) num_threads(8) private(a) shared(b) firstprivate(c)
• if the value of variable is_parallel is one, eight threads are used • each thread has private copy of a

and c, but all share one copy of b
• the value of each private copy of c is initialized to value of c before the parallel region
pragma omp parallel reduction(+ : sum) num_threads(8) default(private)
• eight threads get a copy of the variable sum
• when threads exit, the values of these local copies are accumulated into the sum variable on the

master thread – other reduction operations include *, -, &, |, ^, &&, || • all variables are private
unless otherwise specified

The parallel directive
Examples (cont.)

#include <omp.h>
…

int main()
{

int tid, nthreads;
#pragma omp parallel private(tid)
{

tid = omp_get_thread_num();
printf(”Hello World from thread %d\n", tid);
#pragma omp barrier
if (tid == 0)
{

nthreads = omp_get_num_threads();
printf(”Total threads= %d\n",nthreads);

}
}

}

The for work-sharing directive

Solves a typical problem – parallelization of
a for loop

• requirement: independent iterations

• the loop index automatically assumed private

• extra code reduced to only two directives plus
sequential code (code is easy to read/maintain)

• implicit synchronization at the end of the loop
(can be overriden by the nowait clause)

• Very often merged together with parallel
• #pragma omp parallel for

Example

#include <cmath>
…
int main()
{

const int size = 256;
double sinTable[size];

#pragma omp parallel
{

…
#pragma omp for
for(int n=0; n<size; ++n)

sinTable[n] = std::sin(2 * M_PI * n / size);
…

}
}

The reduce clause

Solves another typical problem – reduction

• a well-known parallel pattern in shared memory
programming

• combines all the elements in a
collection into one using an
associative two-input,
one-output operator

• reductions are used in many algorithms to compute error
metrics and termination conditions for iterative algorithm

Examples (cont.)

#include <omp.h>
…
main ()
{

int i, n, chunk;
float a[100], b[100], result;
n = 100; chunk = 10; result = 0.0;

for (i=0; i < n; i++)
{

a[i] = i * 1.0;
b[i] = i * 2.0;

}
#pragma omp parallel for default(shared) private(i) schedule(static,chunk)
reduction(+:result)
for (i=0; i < n; i++)

result = result + (a[i] * b[i]);
}

A more complex example

Parallel, for and
reduction working
together

Pros and cons of OpenMP

Advantages

• simple programming model

• single source code for serial and parallel version

• portable and well-supported (gcc)

• code works in serial without adjustments

Disadvantages

• can only be run in shared memory computers

• requires a compiler that supports OpenMP

• high risk of race conditions

	Slide 1: Parallel and Distributed Systems / 3
	Slide 2: Agenda
	Slide 3
	Slide 4
	Slide 5: Shared memory systems
	Slide 6: Shared memory systems
	Slide 7: Shared memory systems
	Slide 8: Shared memory systems
	Slide 9: Shared memory systems
	Slide 10: Shared memory systems
	Slide 11
	Slide 12: Shared memory systems
	Slide 13: Open Multiprocessing
	Slide 14: Execution model: fork-join
	Slide 15: Implementation: directive-based
	Slide 16: Implementation: directive-based
	Slide 17: The parallel directive
	Slide 18: The parallel directive
	Slide 19: The for work-sharing directive
	Slide 20: The reduce clause
	Slide 21: A more complex example
	Slide 22: Pros and cons of OpenMP

