
Parallel and
Distributed
Systems / 2

Pavel Krömer,
Dept. of Computer Science,
VSB – Technical University of
Ostrava

Agenda

• Major topics
• Types, basic concepts, classification

• Literature
• Bhujade Moreshwar R., M.R. Bhujade; Parallel Computing, New Age

International, 2009
• Mattson, Timothy G., Rasmussen, Craig E., Sottile, Matthew J;

Introduction to Concurrency in Programming Languages, Chapman &
Hall/CRC Press, 2009

• David Padua; Encyclopedia of Parallel Computing, Springer US, 2011

Parallel platforms and programs

Motivation

The main purpose of a classification/taxonomy is to provide a
common language in which parallel and distributed
architectures can be discussed.

(cw. {design | integration | architectural} patterns)

Caveats
• not a single classification agreed upon
• age quickly

Flynn’s 1967 taxonomy

• Flynn, Michael. (1967). Very High-Speed Computing Systems.
Proceedings of the IEEE. 54. 1901 - 1909. 10.1109/PROC.1966.5273.

• Dimensions:
instruction and
data streams

Single-instruction single-data

• Serial (non-parallel) computer
• ‘Von Neumann architecture*’,

deterministic execution
• Only one instruction stream executed

by the CPU
• Only one data stream used as an

input during any clock cycle

SISD

Parallel extensions of SISD architectures
• Instruction pipelining

Single-instruction single-data SISD

Single-instruction single-data

Parallel extensions of
SISD architectures
• Vector registers, extended

instruction sets
• Same instructions applied to a

vector of data
• MMX (1997, 80-bit), SSE (128-bit),

AVX (2011, 256-bit), AVX-512
(2016)

SISD

Parallel extensions of SISD architectures
• Superscalar execution

• multiple instruction pipelines
• in-order execution

• Very-long instruction word (VLIW);
• One instruction encodes more operations (for each pipeline one)
• Compiler finds instructions that can be speculatively executed in parallel

• out-of-order execution
• Hardware finds independent instructions

Single-instruction single-data SISD

Rather rare parallel architecture
• Each processing unit operates on the data

independently via separate instruction streams
• A single data stream is fed into multiple

processing units
• Example usage

• Redundant execution for fault tolerance (Space Shuttle
flight control, Falcon 9/heavy avionics - “flight strings”)

• Multiple frequency filters operating on a single signal
stream

• Multiple cryptography algorithms attempting to crack a
single coded message

Multiple-instruction single-data MISD

Modern MISD-like architectures
• Systolic arrays

• Computational networks with distributed data storage
and distributed processing units

• Matrix operations, convolution
• Use: FPGAs, ASICs

• Data-flow computers
• operations executed when

their operands are available
• Maxeler Technologies

Multiple-instruction single-data MISD

Single-instruction multiple-data

• AKA: data-parallelism, vector operations
• All processing units execute the same instruction at

any given clock cycle
• Each processing unit can operate on a different data

element
• Good for specialized problems with a high degree of

regularity,
• Matrix ops, graphics/image processing.

• Synchronous (lockstep) and deterministic execution

SIMD

Single-instruction multiple-data

Modern examples
• GPGPUs,

FP accelerators
• CPUs

SIMD

Single-instruction multiple-data

A SIMD computation

Caveat
• branching

SIMD

Multiple-instruction
multiple-data

General parallel (task parallel) computation without the
restrictions of SIMD

MIMD

Beyond Flynn’s taxonomy

Extensions and alternatives
• SPMD - Single process multiple data
• MPMD - Multiple process multiple data
• Multiple SIMD - hybrid architectures of multiple SIMD systems
• Superscalar SIMD

Feng’s classification (1972)
• serial vs parallel processing

Handler’s classification (1977)
• based on the degree of parallelism/pipelining ability of computer subsystems

Vocabulary

Word Serial and Bit Serial (WSBS)

Word Parallel and Bit Serial (WPBS)

Word Serial and Bit Parallel(WSBP)

Word Parallel and Bit Parallel (WPBP)

System classification

• WSBS has been called bit parallel
processing because one bit is processed
at a time.

• WPBS has been called bit slice processing
because m-bit slice is processes at a time.

• WSBP is found in most existing computers
and has been called as Word Slice
processing because one word of n bit
processed at a time.

• WPBP is known as fully parallelprocessing
in which an array on n x m bits is
processes at one time.

Beyond Flynn’s taxonomy
Feng’s classification

Beyond Flynn’s taxonomy

Handler’s classification
• Evaluates 3 levels of systems architecture

• processor control unit (PCU [= CPU]); Arithmetic logic unit (ALU); Bit-level
circuit (BLC)

Computer = (p * p', a * a', b * b’)

• p = number of PCUs
• p'= number of PCUs that can be pipelined
• a = number of ALUs controlled by each PCU
• a'= number of ALUs that can be pipelined
• b = number of bits in ALU or processing element (PE) word
• b'= number of pipeline segments on all ALUs or in a single PE
• set of well-defined operators (*,+,v,~)

Example: Cray-1 = (1, 12 * 8, 64 * (1 ~ 14))

Memory organization in
parallel environments

Shared memory systems

Processors have access to the complete memory
(as a global [shared] address space)

Processors can operate independently but share memory resources

Changes in memory caused by one processor are visible to all other

Also tightly coupled systems

Shared memory systems

Uniform memory access (UMA)
• AKA Symmetric Multiprocessors (SMPs)
• Systems of identical processors with equal access

and access times to memory
• Sometimes called Cache Coherent UMA (CC-UMA)

• if one processor updates a location in shared memory, all the other
processors know about the update

• cache memories that provide access to these variables are kept
consistent

• accomplished at the hardware level (snoopy/sniffy bus protocol)

Shared memory systems

Non-uniform memory access (NUMA)
• One SMP can directly access memory of another SMP
• Not all processors have equal access time to all memories
• Memory access across link is slower
• Cache Coherent NUMA (CC-NUMA) if cache coherency is

achieved

Shared memory systems

Pros and cons
• Advantages

• Global address space provides a user-friendly programming
access to memory

• Data sharing between tasks is both fast and uniform due to the
proximity of memory to CPUs

• Disadvantages
• Lack of scalability between memory and CPUs. Adding more CPUs

can geometrically increases traffic on the shared memory-CPU
path, and for cache coherent systems, geometrically increase
traffic associated with cache/memory management

• Programmer responsibility for synchronization constructs that
ensure "correct" access of global memory.

Distributed memory
systems

Use a communication network to connect inter-processor memory.

Processors have own local memory and memory addresses in one
processor do not map to another processor. No global address space
exists.

Processors operate independently, local changes do not affect other
processors (and their memory). Cache coherency out of question.

IPC (data sharing + synchronization) explicitly defined by
program/programmer.

Also loosely coupled systems

Distributed memory
systems

Challenging IPC
• Explicit IPC via message passing
• Communication usually a significant bottleneck
• Communication-driven algorithm design and considerations

Advantages
• Memory scalable with the number of processors
• Each processor can rapidly access its own memory without interference

and without any special overhead wrt. cache coherency
• Cost effective, can use commodity, off-the-shelf processors and

networking

Distributed memory
systems

Disadvantages
• Program/programmer responsible for all details associated

with data communication between processors
• Difficult mapping of existing data structures to distributed

memory for an efficient execution
• Non-uniform memory access times - data residing on a

remote node takes longer to access than local data
Barbora
 - 2. 10. 2019, VSB-TUO / IT4Innovations
 - 192x compute node w. 18-core CPU, 192 GiB RAM
 - 8x GPU node w. 12-core CPU, 192 GiB RAM, 4x NVIDIA
V100
 - 1x fat node w. 8x16-core CPU, 6 TiB RAM

Hybrid systems

Real-world systems combine SMPs and
distributed memory

Combine the advantages/disadvantages
of both
• Increased scalability traded for

increased program complexity

Alternative classifications

System description can be based on

• Parallelism type
• Data vs. task parallelism

• Granularity
• The ratio of communication and computation
• How many instructions in a process*
• Fine (<20) vs. medium (<500) vs. coarse grained programs

• Degree of parallelism
• high vs. low

Final thoughts

Herb Grosch’s law and Seymour Cray’s
observation

1965: … to do a calculation 10
times as cheaply you must do it

100 times as fast.
I call it Grosch's law.

Computers should obey
a square law — when the

price doubles, you
should get at least four
times as much speed.

I said
that in
1963!

Marvin Minsky’s conjecture

Marvin Minsky

Claude Shannon

John McCarthy

Ray Solomonoff

1970: For a parallel computer with
n processors, the speedup S shall
be proportional to log2(n)

Oliver Selfridge

Gene Amdahl’s
law

What that means ?!

Grosch speaks about the economy of IT
• Grosch's Law appears to be a result of marketing policy more than of

manufacturing expenses
• At some point of time, manufacturers priced their computers according to it

Amdahl's law was a strong argument against parallel computers
• The development of parallel algorithms would be too inefficient if it held
• Experimentally proven wrong [Sandia lab, 40-80% serial and scales linear]

Minsky’s conjecture was based on technology of 60’s and 70’s
• Technologies like DMA and multitasking made it obsolete
• Can be still seen as worst-case scenario

John Gustafsons’s law

What that means (II) ?!

Gustafson overcomes the fixed problem size assumption by
Amdahl
• Problems usually do not have fixed size
• Size of problems set to fully exploit the computing power
• Parallelism seen as an opportunity to solve larger-scale

problems
• My favourite example: boot/load time

	Slide 1: Parallel and Distributed Systems / 2
	Slide 2: Agenda
	Slide 3
	Slide 4: Motivation
	Slide 5
	Slide 6: Flynn’s 1967 taxonomy
	Slide 7: Single-instruction single-data
	Slide 8: Single-instruction single-data
	Slide 9: Single-instruction single-data
	Slide 10: Single-instruction single-data
	Slide 11: Multiple-instruction single-data
	Slide 12: Multiple-instruction single-data
	Slide 13: Single-instruction multiple-data
	Slide 14: Single-instruction multiple-data
	Slide 15: Single-instruction multiple-data
	Slide 16: Multiple-instruction multiple-data
	Slide 17: Beyond Flynn’s taxonomy
	Slide 18: Beyond Flynn’s taxonomy
	Slide 19: Beyond Flynn’s taxonomy
	Slide 20
	Slide 21
	Slide 22: Shared memory systems
	Slide 23: Shared memory systems
	Slide 24: Shared memory systems
	Slide 25: Shared memory systems
	Slide 26: Distributed memory systems
	Slide 27: Distributed memory systems
	Slide 28: Distributed memory systems
	Slide 29: Hybrid systems
	Slide 30
	Slide 31: System description can be based on
	Slide 32
	Slide 33: Herb Grosch’s law and Seymour Cray’s observation
	Slide 34: Marvin Minsky’s conjecture
	Slide 35: Gene Amdahl’s law
	Slide 36: What that means ?!
	Slide 37: John Gustafsons’s law
	Slide 38: What that means (II) ?!

