Parallel and **Distributed** Systems / 1 Pavel Krömer, Dept. of Computer Science, VSB – Technical University of 100 Ostrava EP.,

- Course introduction and organization
- Motivation
- Basic concepts of parallelism

Introduction

Contact

- Location
 - office: FEI EA444
 - office hours: per e-mail/phone
 - office phone: +420597325898
- E-communication
 - pavel.kromer@vsb.cz

Course objectives

- Introduction to the basic concepts of parallel and distributed platforms and algorithms
 - full range of parallel architectures (edge, multicore, distributed (HPC), cloud, edge and fog)
- Working knowledge of basic parallel algorithms and parallelization strategies
 - methods to solve computationally extensive problems from different application areas
- Practical introduction of selected parallel languages / language extensions
 - practical development of parallel codes

Credit

- Active participation on lectures and seminars / tutorials
- Submission of a project on an assigned topic
 - list of indicative themes will be available
 - each topic individually approved with instructor
- Deadline
 - end of semester for final years

Q.IJ.E.S.I.I.O.N.S

Motivation

Model	Release	Price	Fab	Chiplets	Cores	Core	(GHZ)		Cache in MB		MB	1												
	date	(USD)			(Threads)	config ^[i]	Base	Boost	L1	L2	L3													
Mainstrea	Mainstream Enterprise																							
9124 🖄		\$1,083	TSMC	4 × <u>CCD</u> 1 × <u>I/OD</u>	16 (32)	4 × 4	3.0	3.7	1	16	64													
9224 🖄		\$1,825			04 (40)	4 × 6	2.5	3.7	1.5	24	04													
9254 🖄	November	\$2,299			24 (48)	4 × 6	2.9	4.15	1.5		128													
9334 🖄	10, 2022	\$2,990	N5			4 × 8	2.7	3.9			120													
9354 🖄		\$3,420		8 × <u>CCD</u>	32 (64)	0 × 4	2.05	0.75	2	32	256													
9354P 🖉		\$2,730	1 × <u>I/OD</u>	1 × <u>I/OD</u>		8 × 4	3.25	3.75			200	1												
Performa	ince Enterpr	rise										-												
9174F 🖄	November 10, 2022	\$3,850					4.1	4.4		10	256													
9184X 🖄	June 13, 2023 \$4,928			16 (32)	16 (32) 8 × 2	3.55	4.2	1 16	16	768														
9274F 🖉	November	\$3,060	TSMC	8 × <u>CCD</u> 1 × <u>I/OD</u>	24 (48)	8 × 3	4.05	4.3	1.5	24														
9374F 🖄	10, 2022	\$4,860	N5				3.85	4.3			256													
9384X 🖄	June 13, 2023 \$5,529	_		32 (64)	8 × 4	3.1	3.9	2	32	768														
9474F 🖄	November 10, 2022	\$6,780															48 (96)	8 × 6	3.6	4.1	3	48	256	1
Cloud & I	НРС																							
9454 🖉		\$5,225			48 (06)	0 × 0	0.75	2.0	2	40														
9454P 🖉		\$4,598			48 (96)	8 × 6	2.75	3.8	3	48														
9534 🖄		\$8,803		8 × <u>CCD</u> 1 × <u>I/OD</u>			2.45	3.7			256													
9554 🖄	November	\$9,087		1.00	64 (128)	8 × 8	2.4	0.75	4	64		1												
9554P 🖉	10, 2022 \$7,104	\$7,104					3.1	3.75																
9634 🖄	\$11,80 \$10,62 \$14,75	\$10,304	TSMC	N5 12 ×	/IC	84 (168)	12 × 7	2.25	3.7	5.25	84													
9654 🖄		\$11,805	N5				0.4	3.7			384													
9654P 🖉		\$10,625		<u>CCD</u> 1 × <u>I/OD</u>	96 (192)	12 × 8	2.4		6	96														
9684X 🖄		\$14,756						2.55	3.7			1152												
9734 🖄		\$9,600	8.4	8 x CCD	8 x CCD	112 (224)	16 x 7	2.2	3.0	7	112													
9754S 🖄	2023	\$10,200		1 x I/OD	128 (128)	16 0	2.25	2.4	0	100	256													
<u>9754</u> 🗗		\$11,900			128 (256)	16 x 8		3.1	8	128														

AMD 5nm EPYC Genoa • EPYC 9374F, announced 10. 11. 2022 • 5nm Zen 4 core architecture • up to 96 cores/192 threads • 3.85 GHz / 4.3 GHz, 256 MB L3 cache designed for liquid-cooled spaces

Model Release		Price (USD)	Fab	Chiplets	Cores Core (Threads) config ^[i]		Clock rate (GHz)		Cache in M		МВ		
	date	(050)			(Threads)	connges	Base	Boost	L1	L2	L3		
Mainstrea	Mainstream Enterprise												
9124 🖄		\$1,083			16 (32)	4 × 4	3.0	3.7	1	16	64		
9224 🖄	\$1,825		4 × <u>CCD</u>	24 (48)	4 × 6	2.5	3.7	1.5	24	04			
9254 🖄	November	\$2,299	TSMC N5	1 × <u>I/OD</u>	24 (40)	4 × 6	2.9	4.15	1.5	24	128		
9334 🖉	10, 2022	\$2,990			<u>CCD</u> 32 (64)	4 × 8	2.7	3.9		32	120		
9354 🖄		\$3,420		8 × <u>CCD</u>		0 4	0.05	3.75	2		256		
9354P 🖄		\$2,730		1 × <u>I/OD</u>		8 × 4	3.25	5.75			256	1	
Performa	ince Enterpi	rise										-	
9174F ピ	November 10, 2022	\$3,850			16 (32)	8 × 2	4.1	4.4	1	16	256		
9184X IZ	June 13, 2023	\$4,928			10 (52) 0 ^ 2	3.55	4.2			768			
9274F 🖉	November	\$3,060	TSMC	8 × <u>CCD</u>	24 (48)	8 × 3	4.05	4.3	1.5	24	256		
9374F 🖉	10, 2022	\$4,860	N5	N5 1 × <u>I/OD</u>		8 × 4	3.85	4.3	2	32	200		
9384X 🖄	June 13, 2023	\$5,529			32 (64)		3.1	3.9			768		
9474F ⊠	November 10, 2022	\$6,780				48 (96)	8 × 6	3.6	4.1	3	48	256	
Cloud & I	НРС												
9454 🖉		\$5,225			49 (06)	0 × 0	0.75	2.0	2	40			
9454P 🖉		\$4,598			48 (96)	8 × 6	2.75	3.8	3	48			
9534 🖄		\$8,803		8 × <u>CCD</u> 1 × <u>I/OD</u>			2.45	3.7			256		
9554 🖄	November	\$9,087			64 (128)	8) 8 × 8	2.1	2 75	4	64			
9554P 🖄	10, 2022	\$7,104					3.1	3.75					
9634 🖄	\$10,304	\$10,304							5.25 84				
9654 🖄	\$11,8		[′] ~ 10.000 EUR on a					4		384			
9654P 🖄		\$10,		C 7	CZ e-shop					6 96			
9684X 🖄		\$14,7						3.7			1152		
9734 🖄	June 13,	\$9		8 X CCD		AT-	2.2	3.0	7	112			
9754S 🖄	2023	\$10,200		1 x I/OD	128 (128)	16 x 8	2.25	3.1	8	128	256		
<u>9754</u> 🖄		\$11,900		1 4 1/00	128 (256)	16 x 8	2.25	5.1	0	120			

AMD 5nm EPYC Bergamo announced June 2023 • 5nm Zen 4 core architecture 128 cores and 256 threads • 2.2(5) GHz / 3.(1) GHz • giant TDP (up to 320-360W) clock rate vs core count opt. versions

Zen 5 microarchitecture in 2024

NVIDIA TeslaV100 Tensor Core GPU (Volta)

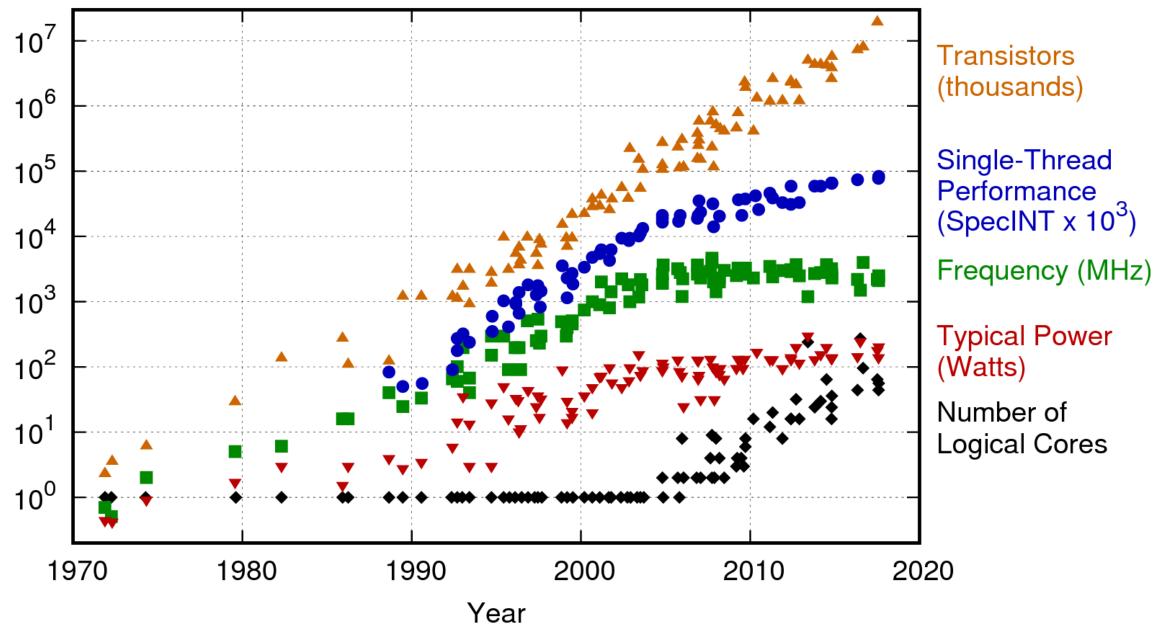
- 5,120 CUDA cores; 640 Tensor cores; 32GB HDM2;
- Deep learning: TensorFlow, PyTorch, theano, Caffe2; Applications: OpenFoam etc.

NVIDIA A100 Tensor Core GPU (Ampere)

• 6,912 CUDA cores; FP64/32/16/BFLOAT16/INT8, 432 tensor cores; 40/80GB HDM2;

NVIDIA H100 Tensor Core GPU (Hopper)

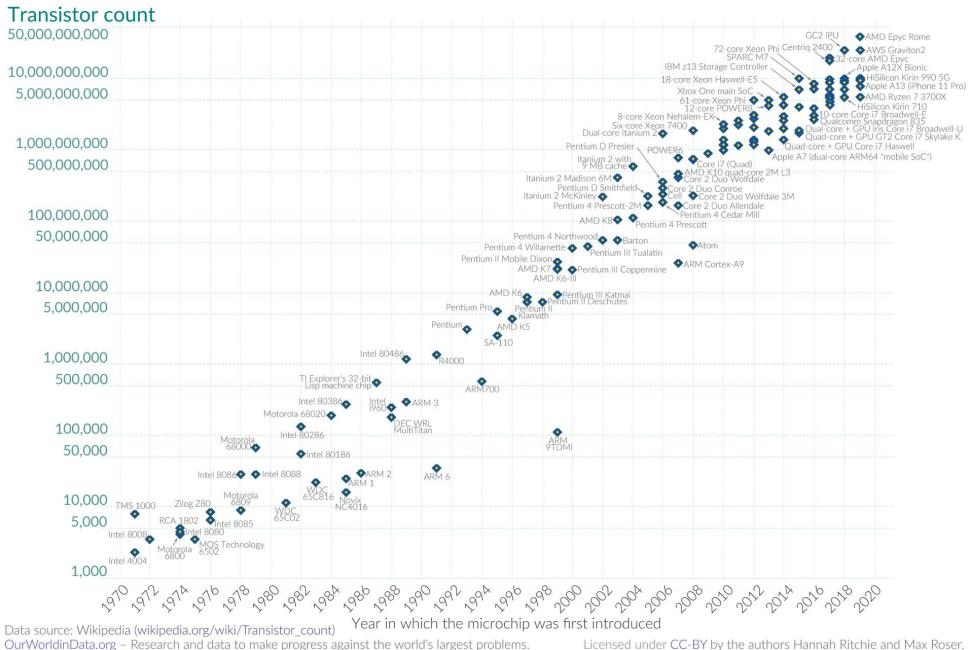
• 18,432 CUEA cores; FP64/32/16/BFLOAT16/INT8, 640 tensor cores; 80GB HDM2;


GEFORCE RTA

TITAN RTX (2019)

• 4,608 CUDA cores; 576 Tensor cores; 24 GB GDDR6; NVIDIA's CUDA-X AI SDK; 70,000 CZK RTX 4090 (2023)

• 16,384 CUDA cores; 512 Tensor cores (4th gen); 24 GB GDDR6X; cca 54,000 CZK


42 Years of Microprocessor Trend Data

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

Moore's Law: The number of transistors on microchips doubles every two years

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers.

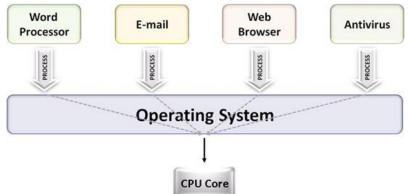
Edge and Fog computing Fog computing pushes intelligence down to the local area network level of network architecture, processing data in a fog node or IoT gateway. Edge computing pushes the intelligence, processing power and communication capabilities of an edge gateway or appliance directly into devices like programmable automation controllers (PACs)

 Typical applications
 Intelligent Transportation Management (ITS)

FCC ID: OWS

Type FO FORM 2S CL200

Sm


AR 60 min.

DS

- Industrial & Commercial Networking
- Smart Metering for Utilities
- Autonomous Vehicles

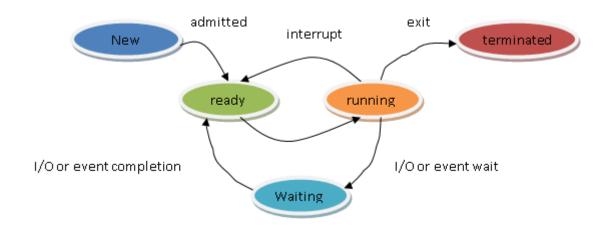
Parallelism and Concurrency

- Multitasking OS
 - Allows the execution of more than one process (computer programme + resources in memory) at a time

- The number of tasks can exceed the number of physical cores / threads
- Multitasking OS has all the components necessary to handle this situation by task switching

•	Process
---	---------

Register


Counter

Heap

Code

Stack

- runnable software is in the process model organized into sequential processes
- a running program, including the current values of the program counter, registers, and variables. It has a virtual CPU and shares physical CPU(s) via task-switching
- processes are independent (isolated by the OS) and communicate via inter-process communication (IPC)
- Task-switching
 - when more processes require a shared resource (CPU), fast task switching can give an illusion of parallelism (aka. pseudo-parallelism, concurrency)

Process states

- a process can be in one of several internal states:
 - Running -> Waiting: process blocks for input
 - Waiting -> Ready: input becomes available
 - Ready -> Running: scheduler picks the process and allocates CPU
 - Running -> Ready: scheduler removes process from CPU
- all is done according to a specific scheduling algorithm

• Thread

- a unit of (parallel) execution within a process (1-N)
- each thread in a process shares its resources (that makes them more lightweight)
- communication between threads is cheaper than IPC
- problem of one thread can easily affect other threads, too (and the whole process might have to be killed)
- Properties
 - each thread has its own program counter, registers, stack
 - and shares data space, address space, resources (and limits)

d	in	Process		
	Thread	Thread	Thread	Time

Single Thread	Multi Threaded				
Неар	He	ар			
Registers Stack	Registers Stack	Registers Stack			
Code	Code				
Thread	Thread	Thread			

Threads vs. processes

Process

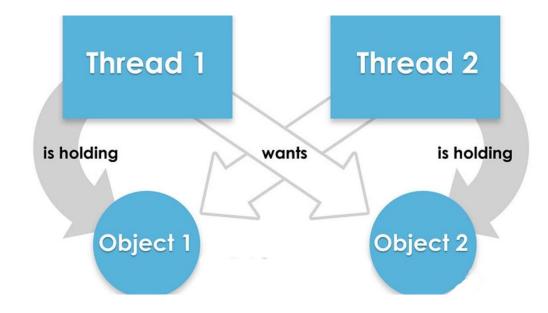
- Processes are heavyweight operations
- Each process has its own memory space
- Inter-process communication is slow as processes have different memory addresses
- Context switching between processes is more expensive
- Processes don't share memory with other processes

Thread

- Threads are lighter weight operations
- Threads use the memory of the process they belong to
- Inter-thread communication can be faster than inter-process communication because threads of the same process share memory with the process they belong to
- Context switching between threads of the same process is less expensive
- Threads share memory with other threads of the same process

Inter-process communication (IPC)

- Communication between cooperating processes, preferably in a well-structured way and not using interrupts. It must deal with:
 - information passing,
 - clash of activities
 - dependencies
- Usually implemented by
 - shared memory
 - message passing
 - -> pipes and named pipes; message queueing; semaphores; shared memory; and sockets
- IPC concepts and issues
 - synchronization, critical regions, mutual exclusion, semaphores, mutexes, monitors, barriers
 - race conditions, deadlocks, busy waiting


Inter-process communication (IPC)

• Deadlocks

- a set of processes is deadlocked if each process in the set is waiting for an event that only another process in the set can cause.
- a situation in which one process, A, waits for a resource exclusively used by another process, B, which, in turn, waits for another resource owned by A. Both processes wait forever.

Conditions for a deadlock are:

- mutual exclusion,
- hold and wait,
- no preemption, and
- circular wait
- Dealing with deadlocks:
 - do nothing
 - detection and recovery
 - avoidance by careful resource allocation
 - preventing (one) of the conditions for deadlock

Parallelism vs. concurrency

- Parallelism vs. concurrency
 - Parallelism: using multiple processors/cores running at the same time. Property of the machine (parallel machine).
 - Concurrency: non-determinacy due to interleaving threads. Property of the application (concurrent tasks).

		Concurrency			
		sequential	concurrent		
Parallelism	serial	Traditional programming	Traditional OS		
Parallelism	parallel	Deterministic parallelism	General parallelism		

Parallel vs. sequential programme

brings more challenges, including IPC, scalability, portability

```
Sequential vector add
```

```
void vector add(double* a, double *b, const unsigned int len)
ſ
  for (unsigned int i = 0; i < len; i++)</pre>
    a[i] += b[i];
}
int main (void)
  const unsigned int len = 200;
  double a[len];
  double b[len];
  rand_vec(a, len);
  rand_vec(b, len);
  vector_add(a, b, len);
        Summary
  retur
}
```

Parallel vector add (pseudocode)

```
void vector add p(double* a, double *b, const unsigned int len)
                                                   ſ
                                                     const unsigned int from = THREAD_ID == 1 ? 0: len / 2;
                                                     const unsigned int to = THREAD_ID == 1 ? len/2 : len;
                                                     for (unsigned int i = 0; i < len; i++)</pre>
                                                       a[i] += b[i];
                                                   }
                                                   int main (void)
                                                   ſ
                                                     const unsigned int len = 200;
                                                      double a[len];
                                                     double b[len];
                                                     rand_vec(a, len);
                                                     rand_vec(b, len);
                                                     vector_add_p(a, b, len); // Parallel section

    parallel code is intuitive, but requires additional attention and
```

Parallel vs. sequential programming

- Summary
 - parallel code is intuitive*, but requires additional attention
 - brings more challenges, including IPC, scalability, portability
- Parallel programming is a two-step process
 - design a work-efficient, low-span parallel algorithm
 - implement it on the target hardware
- In reality: many systems require different code to implement the algorithm efficiently
 - huge effort to generate efficient portable parallel code.

* a manual implementation of Quicksort in MPI can be 1700 lines of code, and about the same in CUDA

Parallel vs sequential programming

- Problem solving based on parallel thinking
 - Recognizing true dependences (cw. sequential programming)
 - Parallel algorithm design
 - operations on aggregates: map/reduce/scan
 - divide & conquer, contraction
 - viewing computation as DAG (based on dependences)