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   Study time:  60 minutes 
 

11. SIMPLE LINEAR REGRESSION  
 

 

 
 

 Explication 
 

11.1. Introduction 
Mathematical formulation of statistical models 

 
Symbolically, the basic additive formulation of statistical models can be expressed as 

 

( ) ( )εζ+= XfY  

 

where Y is the observed value, f(X) is the systematic component and �(�) is the random 
component. This schematic model explicitly identifies three type of variables. 
 
Y – Response, Criterion, dependent Variable (observed value of primary interest) 
X– Predictor, Stimulus, Independent Variable (those factors to which the value of the 
systematic component may be attributed) 
� -  random error 
 
Only Y and X are observable. Random error is always unobservable. 
�(�) is always estimated as the residua difference between the estimated systematic 
component and the observed response, Y.  
 

( ) ( )XfY −=εζ  

 

Therefore the estimated split of the observed response into its systematic and random 
components is as much a consequence of the choice of models, f and �, and the method of 
estimation as it is of the observed stimulus and response, X and Y.    

    Aim - you will be able to 

• explain a general linear model notion  

• explain a linear regression model principle  

• use regression analysis results  

• verify a regression model by determination index 
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11.2. General linear model 
     The general linear statistical model is a special simple case of the schematic statistical 
models discussed above. The so-called linear statistical model stipulates that the systematic 
component is a linear combination of the systematic factors or variables, and the random 
component is the identity function of random error. 
 

- random component:     ( ) εεζ =  

- systematic component: ( ) �
=

+=
p

i
ii XXf

1
0 ββ  

 
Why use a Linear Systematic Function? 
 
Linear systematic components have three fundamental properties which are desirable for 
statistical models – simplicity, estimability and stability. 
 
Linear functions represent or give algebraic expression to the simplest kind of relationship. 
linear functions postulate either: 

- stimulus and response tend to increase and decrease together 
- response decreases as stimulus increases 

 
For the simple linear model 
 

εββ ++= XY 10  
 

if �1<0; the relation is negative => Y decreases as X increases 
if �1>0; the relation is positive => Y and X increase together 
 
Assumptions about the random component 
 
In decreasing order of impact on results and interpretation, the following three assumptions 
about the behavior of the random component of a linear statistical model are widely adopted. 
 
1. Independence – the random errors �i and �j are independent for all pairs of observations i 

and j 
2. Equal Variance – the random errors �i all have the same variance �2 for all observations 
3. Normality – the random errors �i are normally distributed 
  

 
11.3. Estimation of parameters for the simple linear regression model 
The following scatter plot illustrates the type of data which is typically described by a 

simple linear model. 
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From the formulation of the general linear model, the special case of the simple linear 
model in which the systematic component is a linear function of a single variable, that is a 
straight line, may be expressed as: 

 

( )2

10
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and all �i are mutually independent. 
 
For any estimates of the parameters, �0 and �1, say b0 and b1, the residual errors of estimation 
are: 
 

iii XbbYe 10 −−=  
 

as illustrated below. 
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The least squares parameter estimates are those values of b0 and b1 which minimize the sum 
of squared residual errors. 
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To find the parameter estimates which minimize the sum of squared residuals, we compute 
the derivatives with respect to b0 and b1 and equate them to zero.  
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The solutions to the above equations are the least squares parameter estimates. Notice that the 
first equation insures that the residuals for the least squares estimates of  �0 and �1 always sum 
to zero. 
Because the least squares estimates are also maximum likelihood estimates under the 
assumption of normally distributed errors, they are usually denoted by the symbols �0 and �1. 
The solutions to the least squares equations are: 
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The intercept parameter, 0β̂ , merely places the vertical position of the line at the point where 

the residual errors sum to zero. The operative parameter is the slope estimate, 1β̂ , which has a 
particularly simple form in terms of the correlation and relative standard deviations of the 
response Y and the explanatory variable X.  
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The residual sum of squares for the simple regression model is  
 

( ) ( ) ( ) ( ) ( )( ) 22

1

22

1

2

1010 111ˆˆˆ,ˆ
yxy

n

i
ixy

n

i
ii snryyrxyS −−=−−=−−= ��

==

ββββ

 

 
which like the least squares slope estimate, 1β̂ , has a simple expression in terms of the 
correlation between X and Y and the variance of Y. 
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The residual sum of squares for a regression model measures how well the model fits the data. 
A smaller residual sum of squares indicates a better fit. Because a higher squared correlation 
between X and Y is associated with a smaller residual sum of squares as a proportion of the 
variance of Y, the squared correlation between X and Y is usually used as a measure of the 
goodness of fit of the regression model. When rxy = ±1, the sample observations of X and Y all 
lie on a straight line and the residual sum of squares is zero. When rxy = 0, X and Y are 
independent and the residual sum of squares will equal the sum of squared deviations of Y 
about its mean. 
 
If the residual sum of squares measures the size of the random component of the regression 
model, then the remainder, the difference between the original sum of squared deviations of Y 
about its mean and the residual sum of squares of Y about the regression line must represent 
the systematic component of the model.  To better understand what this systematic component 
measures, let the point on the regression line or predicted value of Y for the ith observation of 
X be 
 

ii xy 10
ˆ  ˆ    ˆ ββ += . 

 
Firstly, note that the least squares estimates of 0β̂  and 1β̂  insure that the mean of the 
predicted value of Y will always equal the mean of the original observations of Y.  That is, 
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Then as was the case in the analysis of variance, the total sum of squared deviations of Y 
from its mean 
 

( )�
=

−=
n

i
iTotal yySS

1

2     

 
can be partitioned into the sum of squared residual errors, 
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and the sum of squared deviations of the predicted values of Y from their mean. 
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We see that 
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The sum of squares due to regression is often called the explained variation and conversely 
the sum of squared residual errors, the unexplained variation.  The partitioning of the total 
variation of Y into these two components is due to the fact that the least squares estimates 
must satisfy the condition, 
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That is, the residual errors must be orthogonal to the predictor variable. 
 
The partitioning of the total sum of squared deviations of the response, Y, about its mean into 
the systematic component, explained variation, and the random component, sum of squared 
residuals is frequently presented as an Analysis of Variance table. The F-test computed by 
this ANOVA Table tests the null hypothesis that the systematic component of the model is 
zero. 
 

Source Degrees of Freedom Sum of Squares Mean Squares  F-ratio 
Total n-1 ( ) 21 ysn −    
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Thus, the F-test for testing the significance of the regression model depends only on the 
correlation between response and explanatory variables and on the sample size.  In practice, 
the null hypothesis of no regression effect is almost always rejected, but even if rejected does 
not imply that the regression model will provide satisfactory predictions. 
 
As in the case of analysis of variance for factorial models, the estimate of the error variance, 
σ2, is the mean squared error. 
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This estimated error variance for the regression line is also called the conditional variance of 
Y given X, that is, the variance of Y remaining after the effect of X has been removed. 
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A second consequence of least squares estimates of 0β  and 1β  is that the least squares line 
will always pass through the point of means ( )YX  , .  In fact the z-value of the prediction for Y 
is simply the correlation between X and Y times the corresponding z-value for X.  That is, 
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Clearly when xxi   = , then yyi   ˆ = . 
 
 

11.4. Distribution of least squares parameter estimates 
If the predictor or explanatory variable X is assumed to be a fixed constant rather than a 

random variable, then both 0β̂  and 1β̂  are linear combinations of the normally distributed 
criterion or response variable, Y, and hence are normally distributed themselves.  The mean 
and variance of the slope parameter estimate are 
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These results can readily be established by noting that the least squares estimate of 1β  may 
be expressed as the following linear combination of the observations of Y. 
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Then the expected value of the slope parameter estimate is 
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and the variance of the slope estimate is 
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The significance of these results is that the least squares estimate of the slope parameter is 
unbiased and its variance becomes smaller as the sample size increases. In addition, the 
variance of the estimate becomes smaller when the variance or range of X becomes larger. 
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By substitution of the mean squared error estimate of σ2 into the expression of the variance 
of the slope parameter estimate, the following estimated variance of the slope parameter is 
obtained 
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Because 1β̂  is unbiased, substitution into the least squares determining equation for 0β̂  

readily shows that the least squares intercept estimate, 0β̂ , is also unbiased. 
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The variance of 0β̂  is obtained by again noting that from the least squares determining 

equation, 0β̂  can be expressed as the following linear combination of the observations of Y. 
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By squaring and summing constant terms in this linear combination, the variance is found to 
be 
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This expression for the variance of the least squares estimate of the intercept consists of two 
parts, the reciprocal of the sample size, n, which is the usual factor for the variance of a 
mean, and the ratio of the square of the mean of X to its variance.  As for 1β̂  , an estimate of 

the variance of 0β̂   can be obtained by substituting the mean squared error estimate of σ2. 
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Since the predicted value, iŷ , is also a linear combination of the least squares parameter 
estimates, it too will be normally distributed. 
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The expected value of iŷ  is obtained by direct substitution into the linear prediction 
equation. 
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As for 0β̂  and 1β̂ , the variance of iŷ  is derived by squaring and summing the constant terms 
in the expression of iŷ  as a linear combination of the observations of Y. 
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Again notice that the expression for the variance of the predicted value for the ith observation 
of Y consists of two components.  The first component, the reciprocal of the sample size, is 
the usual factor for the variance of a mean.  The second component is a normalized squared 
distance of xi, the ith observation of the explanatory variable, from its mean. Thus the 
variances of predictions of Y for values of xi near its mean will be close to the variance of an 
ordinary sample mean. But for values of xi far from its mean, the variances of the predictions 
will increase linearly with the squared normalized distance from the mean. 
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The foregoing expression for the variance of iŷ  is the variance of the estimate of the 
regression line, which is the conditional mean of Y given X.  But the variance of a prediction 
for single observation of Y at X will be much greater. This prediction error will be the 
original variance of Y, σ2, plus the variance of error due to estimation of the regression line.  
Therefore, the estimated variance of a single observation or prediction at Xi is 
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Both estimates of the regression line and predictions from the regression line will be more 
accurate for values of X near the mean. 
 

11.5. Inference for the regression line 

It is often of interest to test hypotheses about the parameters of the regression model or to 
construct confidence intervals for various quantities associated with the model.  There may 
be theoretically prescribed values for the parameters. Confidence intervals for predictions 
from the regression model are frequently required.  Inferential procedures follow in a natural 
way from the fact that least squares parameter estimates and hence the estimated regression 
line is all linear combination of the response variable, Y, and like Y will be normally 
distributed.  In addition, the estimated variances of these parameters are derived from the 
sum of squared deviations of Y and hence will have a χ2 distribution.  Therefore, the 
following statistics all have Student's t distributions with (n-2) degrees of freedom. 



 162 

 

2
11

ˆ

11     

)1(
ˆ

ˆ
    

ˆ

ˆ

1

−�

−

−=−
n

x

t

sn
σ

ββ
σ

ββ

β

 

 

2

2

2

00

ˆ

00     

)1(
 1ˆ

ˆ
    

ˆ

ˆ

0

−�

�
	



�
�



−
+

−=−
n

x

t

sn
xn

n
σ

ββ
σ

ββ

β

 

 

( ) 2-n

2

2

10i

ŷ
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where 0β  and 1β  are the true or hypothesized values of the regression parameters. The most 
commonly tested null hypothesis is that the slope and intercept equal zero. This test is the t-
test produced by most regression software. For the slope parameter, this test has a 
particularly interesting interpretation. 
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which is simply the square root of the F-test for the regression model derived earlier. Thus, 
testing whether the systematic component is zero is equivalent to testing whether the slope of 
the regression line is zero.  If 1β  = 0, then the regression line will be horizontal at the mean 
of Y, that is, the mean of Y will be predicted at every value of X and X will have no effect on 
predictions of Y. 
 
Confidence intervals for the intercept, slope, regression line, and predictions from the 
regression line are calculated in the usual manner. 
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The confidence interval for the regression line is 
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And the confidence interval for predictions from the regression line is 
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The following chart displays 95% confidence intervals for both the regression line and 
individual predictions from the regression line.  Notice that the confidence bounds for the 
regression line are very narrow and include very few of the original data points.  This is 
because the correlation between predictor and criterion variables is high and the fit of the 
regression line is good.  On the other hand, all original observations are included within the 
confidence bounds for single points. 
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      Solved example 
 
The company repairs the desktop calculators and cashes. The data from 18 repairs are written in the 
table. Each repair has 2 important data. The former is a number of repaired calculators (X) and the 
latter is a total repair time (Y). 

 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
x 7 6 5 1 5 4 7 3 4 2 8 5 2 5 7 1 4 5 
Y 97 86 78 10 75 62 101 39 53 33 118 65 25 71 105 17 49 68 

 
a)  Find parameter estimates of the regression line. 
b)  Draw data and regression function. 
c)  Use t-tests for the values of all parameters of regression function. 

 
 
Solution 
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 – we can use STATGRAPHIC software: 
 
Linear regression – Repair time vs. Number  
 

Regression Analysis - Linear model: Y = 0b  + 1b *x 
----------------------------------------------------------------------------- 
Dependent variable:       Repair Time        
Independent variable:     Number 
----------------------------------------------------------------------------- 
                                                  
Parameter          Estimate          Standard  Error       T Statistic              P-Value 
------------------------------------------------------------------------------------------- 

0b - Intercept      -2,32215                 2,56435           -0,905549              0,3786 

1b - Slope             14,7383                 0,519257           28,3834                0,0000 
------------------------------------------------------------------------------------------- 
 

 
Slopeb,Interceptb == 10 , the results of these values may be found in the second column.  

The following function introduces an equation for the estimate of predicted value:   
 

Repair Time = -2,32215 + 14,7383 .... Number 
 

The observed values of the t-tests are shown in the fourth column (T Statistic) and 
corresponding p-values are displayed in the last one. It is obvious that hypothesis H0: �0=0 
will not be rejected considering the important value in p-value column. Based on this, we can 
say that regression line passes through the beginning what is a logical conclusion, considering 
the data nature. The second of particular test says that Slope is a value that significantly 
differs from zero since we have rejected H0 hypothesis H0: �1=0. 

 
 

d)  Let’s find the 95% confidential interval for the repair time in dependence on the number 
of calculators. 

e)  Let’s find point and interval estimation for an expected repair time for 5 calculators. 
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Solution 

 
 
For value x=5: 
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f)  Consider the quality of examined model of linear regression for the repair time in 

dependence on a number of calculators using a coefficient of determination  
 

Solution 
 

RŶY SSSSSS +=  

                            

----------------------------------------------------------------------------- 
Source                        Sum of Squares    
----------------------------------------------------------------------------- 
Regression      

Ŷ
SS            16182,6      

Error    RSS            321,396      
----------------------------------------------------------------------------- 
Total               YSS            16504,0      
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 Summary of notion 
 

Regression model is a special case of general linear model. The basic assumptions are 
independence, homoscedasticity and normality.  

Dependent variable is the variable of a regression model that is random and we try 
explaining its behavior and describing by mathematical curve. 

Independent (explanatory) variables are the variables in the regression model whose 
behavior explains the behavior of the dependent variable.  

Linear regression model with one explanatory variable is a basic model and it is based on 
the Least-Squares Method. By this method we can determine model parameters. The sum of 
squared deviations of the real values from modeled values is called the residual sum of 
squares. 

We can obtain interval estimation for the expected value of the dependent variable. These 
interval bounds form confidential interval of the regression line.     

 
 
 
 
 
 
 

1. Describe and explain equation of linear regression. 
2. What means p-value in the ANOVA table for linear regression?  
3. What property describes a coefficient of determination?  

 
 
 

 

 

 

 

Example  1: During control measurements of industrial components size we randomly chosen 8 
components showing mostly positive divergences from normal values in the length and height:  

 
length divergence [mm] 3 4 4 5 8 10 6 3 
height divergence [mm] 4 6 5 6 7 13 9 4 

 
Let’s find the linear regression model of dependency between the length divergence and height 
divergence. 
 
{Answer: Use a suitable software package.} 

 

Example  2: In the years 1931-1961, water flow in profile of Šance and Morávka water reservoirs 
were measured. Averages per year (m3/s) are given by the following table:  

 

   Problems  
 

  Question  
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year Šance Morávka  year Šance Morávka 
1931 4,130 2,476  1946 2,608 1,374 
1932 2,386 1,352  1947 2,045 1,194 
1933 2,576 1,238  1948 3,543 1,799 
1934 2,466 1,725  1949 4,055 2,402 
1935 3,576 1,820  1950 2,224 1,019 
1936 2,822 1,913  1951 2,740 1,552 
1937 3,863 2,354  1952 3,792 1,929 
1938 3,706 2,268  1953 3,087 1,488 
1939 3,710 2,534  1954 1,677 0,803 
1940 4,049 2,308  1955 2,862 1,878 
1941 4,466 2,517  1956 3,802 1,241 
1942 2,584 1,726  1957 2,509 1,165 
1943 2,318 1,631  1958 3,656 1,872 
1944 3,721 2,028  1959 2,447 1,381 
1945 3,290 2,423  1960 2,717 1,679 

 
 
Let’s assume that in one of following years, the average value of whole year water flow of 
Morávka reservoir is missing. In this year, the average water flow for Šance reservoir was 
2,910 m3/s.  Based on linear regression, try to determine the average water flow in Morávka 
reservoir. 
 
{Answer: Use a suitable software package.} 
 


