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Chapter 1

Informations about subject

Abilities and knowledge

Ability to understand and solve basic tasks of non-linear mechanics (plasticity, sta-
bility). Ability to identify type of non-linear problem and to select proper solution
approach.

Abstract

In this subject there are given information about non-linear behavior of building
structures and building materials. There are discussed problems of structural non-
linearity, of constitutive modelling which includes time-dependent problems and
basics of fracture mechanics. There are also discussed problems of geometrical
non-linearity. Methods of solution of these problems are also introduced. The
practical part of the subject is based on solution of typical problems with use on
analytical and numerical methods.

Literature

• JIRASEK, Milan. a Z. P. BAZANT. Inelastic analysis of structures. New York,
NY: Wiley, 2002. ISBN 978-0-471-98716-1.

• BORESI A. P., SCHMIDT, R. J.: Advanced Mechanics of Materials,John Wiley
and Sons, Chichester, USA 2003

• BELYTSCHKO, Ted, W. K. LIU a B. MORAN. Nonlinear finite elements for
continua and structures. New York: Wiley, c2000. ISBN 0471987743.

• BAZANT, Z. P., F.-J. ULM, Hamlin. JENNINGS a Roland. PELLENQ. Me-
chanics and physics of creep, shrinkage, and durability of concrete: a tribute
to Zdenk P. Baant : proceedings of the Ninth International Conference on
Creep, Shrinkage, and Durability Mechanics (CONCREEP-9), September 22-
25, 2013 Cambridge, Massachusetts. Reston, Virginia: American Society of
Civil Engineers, 2013.

4



Contents

1. Introduction, basic relations of elasticity and the finite element method.

2. Structural non-linearity.

3. Methods of solution on non-linear problems.

4. Constitutive non-linearity.

5. Elastic-plastic behaviour.

6. Introduction to fracture mechanics.

7. Quassi-brittle materials.

8. Viscoelascity.

9. 2nd order theory, linear stability.

10. Geometrical non-linearity.

5



Chapter 2

Introduction

2.1 Types of non-linearities

Non-linearities are usually categorised by their type. Obviously, in many cases the
solved problem incorporates several non-linearities.

The basic categorisation is:

• structural (model) non-linearities – supports and structural elements that are
working only in certaion conditions (compression-only etc.),

• physical (constitutive) non-linearities – material behaviour is not linear (dif-
fers from Hooke law) (non-linear elasticity, plasticity, fracture mechanics,. . . ),

• geometric non-linearity – large deformations (displacements, rotations,. . . ).

6



Chapter 3

Model non-linearity

3.1 Typical cases

On the picture above there are shown the common cases of model non-linearity
– supports or member that are actin only in some load cases (tension-only mebers
or compression-only supports).

These types of model non-linearity usually require iterative solution.
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3.2 Supports working only for certain load

On the pictures below it is illustrated a case of structural non-linearity: a beam
supported by compression-only supports.

3.3 Example

The model:

podlozka

uFEM 0.2.46

Time: 1
CS: CART

 23. 09. 2008

x
y
z

Reactions (usual supports):

podlozka

uFEM 0.2.46

Set:    1: 1.000
Results

 23. 09. 2008

-7.135765e+02

-6.243795e+02

-5.351824e+02

-4.459853e+02

-3.567883e+02

-2.675912e+02

-1.783941e+02

-8.919706e+01

0.000000e+00

5.488281e+01

1.097656e+02

1.646484e+02

2.195312e+02

2.744141e+02

3.292969e+02

3.841797e+02

4.390625e+02

x
y
z

Deformed shape (usual supports):
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podlozka

uFEM 0.2.46

Set:    1: 1.000
Result: s_1

 23. 09. 2008

-7.135765e+02

-6.243795e+02

-5.351824e+02

-4.459853e+02

-3.567883e+02

-2.675912e+02

-1.783941e+02

-8.919706e+01

0.000000e+00

5.488281e+01

1.097656e+02

1.646484e+02

2.195312e+02

2.744141e+02

3.292969e+02

3.841797e+02

4.390625e+02

x
y
z

Normal stress σx (usual supports):

podlozka

uFEM 0.2.46

Set:    1: 1.000
Result: s_x

 23. 09. 2008

-7.164786e+02

-6.269188e+02

-5.373590e+02

-4.477991e+02

-3.582393e+02

-2.686795e+02

-1.791196e+02

-8.955983e+01

0.000000e+00

5.410934e+01

1.082187e+02

1.623280e+02

2.164374e+02

2.705467e+02

3.246560e+02

3.787654e+02

4.328747e+02

x
y
z

Normal stress σy (usual supports):
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podlozka

uFEM 0.2.46

Set:    1: 1.000
Result: s_y

 23. 09. 2008

-1.534330e+03

-1.342539e+03

-1.150747e+03

-9.589562e+02

-7.671650e+02

-5.753737e+02

-3.835825e+02

-1.917912e+02

0.000000e+00

3.712790e+00

7.425580e+00

1.113837e+01

1.485116e+01

1.856395e+01

2.227674e+01

2.598953e+01

2.970232e+01

x
y
z

Normal stress σ1 (usual supports):

podlozka

uFEM 0.2.46

Set:    1: 1.000
Result: s_1

 23. 09. 2008

-7.135765e+02

-6.243795e+02

-5.351824e+02

-4.459853e+02

-3.567883e+02

-2.675912e+02

-1.783941e+02

-8.919706e+01

0.000000e+00

5.488281e+01

1.097656e+02

1.646484e+02

2.195312e+02

2.744141e+02

3.292969e+02

3.841797e+02

4.390625e+02

x
y
z

Deformed shape (compression-only supports):
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podlozka

uFEM 0.2.46

Set:    1: 1.000
CS: CART

 23. 09. 2008

-8.029127e+02

-7.025486e+02

-6.021845e+02

-5.018204e+02

-4.014564e+02

-3.010923e+02

-2.007282e+02

-1.003641e+02

0.000000e+00

4.536868e+01

9.073735e+01

1.361060e+02

1.814747e+02

2.268434e+02

2.722121e+02

3.175807e+02

3.629494e+02

x
y
z

Normal stress σx (compression-only supports):

podlozka

uFEM 0.2.46

Set:    1: 1.000
Result: s_x

 23. 09. 2008

-8.084983e+02

-7.074360e+02

-6.063737e+02

-5.053114e+02

-4.042491e+02

-3.031869e+02

-2.021246e+02

-1.010623e+02

0.000000e+00

3.922044e+01

7.844088e+01

1.176613e+02

1.568818e+02

1.961022e+02

2.353226e+02

2.745431e+02

3.137635e+02

x
y
z

Normal stress σy (compression-only supports):
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podlozka

uFEM 0.2.46

Set:    1: 1.000
Result: s_y

 23. 09. 2008

-1.535040e+03

-1.343160e+03

-1.151280e+03

-9.594000e+02

-7.675200e+02

-5.756400e+02

-3.837600e+02

-1.918800e+02

0.000000e+00

6.736788e+00

1.347358e+01

2.021036e+01

2.694715e+01

3.368394e+01

4.042073e+01

4.715751e+01

5.389430e+01

x
y
z

Normal stress σ1 (compression-only supports):

podlozka

uFEM 0.2.46

Set:    1: 1.000
Result: s_1

 23. 09. 2008

-8.029127e+02

-7.025486e+02

-6.021845e+02

-5.018204e+02

-4.014564e+02

-3.010923e+02

-2.007282e+02

-1.003641e+02

0.000000e+00

4.536868e+01

9.073735e+01

1.361060e+02

1.814747e+02

2.268434e+02

2.722121e+02

3.175807e+02

3.629494e+02

x
y
z

3.4 Problem for individual work

• In software of your choice prepare 3D model of hall with tension-only stiff-
eners (recommended: SCIA Engineer). Compare results of linear elastic so-
lution and non-linear one. How large is the difference in maximal internal
forces?

12



Chapter 4

Methods of solution on non-linear
problems

• Iterational solution.

• Steps-based solution (Euler method).

• Combination of steps and iterations (Newton-Raphson method, Arc-lenght
method).

4.1 Iterational solution

It can be used for problems of structural (construction) non-linearity (see previous
chapter).

?

2

3

1

4.1.1 Algorithm of iterational solution

1. Linear solution.

2. Changes in structure related to computed stresses and strains (de-activation
of compression-oly supports or changes of member stifnesses, for example).

13



3. Linear solution of chnaged structure.

4. If changes of results are minimal then solution is done, otherwise solution
should continue in the step 2.

Note: In some case the iterational solution can be slow. For example. it can be
case of compression-only supports if number of support is large.

4.2 Euler method
F

u

∆

∆

∆

F3
Euler.

Real.

F1

F2

Loads F are applied step-by-step (with step size ∆F , for example). There is no
iteration.

4.2.1 Algorithm ot the Euler method

1. Solution for the first ∆F1

2. Changes in structure related to computed stresses and strains.

3. Solution for the next ∆F2.

4. Sum of results.

5. Vyhodnocen zmn v konstrukci (vylouen prut,...)

6. Changes in structure related to computed stresses and strains.

7. Solution for the next ∆F2. . .

8. Solution is done after the total load reaches F =
∑n

i=1 ∆Fi.

Note: This method highly depends on step size and is subject to roudning
errors. It is not used for practical computation. IT is shown here like step between
iterative solutions and the Newton-Raphson method.
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4.3 Newton-Raphson method

There are many methods that combine loads applied in steps with iterational pro-
cedures but the Newton-Raphson method seems to be the most common.

Real.

∆Fi

u

ui

Fir∆

Ki

g

F

The Newton-Raphson method can be viewed as an extension of the Euler method:

• Load is applied in steps ∆F .

• There is an iteration in every load step.

• Iteration shoudl minimise the unballanced forces g.

• The g represents difference between stress state elated to initial stiffness. Ei

and actual stress state related to updated stiffness. It can be obtained from
equilibrium conditions in finite element nodes, for example.

4.3.1 Algorithm of one step Newton-Raphson method

∆

Ki

ui

∆Fi

Fir Ki,j

Real.

gj+1gj

ui,j

u

F

15



1. Computation for the ∆F1:

Ki(u)×∆ui = ∆Fi. (4.1)

2. Changes in structure related to actual stress and strain state.

3. Computation of unballanced forcesgj:

Ki,j(u)×∆ui,j = gj (4.2)

4. Changes in structure related to actual stress and strain state.. . .

5. Repeating until gj+x is not small enough.

The solution is repeated for every addition of load ∆Fi.

4.3.2 Convergence criteria

The iteration is finisted when the unballanced forces are small enough. It can be
detected by use of vector norms:

• Size of unballanced forces:
||g||
||∆Fi||

< ε (4.3)

• Size of displacements increase between iterations:

||∆ui,j||
||∆ui||

< ε (4.4)

Where ε is required precision (for example ε = 0, 00001).

As a vector norm it is often used the Euclide norm:

||u|| =

√√√√
n∑

i=1

u2
i . (4.5)

4.4 Arc-lenght method

The Newton-Raphson method is not suitable for computation of post-peak be-
haviour of structures. Thus it is not the best one for problems like large deforma-
tion of shell structures of for analysis of progresivelly cracking concrete strucures.

The Arc-lenght method is an extension of the Newton-Raphson method which
uses variable ∆Fi step size which is based on a relation of vector norms of the load
vector ∆F(δR) and the vector of deformations δu(δr) (thus the ∆F can be even
negative).

The load vector addition ∆F (marked as δR on the next picture) is computed
from a condition that in every step the lenght on a load–displacement path s
should be constant.
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R

l

r

R

r

r

r

r r

r

g

R

r R,( )o o

o

o

o

K

F

4.4.1 Linearised Arc-lenght method

The Arc-lenght method can be derived ins several ways. The different derivations
are known to work well for some types of problems but not for all non-linear
problems.

Many of computational codes (for example ANSYS, uFEM) use so-called lin-
earised Arc-lenght method which compute the load multiplied δλ in this way:

δλ = −
ao
2

+ ∆ro
T δr

∆roδrt + ∆λoψ2R
T
R
. (4.6)

Note: the ψ parameter to adjust effects of load vector to solution speed. For
example in computations with large deformations it can be usefull to set ψ = 0.

4.5 Problem for individual work

• Why it the Newton-Raphson method unsuitable for post-peak analysis of
structures? Draw the load-displacement diagram with a peak and try to map
load increments ∆F to the diagram.

17



Chapter 5

Constitutive (material) non-linearity

There are these most common types on non-linear material behaviour:

• Non-linear elasticity:

– Hooke law is not respected,

– there are no non-reversible deformations.

• Elastic-plastic behaviour:

– there are non-reversible (plastic) deformations.

• Viskoelasticity, viskoplasticity,. . . :

– there are time-dependent elastic (or plastic) deformations.

• Fragile materials:

– these materials have fragile (brittle) behaviour,

– they are studied in detail by Fracture mechanics.

The picture illustrates (from the top): non-linear elasticity, plasticity, frageile
behaviour:

F

u

F

u

F

u

18



5.1 Elastic-plastic behaviour

Load-displacement diagral for axially loaded member:

F

f

elasticplastic

u

One can see the main parts of load-displacement diagram: the initial elastic
part, the plastic part and typical behaviour during unloading. The deformation
called ”plastic” remains even after the load is fully removed.

There can be shown three principal variants of elastic-plastic material as shown
in the picture below.

F

u

F

u

F

u

u

F
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The types of elastic-plastic behaviour:

1. Ideally elastic–plastic: when material reaches some point then the behaviour
became plastic (deformation continues for constant force or stress)

2. Elastic–plastic with hardening: stress should rise in plastic stage.

3. Stiff–plastic: there is no elastic part of behaviour. This model is theoretical
but it was commonly used for plastic analysis of frames because of its sim-
plicity.

5.2 Plasticity condition

In the 1D case the plasticity condition is a given stress (or force, named f() below)
value. When such point is aproached then material change it’s behaviour from
elastic to plastic.

F

u

f()
f()

σ2

σ1

In 2D case the plasticity condition is a closed, convex, curve. Here it is shown
in the plane of principal stresses σ1 −−σ2 ( red curve labelled f()).

5.3 Plasticity conditions common in civil engineering

5.3.1 Maximal normal stresses theory (Rankine)

−σmd ≤ σ1 ≤ σmt (5.1)
σ1 − σmt = 0 (5.2)
σ2 − σmd = 0 (5.3)

20



σ

σ2

1

σσ

σ

σ

mt 

mt 

md

md

This condition was originaly developed in simpler form as a failure condition.
It is sometimes used as a plasticity condition for material which cannot be easily
described by other plasticity conditions.

5.3.2 Maximal shear stresses theory (Tresca)

This condition uses shear stresses. It can be used for metal materials.

τmax =
σ1 − σ3

2
− τm = 0 (5.4)

σ1 − σ3 − σmt = 0 (5.5)

(τm =
σmt
2

) (5.6)

σmd = σmt (5.7)

σ

σ1

2

σσ

σ

mtmt

mt

σmt

5.3.3 Energy shape condition change (von Mises or von Mises,
Huber, Hencky)

Derivation of such condition is more complex. The reaulting equation is:

(σ1 − σ2)2 + (σ3 − σ2)2 + (σ1 − σ3)2 = 2σ2
mt (5.8)

σmd = σmt

21



σ

σ1

2

σmtσ

σ

von Mises

Tresca

mt

mt

mt
σ

Note: one can find so-called ,,von Mises stress“ which is defined as:

σvmis =

√
(σ1 − σ2)2 + (σ3 − σ2)2 + (σ1 − σ3)2

2
≤ σmt (5.9)

Thus σvmis represents state of material. If σmt = fy is the yield stress value then
σvmis can be used as an indication if studied material is elastic or not.

The von Mises criteria is better suited for computatioonal mechanics than the
Tresca one because it is represented by a smooth curve without edges. It is often
used in FEA software for representation of elastic-plastic behaviour of metals.

5.3.4 Mohr–Coulomb condition

This condition can be viewed as a modified Tresca with σmd 6= σmt.

σ1 −
σmt
σmd

σ3 − σmt = 0 (5.10)

σmd 6= σmt

σ

σ2

1

σσ

σ

σ

mt 

mt 

md

md

This condition is suitable for geotechnical materials (soils). It is available in
FEA packages like the PLAXIS. The Drucker–Prager condition (which is repre-
sented by smooth curve over the edges of the Mohr–Coulomb) is also often used.

5.3.5 Chen–Chen condition

This condition was derived for concrete. Its shape is was created to represent data
obtained from expewrimental researches (Kupfer et al and others).
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For compression–compression area (σ1 < 0 a σ2 < 0, σ3 < 0):

J2 +
Ayc
3
I1 − τ 2

yc = 0 (5.11)

For other areas:
J2 −

1

6
I2

1 +
Ayt
3
I1 − τ 2

yt = 0 (5.12)

σ

σ1

2

fyc

fyt

fyt

fybc

fybc ycf

This condition is discussed in greater details in the further text.

5.4 Hardening

Hardening stage of elastic-plastic behaviour begins after plasticity condition is
reached. The next picture illustrates hardening in 1D and 2D.

F

u

σ1

σ2

There are several main types of hardening behaviour:

• Kinematic

– subsequent plasticity conditions are moving,
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– no change of shape and size.

• Izotropic

– subsequent conditions are changin size proportionally,

– no moves.

• Combined

– combination of kinematic and isotropic hardenings.

The next picture illustrates the kinematic hardening (top) and the isotropic one
(botton).

σ

σ1

2

σ

σ1

2

In many cases, the combined hardening is more close to real material be-
haviour. It is illustrates on the next picture.
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σ

σ1

2

5.5 Plasticity and failure conditions

The picture below demonstrates all interesting parts of elastic–plastic behaviour
in 1D (left) and 2D:

1. Initial plasticity condition.

2. Subsequent plasticity condition (during hardening).

3. Failure condition (theoretical failure of material).

F

u

σ1

σ2

2
1

3

3
2

1
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5.6 Variants of theory of plasticity

5.6.1 Theory of plastic deformations

• It uses relations between total deformations and stresses:

σ = DEP ε

• The solution does not depend on loading path.

σ

ε

The theory of plastic deformations assumes that it is possible to find a direct
relation between stresses and strains for any point on loading path (illustrated by
blue line with arrows on the picture). Obviously, it is possible only for selected
and relatively simple problems.

5.6.2 Plastic flow theory

This theory assumes that:

• relation between changes (”speeds”) of deformations and stresses is:

σ̇ = Dep ε̇ (5.13)

,

• solution depends on loading path,

• solution can be divided to a set of linearised steps.

σ

ε

This approach is much more robust and it is used in subsequent text.
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5.7 Plastic flow theory

5.7.1 Unknowns – changes (”speeds”):

• Stresses: σ̇ = {σ̇x, σ̇y, σ̇z, τ̇yz , τ̇yz, τ̇xy}T

• Relative deformations (strains): ε̇ = {ε̇x, ε̇y, ε̇z, γ̇yz, γ̇yz, γ̇xy}T

• Displacements (and rotations): u̇ = {u̇, v̇, ẇ}

5.7.2 Assumptions:

• Initial stress σ and strain ε state must be known.

• Solution have to respect boundary conditions.

5.7.3 Elastic–plastic material matrix

• Constitutive equations:
σ̇ = Dep ε̇

Dep . . . elastic–plastic material matrix (have to be found).

• Division of change of deformations to elastic and plastic part:

ε̇ = ε̇e + ε̇p

• Plastic condition (it is used for description of change from elastic to plastic
state):

f(σ, k) = 0

• Consistence condition of plastic material:

df =

{
∂f

∂σ

}T
{dσ}+

{
∂f

∂k

}T
{dk} = 0

• Speed of plastic deformation (plastic deformation law):

ε̇p = dλ

{
∂f

∂σ

}

• Stress changes:

σ̇ = dσ = De (ε̇− ε̇p) = De

(
ε̇− dλ

{
∂f

∂σ

})

• Equivalent plastic deformation:

dεp =

√
ε̇p

T ε̇p = dλ

√{
∂f

∂σ

}T {
∂f

∂σ

}
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• From consistence condition:

{
∂f

∂σ

}T
Dedε− dλ

{
∂f

∂σ

}T
De

{
∂f

∂σ

}
+ dλ

∂f

∂εp

√{
∂f

∂σ

}T {
∂f

∂σ

}
= 0 (5.14)

Computation of the dλ parameter:

dλ =

{
∂f
∂σ

}T
Deε̇

{
∂f
∂σ

}T
De

{
∂f
∂σ

}
+ ∂f

∂εp

√{
∂f
∂σ

}T { ∂f
∂σ

} (5.15)

If dλ is substituted into σ̇ = De

(
ε̇− dλ

{
∂f
∂σ

})
then:

σ̇ = De


ε̇−

{
∂f
∂σ

}T
Deε̇

{
∂f
∂σ

}T
De

{
∂f
∂σ

}
+ ∂f

∂εp

√{
∂f
∂σ

}T { ∂f
∂σ

}
{
df

dσ

}

 (5.16)

The equation for σ̇ can be simplified:

σ̇ = Dep ε̇ep, (5.17)

where elastic–plastic material matrix Dep is:

Dep = De −
De

{
∂f
∂σ

}{
∂f
∂σ

}T
De

{
∂f
∂σ

}T
De

{
∂f
∂σ

}
− ∂f

∂εp

√{
∂f
∂σ

}T { ∂f
∂σ

} (5.18)

This formulation is used in many FEA packages in conjunction of substep-
based metods for solution on non-linear problems (the Newton-Raphson–type
methods).

5.8 Problem for individual work

• Use the software of your choice to analyse 2D problem (a perpendicular wall
loaded on its upper edge and fixed on sides). Use Newton-Raphson method
and von Mises model. Prepare parametric study with different values of
hardening parameters and compare the results. Then do the same with the
Drucker-Prager or the Mohr-Coulomb models (set fyc to the same value as in
the von Mises case and fyt = fyc

10
).
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Chapter 6

Introduction to Fracture Mechanics

6.1 Stress concentrations

otvor

uFEM 0.2.53d

Set:    1: 1.000
Result: s_y

 19. 11. 2010

-8.64876e+06

-7.56766e+06

-6.48657e+06

-5.40547e+06

-4.32438e+06

-3.24328e+06

-2.16219e+06

-1.08109e+06

0.00000e+00

2.73690e+07

5.47380e+07

8.21069e+07

1.09476e+08

1.36845e+08

1.64214e+08

1.91583e+08

2.18952e+08

x
y
z

There are many cases when stress concentrations can be found:

• Near holes and cracks.

• Angles, especially sharp ones.

• Concentrated loads.
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6.2 Saint–Venant Principle

σ max

σ

F

Saint–Venant Principle: The stress in the material is independent on the form of the
load if the distance from the load is sufficient.

The problem is that problems (stress concentrations, cracks, fractures,. . . ) often
occur in the areas close to load or geometry changes.

Common criteria for bearing capacity (plasticity conditions or failure condi-
tions) assume the Saint-Venant Principle and thus:

• They are usefull if stress gradients are small.

• They don’t work well for large stress gradient (where Saint-Venant cannot be
used).

6.3 Introduction to fracture mechanics

Fracture mechanics was developed to address these problems:

• Faults are developing in places of stress concentrations.

• Real structures always include such concentrations.

• Real structures always broke earlier than it can be assumed from classic plas-
ticity/failure conditions.

Typical problems which should be studied with use of fracture mechanics are:

• Large steel structures (bridges, towers, ships,...).

• Welded structures .

• Structures exposed to big temperature changes.

• Massive reinforced concrete structures (pilllars, dams).

For metals there are two types of fracture :
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• Brittle failure: effects of normal stress on layers of atoms

• Ductile failure: effects of shear stress on layers of atoms

Thus Fracture Mechanics studies failure caused by cracks. There are several
tasts to bear:

• Crack identification.

• Determination of conditions when the crack is stable or unstable:

– acceptable crack size,

– critical size of crack.

6.4 Linear Fracture Mechanics

Linear fracture mechanics assume that studied material is linear elastic. This is
valid only for material like glass and high-quality steels.

We will briefly review these theories of the like fracture mechanics:

• Griffith theory

– fragile materials – glass.

• Irwin–Orowan theory

– extension of Griffith theory to other materials (metals, some plastics).

6.5 Griffith Theory

Assumes that there exist surface stress γ
(for example, γ = 0, 55N

m
for glass at 15o C).

Change of surface stress if the area is extended for dS = dx× b:

dΓ = γ × b× dx (6.1)

γ =
dΓ

dS
(6.2)

x dx

b

dS

γ
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Infinite wall of unit thickness with crack
Westergaard solution of elliptic hole – crack (linear elasticity):

b =
2a

E
σ, (6.3)

where E is Young modullus.

Infinite wall of unit thickness with crack

x

l = 2a

σ

σ

S

2b

y

Energy of wall with crack:

U = U1 − U2, (6.4)

where:
U1 . . . energy of the wall.
U2 . . . deformational energy necessary to close the crack.

Energy of wall with crack:

U1 =
1

2

∫

V

σεdV (6.5)

U1 =
1

2

∫

S

σ
σ

E
1dS (6.6)

U1 =
σ2

2 E
S (6.7)

Energy of crack:

dU2 =

∫ y

0

σ∗dxdy = ... =
1

2
σydx (6.8)

U2 = σ

∫

ST

dU2, (6.9)
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where ST = π a b . . . is crack area.
From Westergaard solution (b = 2 a

E
σ)

U2 =
π2 σ2 l2

4 E
, (6.10)

thus:

U =
σ2

2 E
S − π2 σ2 l2

4 E
. (6.11)

Extension δl of existing crack:

−δU = −∂U
∂l
δl =

∂U2

∂l
δl (6.12)

∂U2

∂l
=

∂
(
πσ2l2

4E

)

∂l
(6.13)

∂U2

∂l
=

πσ2l

2E
(6.14)

Crack surface extension 2 δl.

Energy needed for creation of new surface must be equal to released energy of
internal forces:

−δU = 2δl γ (6.15)

Enlargement of existing crack for δl: From previous equations (6.13)–(6.15):

π σ2 l

2 E
= 2γ (6.16)

It defines critical state of crack. One can define critical stress for given crack
size or critical crack lenght for given stress.

Critical stress for given crack lenght l:

σcrit =

√
4 γ E

π l
(6.17)

Critical crack lenght for given stress σ:

lcrit =
4 γ E

π σ2
(6.18)

6.6 Irwin theory

This is an application of the Griffith theory to other materials. It can be used for
metals and some plastics and thus it assumes plastic zone on the crack tip. Energy
necessary for plastic deformation is about 1000 times higher than surface stress
thus surface stress can be neglected.
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There is a new entity – the work necessary for creation of plastic zone G. De-
formation necessary for enlergement of crack for δl:

dV = G dl (6.19)
π σ2

2 E
ldl = Gdl (6.20)

After modification:
σ
√
π a =

√
G E (6.21)

For critical state of crack:
σ
√
π a =

√
G E (6.22)

6.6.1 Parameters for description of crask state:

• Stress Intensity Factor (it depends on stress):

KI = σ
√
π a (6.23)

• Fracture Toughness (in depends on material properties):

KIC =
√
G E (6.24)

6.7 Modes of fracture

The picture illustrates three modes of fracture. More complex modes can be
created a combination of them.

• Mode I – opening.
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• Mode II – sliding.

• Mode III – tearing.

In the previous text the Mode I was always used, thus the parameters have had
to be indexed by the mode number: KI , KIC .

6.8 Fracture Toughness

Fracture toughness is usually obtained from experimental tests.

KIC

fy

The oblatined value depends on many factors and thus its use is more compli-
cated than use of material parameters available in linear mechanics. It may depend
on:

• size of structure,

• environmental effects,

• temperature,

• stress state,

• loading speed,

• initial stresses casued by production of material or structural member.
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6.9 Material models for concrete – quasi-brittle mate-
rials

6.9.1 Mechanical properties of concrete

Concrete is not elastic-plastic material. In some situations it can be approaximately
modelled as such. However, for more precise modelling it is necessary to use other
models.

F

u

Concrete has these properties:

• There is no linear elastic behaviour.

• There is non-reversible non-linear behaviour (non-reversible deformations,
cracking,. . . )

• It has different behaviour for different types of loading (tension vs compres-
sion).

6.10 Constitutive models for concrete

There are several basic groups of constitutive models:

• Discrete models: individual cracks are modelled (usually by finite element
mesh changes – see picture).

• Continuum models: it is assumed that model remains continuosus but with
changing material properties:

– Models based on non-linear fracture mechanics (smaered cracks, non-
local continuum, microplane models)

– Elastic–plastic models.

– Combined models (for example: elastic–plastic behaviour for compres-
sion and fracture–based model for tension).
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6.11 Chen elastic–plastic model

6.11.1 Chen model and plasticity condition

Usual plasticity conditions don’t satisfy concrete behaviour (von Mises, Tresca).
Experiment research by plane stress concrete samples (prof. Kupfer, Germany)
were used by several authors to construct failure conditions, plasticity conditions
and complete constitutive models for concrete (Kupfer; Chen and Chen; Willam
and Warnke;. . . ).

Chen (Chen and Chen) condition:

• Uses aproximation of Kupfer data by polynomic functions.

• The condition can be used both for plasticity and for failure.

6.11.2 Parameters of Chen plasticity condition
σ

σ1

2

fyc

fyt

fyt

fybc

fybc ycf

For compression–compression zone (σ1 < 0 a σ2 < 0, σ3 < 0):

J2 +
Ayc
3
I1 − τ 2

yc = 0 (6.25)

For all ther zones:
J2 −

1

6
I2

1 +
Ayt
3
I1 − τ 2

yt = 0 (6.26)

where:

I1 = σ1 + σ2 + σ3 (6.27)

and
J2 =

1

2

(
σ2

1 + σ2
2 + σ2

3

)
(6.28)

These function define open, convex, shape in 3D:
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Constants Ayx, τyx are based on material data:

Ayc =
f 2
ybc − f 2

yc

2fybc − fyc
τ 2
yc =

fybcfyc(2fyc − fybc)
3(2fybc − fyc)

(6.29)

Ayt =
fyc − fyt

2

τ 2
ut =

fycfyt
6

,

where:
fyc . . . yield stress in uniaxial compression,
fybc . . . yield stress in biaxial compression,
fyt . . . yield stress in uniaxial tension.

6.11.3 Chen failure condition

The failure condition can be defined in the same manner but for ultimate stresses
(fuc, fubc, fut):

J2 +
Auc
3
I1 − τ 2

uc = 0 (6.30)

and
J2 −

1

6
I2

1 +
Aut
3
I1 − τ 2

ut = 0 (6.31)

The constant have analogical meanings:
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Auc =
f 2
ubc − f 2

uc

2fubc − fuc
τ 2
yc =

fubcfyc(2fuc − fubc)
3(2fubc − fuc)

Aut =
fuc − fut

2
(6.32)

τ 2
ut =

fucfut
6

For material states between plasticity and failure conditions it is necessary to
define relations:

Ac = αcτ
2
c + βc, (6.33)

At = αtτ
2
t + βt.

These conditions are illustrated on the picture below (red: plasticity, black: fail-
ure, blue: intermediate state).

u

y

Where the parameters α, β are defined as:

αc =
Auc − Ayc
τ 2
uc − τ 2

yc

βc =
Aycτ

2
uc − Aycτ 2

yc

τ 2
uc − τ 2

yc

αt =
Aut − Ayt
τ 2
ut − τ 2

yt

(6.34)

βt =
Aytτ

2
ut − Aytτ 2

yt

τ 2
ut − τ 2

yt

Note: such model shown good agreement with experimental results for rein-
forced concrete.
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6.11.4 Related conditions

There are other models and conditions which can give similar results to the Chen
model, for example:

• Kupfer failure condition:

– it is defined for 2D stress state (only),

– it uses data from standard tests (cyllindric strength of concrete).

• Willam–Warnke condition:

– it is defined for 3D stress state,

– very similar to Chen one in term of input data and shape but uses dif-
ferent formulation:

f =
1

3z

I1

σc
+

√
2

5

1

r(θ)

J2

σc
− 1 = 0, (6.35)

, where r and z are constant based on material properties. They are
deffined in similar manner as the A and τ properties of Chen model.

6.11.5 Example – finite element model of concrete arc

The picture above shows 2D model of reinforced concrete arc modelled with
use of the abovementioned Chen model. The next picture show location of plasti-
cised areas:
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On the next picture there is also shown obtained load–displacement relation
for the model (red curve; the green curve was obtained from solution based on
smeared crack model whic his discussed below).
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6.12 Smeared crack model

6.12.1 Basic principles

Elastic–plastic models for concrete can be usefull if concrete is properly reinforced
and when cracking is not progressive. If these assumptions are not valid the dif-
ferent models have to be used.

In many case the principles of fracture mechanics are used through the smeared
crack model.
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The smeared crack model is based on these principles:

• Modelling of damaged area (cracks,. . . ) is done by reduction of material
properties (E, ν)

• The model is continuous, area damaged by cracking has reduced material
properties.

• Cracks are expected to be small (large discrete cracks should require different
approaches).

Idealization of real structure with cracks to mathematical model is illustrated
in the next picture,

R red.

The damaged area can be modelled as an orthotropic material with axes of
orthotropy oriented in dependence of crack oreintation:

D =
R2

R2 − µ2 R1




R1 µR1 0
µR1 R2 0

0 0 β G
R2/(R2−µ2 R1)


 ,

1

2

The orientation is usually computed in relation to direction of principal stresses.
To define parameters of the orthotropic material, there are many approaches.

One of the simplest is use of two main parts:

• One-dimensional equivalent stress–strain law.

σ

ε

• 2D condition for adjusting of one-dimensional law. The 2D condition may
be the Kupfer condition or the Chen condition, for example.
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6.12.2 Bažant’s crack band model

The abovementioned approach has one disadvantage: in practical use the actual
results depend on size of finite elements. To counter this, many approaches have
been developed. The simplest one is the crack band model proposed by Bažant. It
assumes that energy spent for full opening of a crack (fracture energy AG) can be
used as a material property and can be used to adjust the model.

L

Fracture energy :
GF = AG L = const., (6.36)

where L is width of finite element.
Then:

GF =

∫ ∞

0

σn(w) dw, (6.37)

AG w

σ

Total cracks width on a finite element width can be computed:

w = ε L (6.38)

Descending modulus for one-dimensional law (see next picture) can be then
defined:

Ez =
Eo

1− 2GFEo
L σ2

max

. (6.39)

σ

σ

Eo

Ez

max

ε
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6.12.3 Example of smeared crack model

The abovementioned approach was implemented into the uFEM software and a
simple example is presented below.
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The residual stiffness (reduced stiffness of orthotropic material in direction per-
pendicular to cracks) is shown in the next picture.

uFEM 0.2.30

Time: 39.0000

y
x

2.000000e+10

1.750000e+10

1.500000e+10

1.250000e+10

1.000000e+10

7.500000e+09

5.000000e+09

2.500000e+09

0.000000e+00

0.000000e+00

0.000000e+00

0.000000e+00

0.000000e+00

0.000000e+00

0.000000e+00

0.000000e+00

0.000000e+00

 20. 03. 2008

Result: 28

z

44



Load–displacement curves for several mesh sizes (to demonstrate effects of the
crack band model) are shown on the last picture.
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6.13 Problem for individual work

• Find at least 3 software packages which can use at least one of the above-
mentioned models for concrete.
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Chapter 7

Geometric non–linearity

7.1 Non-linear behaviour related to geometry

Constitutive non-linearities are often coupled with large deformations or at least in
states when deformation of structure has important effect to structural behaviour.

Even in the case of small deformations it can be usefull to compute equilibrium
equations on deformed structure (”2nd order theory”). The most common use is for
linear stability problems but it can be usefull in many cases:

• Pre-stressed structures (pre-stressed concrete, rope structures).

• Structures with progressive damage.

• Thin structures (including slender beams).

We will demonstrate the 2nd order theory on the well-known Euler problem.

7.2 Euler solution – 2nd order theory

This is the problem known from basic elasticity courses:

• Loss of stability of axially loaded beam stability.

• Linear theory gives incorrect solution (too optimistic).

• Equlilibrium equation must be used on deformed beam⇒ 2nd order theory.

Bending moment in point x:
M = F w (7.1)

Displacement function:

w
′′

= −M
EI

= −F w

EI
(7.2)

If we will use α2 = F
EI

:
w =

′′
+α2w = 0 (7.3)
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F

w(x)

x x

L

Equation (7.3) has a solution:

w = C1 sinαx+ C2 cosαx (7.4)

Boundary conditions:

• for x = 0 it is w(x = 0) = 0:

0 = C1 sinα 0 + C2 cosα 0⇒ C2 = 0 (7.5)

,

• for x = L it is w(x = L) = 0:

0 = C1 sinα L + 0⇒ 0 = C1 sinα L (7.6)

For C1 6= 0 it must be sinαL = 0:

αL = k π . . . k = 1, 2, 3, ... (7.7)

After use of boundary conditions:

w = C1 sin
kπ x

L
(7.8)

One can use α2:

α2 =
F

E I
⇒ F = α2EI ... α L = 1 π (7.9)

After moditication and after use of Fcr = F

Fcr = π2EI

L2
. (7.10)

The Fcr is the well-known Euler’s limit force.
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7.3 Ritz method for Euler problem

It is possible to use the Ritz method to analyse the same problem. The advantage
of this method is, of course, it’s ability to be used for more complex structures.

Approximation of deformation:

w = a1 sin
πx

L
(7.11)

Potential energy:

1. ΠN = −F ua = −F FL
EA

, ua . . . shortening of beam due to classical linear theory
(does not depend on w)

2. ΠM = −Fub, ub . . . shortening due to rotation of beam

du

dx ϕ

Shortening of beam due to rotation:

du = dx− dx cosϕ (7.12)

We can write (7.12) as a Taylor sequence:

du ≈ dx− dx(1− 1

2
ϕ2) =

1

2
ϕ2dx ≈ 1

2
(w
′
)2dx. (7.13)

In a short form: du ≈ 1
2
(w
′
)2dx

For the whole beam:

ub =
1

2

∫ L

0

(w
′
)2dx (7.14)

Aproximation of w:
w = a1 sin

πx

L
(7.15)

Derivation:

w
′
= a1

π

L
cos

πx

L
, w

′′
= −a1

π2

L2
sin πxL (7.16)

Use of ub = 1
2

∫ L
0

(w
′
)2dx:

ub =
π2

2L2
a2

1

∫ L

0

cos2 πx

l
dx =

π2

4L
a2

1 (7.17)

Potential energy:

Πe = −F ub = − π
2

4L
Fa2

1 (7.18)
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Πi =
1

2

∫ L

0

EI(w
′′
)2dx =

1

2
EIA2

1

π4

L4

∫ L

0

sin2 πx

L
dx =

π4

4

EI

L3
a2

1 (7.19)

Total potential energy of the system:

Π = Πe + Πi =

(
− π

2

4L
F +

π4

4

EI

L3

)
a2

1 (+ΠN) (7.20)

We can find of extremal value of potential energy with use of Π
a1

= 0:

Π

a1

=

(
− π

2

4L
F +

π4EI

4L3

)
2a1 = 0 (7.21)

If we assume that a1 6= 0:

− π
2

4L
F +

π4EI

4L3
= 0 (7.22)

Then the result is (it is identical to Euler’s solution):

F = Fcr =
π2EI

L2
. (7.23)

7.4 Geometric non-linearity and FEM

7.4.1 Strains – more precisely derived

By ommiting of simplications done in basic elasticity courses during derivation of
geometry equation one can obtain:

εx =
∂u

∂x
+

1

2

[(
∂v

∂x

)2

+

(
∂w

∂x

)2
]

εy =
∂v

∂y
+

1

2

[(
∂u

∂y

)2

+

(
∂w

∂y

)2
]

εz =
∂w

∂z
+

1

2

[(
∂u

∂z

)2

+

(
∂v

∂z

)2
]

γxy =
∂u

∂y
+
∂v

∂x
+
∂u

∂y

∂v

∂x
+
∂v

∂x

∂v

∂y
+
∂w

∂x

∂w

∂y

γyz =
∂v

∂z
+
∂w

∂y
+
∂v

∂z

∂w

∂y
+
∂v

∂y

∂v

∂z
+
∂w

∂y

∂w

∂z

γzx =
∂u

∂z
+
∂w

∂x
+
∂u

∂z

∂w

∂x
+
∂u

∂z

∂u

∂x
+
∂w

∂z

∂w

∂x

In many cases the equations 7.24 are simplified in order to obtain 2nd order
theory solution.
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7.4.2 Geometric non-linearity and FEM

Non-linear members of 7.24 can be included in the KG matrix:

(K + KG)∆r = ∆F (7.24)

The KG is usually called ”geometric matrix” or ”initial stiffness matrix”, and it
depends on current stress state of material

7.4.3 Linear stability and FEM

• An approach similar to the Euler theory can be used.

• It is based on the equation (K + KG)r = F.

• The critical load (just before loss of stability) is have to be found:

(K + λKG)r = 0 (7.25)

It can be viewed as an analogy of ,,M = F u“ in Euler problem.

• The problem (K + λKG)r = 0 can be defiined as a searching of eigenval-
ues, where λ. . . (eigenvalues) are multipliers of critical load. The matrix KG

depends on internal stress state and thus on loads, too.

7.5 Problem for individual work

• Use software of your choice to compute critical load on an Euler beam (di-
vide the model to at least 10 finite elements). Try also different boundary
conditions ot the beam. Compare analytical and numerical results.
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