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Parallel platforms and programs



Motivation

The main purpose of a classification/taxonomy is to provide a 
common language in which parallel and distributed 
architectures can be discussed.

(cw. {design | integration | architectural} patterns)

Caveats
• not a single classification agreed upon
• age quickly





Flynn’s 1967 taxonomy 

• Flynn, Michael. (1967). Very High-Speed Computing Systems. 
Proceedings of the IEEE. 54. 1901 - 1909. 10.1109/PROC.1966.5273. 

• Dimensions: 
instruction and 
data streams



Single-instruction single-data

• Serial (non-parallel) computer
• ‘Von Neumann architecture*’, 

deterministic execution
• Only one instruction stream executed 

by the CPU
• Only one data stream used as an 

input during any clock cycle

SISD



Parallel extensions of SISD architectures
• Instruction pipelining

Single-instruction single-data SISD



Single-instruction single-data

Parallel extensions of 
SISD architectures
• Vector registers, extended 

instruction sets
• Same instructions applied to a 

vector of data
• MMX (1997, 80-bit), SSE (128-bit), 

AVX (2011, 256-bit), AVX-512 
(2016)

SISD



Parallel extensions of SISD architectures
• Superscalar execution

• multiple instruction pipelines
• in-order execution

• Very-long instruction word (VLIW); 
• One instruction encodes more operations (for each pipeline one)
• Compiler finds instructions that can be speculatively executed in parallel

• out-of-order execution
• Hardware finds independent instructions

Single-instruction single-data SISD



Rather rare parallel architecture
• Each processing unit operates on the data 

independently via separate instruction streams
• A single data stream is fed into multiple 

processing units
• Example usage

• Redundant execution for fault tolerance (Space Shuttle 
flight control, Falcon 9/heavy avionics - “flight strings”)

• Multiple frequency filters operating on a single signal 
stream

• Multiple cryptography algorithms attempting to crack a 
single coded message

Multiple-instruction single-data MISD



Modern MISD-like architectures
• Systolic arrays

• Computational networks with distributed data storage 
and distributed processing units

• Matrix operations, convolution
• Use: FPGAs, ASICs

• Data-flow computers
• operations executed when 

their operands are available
• Maxeler Technologies

Multiple-instruction single-data MISD



Single-instruction multiple-data

• AKA: data-parallelism, vector operations
• All processing units execute the same instruction at 

any given clock cycle
• Each processing unit can operate on a different data 

element
• Good for specialized problems with a high degree of 

regularity, 
• Matrix ops, graphics/image processing.

• Synchronous (lockstep) and deterministic execution

SIMD



Single-instruction multiple-data

Modern examples
• GPGPUs, 

FP accelerators
• CPUs

SIMD



Single-instruction multiple-data

A SIMD computation

Caveat
• branching

SIMD



Multiple-instruction 
multiple-data

General parallel (task parallel) computation without the 
restrictions of SIMD

MIMD



Beyond Flynn’s taxonomy 

Extensions and alternatives
• SPMD - Single process multiple data
• MPMD - Multiple process multiple data
• Multiple SIMD - hybrid architectures of multiple SIMD systems
• Superscalar SIMD

Feng’s classification (1972)
• serial vs parallel processing

Handler’s classification (1977)
• based on the degree of parallelism/pipelining ability of computer subsystems



Vocabulary

Word Serial and Bit Serial (WSBS)

Word Parallel and Bit Serial (WPBS)

Word Serial and Bit Parallel(WSBP) 

Word Parallel and Bit Parallel (WPBP)

System classification

• WSBS has been called bit parallel 
processing because one bit is processed 
at a time.

• WPBS has been called bit slice processing 
because m-bit slice is processes at a time.

• WSBP is found in most existing computers 
and has been called as Word Slice 
processing because one word of n bit 
processed at a time. 

• WPBP is known as fully parallelprocessing
in which an array on n x m bits is 
processes at one time.

Beyond Flynn’s taxonomy 
Feng’s classification



Beyond Flynn’s taxonomy 

Handler’s classification
• Evaluates 3 levels of systems architecture 

• processor control unit (PCU [= CPU]); Arithmetic logic unit (ALU); Bit-level 
circuit (BLC) 

Computer = (p * p', a * a', b * b’) 

• p = number of PCUs 
• p'= number of PCUs that can be pipelined 
• a = number of ALUs controlled by each PCU 
• a'= number of ALUs that can be pipelined 
• b = number of bits in ALU or processing element (PE) word 
• b'= number of pipeline segments on all ALUs or in a single PE
• set of well-defined operators (*,+,v,~)

Example: Cray-1 = (1, 12 * 8, 64 * (1 ~ 14)) 



Memory organization in 
parallel environments





Shared memory systems

Processors have access to the complete memory 
(as a global [shared] address space)

Processors can operate independently but share memory resources

Changes in memory caused by one processor are visible to all other

Also tightly coupled systems



Shared memory systems

Uniform memory access (UMA)
• AKA Symmetric Multiprocessors (SMPs)
• Systems of identical processors with equal access 

and access times to memory
• Sometimes called Cache Coherent UMA (CC-UMA)

• if one processor updates a location in shared memory, all the other 
processors know about the update

• cache memories that provide access to these variables are kept 
consistent

• accomplished at the hardware level (snoopy/sniffy bus protocol)



Shared memory systems

Non-uniform memory access (NUMA)
• One SMP can directly access memory of another SMP
• Not all processors have equal access time to all memories
• Memory access across link is slower
• Cache Coherent NUMA (CC-NUMA) if cache coherency is 

achieved



Shared memory systems

Pros and cons
• Advantages

• Global address space provides a user-friendly programming 
access to memory

• Data sharing between tasks is both fast and uniform due to the 
proximity of memory to CPUs

• Disadvantages
• Lack of scalability between memory and CPUs. Adding more CPUs 

can geometrically increases traffic on the shared memory-CPU 
path, and for cache coherent systems, geometrically increase 
traffic associated with cache/memory management

• Programmer responsibility for synchronization constructs that 
ensure "correct" access of global memory.



Distributed memory 
systems

Use a communication network to connect inter-processor memory.

Processors have own local memory and memory addresses in one 
processor do not map to another processor. No global address space 
exists.

Processors operate independently, local changes do not affect other 
processors (and their memory). Cache coherency out of question.

IPC (data sharing + synchronization) explicitly defined by 
program/programmer. 

Also loosely coupled systems



Distributed memory 
systems

Challenging IPC
• Explicit IPC via message passing
• Communication usually a significant bottleneck
• Communication-driven algorithm design and considerations

Advantages
• Memory scalable with the number of processors
• Each processor can rapidly access its own memory without interference 

and without any special overhead wrt. cache coherency
• Cost effective, can use commodity, off-the-shelf processors and 

networking



Distributed memory 
systems

Disadvantages
• Program/programmer responsible for all details associated 

with data communication between processors
• Difficult mapping of existing data structures to distributed 

memory for an efficient execution
• Non-uniform memory access times - data residing on a 

remote node takes longer to access than local data
Barbora
 - 2. 10. 2019, VSB-TUO / IT4Innovations
 - 192x compute node w. 18-core CPU, 192 GiB RAM
 - 8x GPU node w. 12-core CPU, 192 GiB RAM, 4x NVIDIA 
V100
 - 1x fat node w. 8x16-core CPU, 6 TiB RAM



Hybrid systems

Real-world systems combine SMPs and 
distributed memory

Combine the advantages/disadvantages 
of both
• Increased scalability traded for 

increased program complexity



Alternative classifications



System description can be based on

• Parallelism type
• Data vs. task parallelism

• Granularity
• The ratio of communication and computation
• How many instructions in a process*
• Fine (<20) vs. medium (<500) vs. coarse grained programs

• Degree of parallelism
• high vs. low



Final thoughts



Herb Grosch’s law and Seymour Cray’s 
observation

1965:  … to do a calculation 10 
times as cheaply you must do it 

100 times as fast.
I call it Grosch's law.

Computers should obey 
a square law — when the 

price doubles, you 
should get at least four 
times as much speed.

I said 
that in 
1963!



Marvin Minsky’s conjecture

Marvin Minsky

Claude Shannon

John McCarthy

Ray Solomonoff

1970: For a parallel computer with 
n processors, the speedup S shall 
be proportional to log2(n)

Oliver Selfridge



Gene Amdahl’s 
law



What that means ?!

Grosch speaks about the economy of IT
• Grosch's Law appears to be a result of marketing policy more than of 

manufacturing expenses
• At some point of time, manufacturers priced their computers according to it

Amdahl's law was a strong argument against parallel computers
• The development of parallel algorithms would be too inefficient if it held
• Experimentally proven wrong [Sandia lab, 40-80% serial and scales linear]

Minsky’s conjecture was based on technology of 60’s and 70’s
• Technologies like DMA and multitasking made it obsolete
• Can be still seen as worst-case scenario



John Gustafsons’s law



What that means (II)  ?!

Gustafson overcomes the fixed problem size assumption by 
Amdahl
• Problems usually do not have fixed size
• Size of problems set to fully exploit the computing power
• Parallelism seen as an opportunity to solve larger-scale 

problems
• My favourite example: boot/load time
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