
Parallel and
Distributed
Systems / 1

Pavel Krömer,
Dept. of Computer Science,
VSB – Technical University of
Ostrava

Agenda

• Course introduction and organization

• Motivation

• Basic concepts of parallelism

Introduction

Contact

• Location
• office: FEI EA444
• office hours: per e-mail/phone
• office phone: +420597325898

• E-communication
• pavel.kromer@vsb.cz

mailto:pavel.kromer@vsb.cz
https://www.vsb.cz/personCards/personCard.jsp?lang=cs&person=KRO080

Course objectives

• Introduction to the basic concepts of parallel and distributed
platforms and algorithms
• full range of parallel architectures (edge, multicore, distributed (HPC),

cloud, edge and fog)

• Working knowledge of basic parallel algorithms and parallelization
strategies
• methods to solve computationally extensive problems from different

application areas

• Practical introduction of selected parallel languages / language
extensions
• practical development of parallel codes

Credit

• Active participation on lectures and seminars / tutorials

• Submission of a project on an assigned topic
• list of indicative themes will be available
• each topic individually approved with instructor

• Deadline
• end of semester for final years

Motivation

Course objectives
AMD 5nm EPYC Genoa
• EPYC 9374F, announced 10. 11.

2022
• 5nm Zen 4 core architecture
• up to 96 cores/192 threads
• 3.85 GHz / 4.3 GHz, 256 MB L3

cache
• designed for liquid-cooled

spaces

Course objectives
AMD 5nm EPYC Bergamo
• announced June 2023
• 5nm Zen 4 core architecture
• 128 cores and 256 threads
• 2.2(5) GHz / 3.(1) GHz
• giant TDP (up to 320-360W)
• clock rate vs core count opt.

versions

Zen 5 microarchitecture in 2024

~ 10.000 EUR on a
CZ e-shop

TITAN RTX (2019)
• 4,608 CUDA cores; 576 Tensor cores; 24 GB GDDR6; NVIDIA’s CUDA-X AI SDK; 70,000 CZK
RTX 4090 (2023)
• 16,384 CUDA cores; 512 Tensor cores (4th gen); 24 GB GDDR6X; cca 54,000 CZK

NVIDIA TeslaV100 Tensor Core GPU (Volta)
• 5,120 CUDA cores; 640 Tensor cores; 32GB HDM2;
• Deep learning: TensorFlow, PyTorch, theano, Caffe2; Applications: OpenFoam etc.

NVIDIA A100 Tensor Core GPU (Ampere)
• 6,912 CUDA cores; FP64/32/16/BFLOAT16/INT8, 432 tensor cores; 40/80GB HDM2;

NVIDIA H100 Tensor Core GPU (Hopper)
• 18,432 CUDA cores; FP64/32/16/BFLOAT16/INT8, 640 tensor cores; 80GB HDM2;

Edge and Fog computing
• Fog computing pushes intelligence

down to the local area network level
of network architecture, processing
data in a fog node or IoT gateway.

• Edge computing pushes the
intelligence, processing power and
communication capabilities of an
edge gateway or appliance directly
into devices like programmable
automation controllers (PACs)

Typical applications
• Intelligent Transportation

Management (ITS)
• Industrial & Commercial Networking
• Smart Metering for Utilities
• Autonomous Vehicles

Parallelism and Concurrency

Multiprocessing and multithreading

• Multitasking OS
• Allows the execution of more than one process (computer

programme + resources in memory) at a time

• The number of tasks can exceed the number of physical cores /
threads

• Multitasking OS has all the components necessary to handle this
situation by task switching

Multiprocessing and multithreading
• Process

• runnable software is in the process model
organized into sequential processes

• a running program, including the current values
of the program counter, registers, and variables.
It has a virtual CPU and shares physical CPU(s)
via task-switching

• processes are independent (isolated by the OS)
and communicate via inter-process
communication (IPC)

• Task-switching
• when more processes require a shared resource

(CPU), fast task switching can give an illusion of
parallelism (aka. pseudo-parallelism,
concurrency)

Multiprocessing and multithreading

• Process states
• a process can be in one of several internal states:

• Running -> Waiting: process blocks for input
• Waiting -> Ready: input becomes available
• Ready -> Running: scheduler picks the process and allocates CPU
• Running -> Ready: scheduler removes process from CPU

• all is done according to a specific scheduling algorithm

Multiprocessing and multithreading

• Thread
• a unit of (parallel) execution within a process (1-N)
• each thread in a process shares its resources (that

makes them more lightweight)
• communication between threads is cheaper than IPC
• problem of one thread can easily affect other

threads, too (and the whole process might have to be
killed)

• Properties
• each thread has its own program counter, registers,

stack
• and shares data space, address space, resources

(and limits)

Threads vs. processes

Process
• Processes are heavyweight operations

• Each process has its own memory
space

• Inter-process communication is slow
as processes have different memory
addresses

• Context switching between processes
is more expensive

• Processes don’t share memory with
other processes

Thread
• Threads are lighter weight operations

• Threads use the memory of the process
they belong to

• Inter-thread communication can be faster
than inter-process communication because
threads of the same process share memory
with the process they belong to

• Context switching between threads of the
same process is less expensive

• Threads share memory with other threads
of the same process

Inter-process communication (IPC)

• Communication between cooperating processes, preferably in a well-structured way
and not using interrupts. It must deal with:
• information passing,
• clash of activities
• dependencies

• Usually implemented by
• shared memory
• message passing
• -> pipes and named pipes; message queueing; semaphores; shared memory; and sockets

• IPC concepts and issues
• synchronization, critical regions, mutual exclusion, semaphores, mutexes, monitors, barriers
• race conditions, deadlocks, busy waiting

Inter-process communication (IPC)

• Deadlocks
• a set of processes is deadlocked if each process in the set is waiting for an event that only another

process in the set can cause.
• a situation in which one process, A, waits for a resource exclusively used by another process, B,

which, in turn, waits for another resource owned by A. Both processes wait forever.

• Conditions for a deadlock are:
• mutual exclusion,
• hold and wait,
• no preemption, and
• circular wait

• Dealing with deadlocks:
• do nothing
• detection and recovery
• avoidance by careful resource allocation
• preventing (one) of the conditions for deadlock

Parallelism vs. concurrency

• Parallelism vs. concurrency
• Parallelism: using multiple processors/cores running at the same

time. Property of the machine (parallel machine).
• Concurrency: non-determinacy due to interleaving threads. Property

of the application (concurrent tasks).

Parallel vs. sequential programme

Summary
• parallel code is intuitive, but requires additional attention and
brings more challenges, including IPC, scalability, portability

Parallel vs. sequential programming

• Summary
• parallel code is intuitive*, but requires additional attention
• brings more challenges, including IPC, scalability, portability

• Parallel programming is a two-step process
• design a work-efficient, low-span parallel algorithm
• implement it on the target hardware

• In reality: many systems require different code to implement the
algorithm efficiently
• huge effort to generate efficient portable parallel code.

* a manual implementation of Quicksort in MPI can be 1700 lines of code,
and about the same in CUDA

Parallel vs sequential programming

• Problem solving based on parallel thinking

• Recognizing true dependences (cw. sequential programming)

• Parallel algorithm design
• operations on aggregates: map/reduce/scan
• divide & conquer, contraction
• viewing computation as DAG (based on dependences)

	Slide 1: Parallel and Distributed Systems / 1
	Slide 2: Agenda
	Slide 3
	Slide 4: Contact
	Slide 5: Course objectives
	Slide 6: Credit
	Slide 7
	Slide 8: Course objectives
	Slide 9: Course objectives
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Multiprocessing and multithreading
	Slide 16: Multiprocessing and multithreading
	Slide 17: Multiprocessing and multithreading
	Slide 18: Multiprocessing and multithreading
	Slide 19: Threads vs. processes
	Slide 20: Inter-process communication (IPC)
	Slide 21: Inter-process communication (IPC)
	Slide 22: Parallelism vs. concurrency
	Slide 23: Parallel vs. sequential programme
	Slide 24: Parallel vs. sequential programming
	Slide 25: Parallel vs sequential programming

