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   Study time:  70 minutes 
 

2. PROBABILITY THEORY  
  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Aim - you will be able to 

• characterize probability theory  

• explain general notions of probability theory  

• explain and use general relations between events 

• explain a notion of probability 

• define probability by basic axioms 

• define properties of probability function  

• use a conditional probability 

• explain theorem of total probability and Bayes theorem 
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   Study time:  20 minutes 
 

2.1. General notions 
 

 

 
 

  Explication 
 
Probability Theory is the deductive part of statistics.  Its purpose is to give a precise 
mathematical definition or structure to what has been thus far an intuitive notion of 
randomness.  Making randomness more precise will allow us to make exact probability 
statements.  For example when discussing association, we could only make rough statements 
in terms of tendencies. 
Mathematically, probability is a set function. That is, it is a function defined on some domain 
of sets.  Therefore, we begin this discussion my considering the fundamental nature of sets 
and the basic operations performed on sets, the elements of the domain of our probability 
function. 

• General notions of the probability theory  

Definition of Set - set A is a collection of elements. Elements are basic intuitive 
mathematically undefined entities.  To define a set, it is necessary to be able to determine 
whether any element is included or not included in the set.  The notion of inclusion is also an 
intuitive undefined concept. 
 
Definition of Elementary Events - In the case of probability theory, the elements of sets on 
which probability measures are defined are called elementary events. In practice, these 
elementary events may be measurement units, cases, or sample points.  

Example:   

{reverse, obverse} –when tossing the coin   

{1,2,3,4,5,6} – when tossing the dice   

 
We denote a set of all results �. This set we call sample space (of the elementary events). 
The elementary event {�} is a subset of the � set which contains one element � from � set, 
�∈  �.  
Then the event A will be an arbitrary subset of  �, A ⊂  �. 

    Aim  
• characterize probability theory  

•  explain general notions of probability theory  
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From statistics data we can easily determine that share of boys born in particular years with 
respect to all born children is moving around 51,5%. Despite the fact that in individual cases 
we can't foretell a sex of a child we can relatively exactly guess how many boys we find 
among 10 000 born children.  

From this example imply that relative frequencies of some events are stabilized with increase 
repetition number on certain values. We shall call this phenomenon a stability of the relative 
frequencies. This stability of relative frequencies is an empiric basis of the probability theory. 
Relative frequency is number n(A)/n where n is a total number of experiments and n(A) is a 
number of experiment realizations in which event A became. 

 
 

  Summary of notions 
 

Probability theory is mathematical branch whose logical structure is created axiomatically. 
Mathematic statistics is a science which is concerned with questions of data mining data 
analyzing and results forming.  
Random experiment is every finite process whose result is not given in advance by 
conditions upon whose is runed.  
Sample space � is a set of all possibly results of the experiment. 
Relative frequencies of some events with increase repetition number show certain stability. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 38 

   Study time:  20 minutes 
 

2.2. Operations with the elementary events  
 

 

 
 

 Explication 
 

What are types of the elementary events? 

If the elementary event � ∈  � (� ∈  A) came then we can say that an event A came with the 
experiment realization. We denote this result � ∈  A as result favourable to the event A. 
 
Certain event 
- is the event which become with every realization of the experiment. It is equivalent with the 
� set. 
Certain event is for example: we toss one of these numbers 1,2,3,4,5,6 (while tossing a dice) 
 
Impossible event 
- is the event which can never become in the experiment. We will denote it as∅ .  
Impossible event is for example: we toss number 8 (while tossing a dice). 
 

What are relations between events? 

Operations on Sets - The operations of union, intersection, complementation (negation), 
subtraction, the concept of subset, and the null set and universal set or sample space make up 
the algebra of sets. 
 
Intersection A ∩ B  
The set of all elements that are both in A and in B.  
 
 Graphic example:  
                                { }B    ∈∧∈= ωωω ABA�  

 
 
 
 
 

    Aim  
•  types of the elementary events 

•  general relations between events  
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Example – tossing a dice: event A – we toss a number 2 ,3 or 4 and event B – we toss a even 
number. It is obvious that A ∩ B ={2,4}.  
 
Union A ∪ B 
The set of all elements that are either in A or in B. 
  
 Graphic example:  
                       { }BABA ∈∨∈= ωωω     �  

 

A B 

 
 
Example – tossing a dice: Event A = {1,3,4} and event B is when we toss even number. It’s 
obvious that A ∪ B ={1,2,3,4,6}.  
 
Disjoint events A ∩ B = ∅ 
Two events A and B can’t become together. They have none common result. 
 
Example – tossing a dice: Event A – we toss even number and even B – we toss odd number. 
These events never have a same result. If event A become  than event B can’t become.  
 
Subsets (Subevent) A ⊂ B  
A is a subset of B if every element of A is also an element of B. It’s mean if event A become 
than event B become too. 
  
 Graphic example:  
                                 { } A BBA ∈�∈⇔⊂ ωω  
 

          

A B 
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A 

B 

 
 
Example – tossing a dice: Event A – we toss number 2 and event B – we toss even number. 
The event A is subevent of the event B.  
 
 
Events A and B are equivalent  A = B if A ⊂ B and at the same time B ⊂ Α.  
 
Example – tossing a dice: Event A – we toss even number, event B – we toss number what is 
divide of number 2. These events are equivalent.  
 
Subtraction  A-B  
The set of all elements that are in A but not in B 

                           
{ }B A   =  B - 

B A   =  B - 

∉∧∈ ωωωA

A �  

 
Graphic example:  

 

A B 

 
 

Example – tossing a dice: Event A – we toss a number greater than two and event B – we toss 
an even number. Subtraction of the events A and B is an event A – B ={3,5}. 
 
Complement of the event A (opposite event) 
The set of all elements that are not in A. 
                         { }AA ∉= ωω    
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Graphic example:                  
 

A 

 
 
Example – tossing a dice: Event A – we toss an even number, then an event A  - we toss an 
odd number.  
 
 
DeMorgan's Laws  
- DeMorgan's Laws are logical consequences of the fundamental concepts and basic 
operations of sets 
 
1. law 
The set of all elements that are neither in A nor in B. 

        BA = BA ��  
 

 

A 
B 

 
 
 
2. law 
The set of all elements that are either not in A or not in B. 

                BA = BA ��  
 

 
 
 

Ω 
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Mutually disjoint sets and partitioning the sample space  
The collection of sets {A1, A2, A3, . . .  } partition the sample space Ω: =ji AA� ∅  
for ji ≠  

                                 
n

1i
�

=

=Ω iA  

 
 

A A A 

A 

A 

A 

A 

1 2 3 

4 

5 

6 7 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ω 
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   Study time:  30 minutes 
 

2.3. Probability theory 
 

 

 
 

 Explication 
 

Notion of probability 

Probability of the event A is a number P(A) which has a property that a relative 
frequency of the event A with increase realizations number is approaching to the 
number P(A). 

This probability definition is known as classic probability definition. 

Now we introduce axiomatic probability definition. 

Axiomatic probability definition 

Probability space is a triad (�, S, P) where  
(i) � is sample space (elements of � are elementary events) 
(ii) S  is a set of subsets of � that it holds: 

a) �∈S; 
b) if  A∈S then A = � – A  ∈  S ; 

c) if A1, A2, A3, . . . ∈  S  then �
∞

1=i
iA ∈  S 

Elements of S we denote as events. 
 
(iii) P is function from S  to  < 0,1 > such that it holds: 

a) P(�) = 1- probabilities are scaled to lie in the interval [0,1]; 
b) P( A ) = 1– P(A)   for every A∈S ; 

    Aim  
• notion of probability 

• basic theorems and axioms of probability  

• types of probability  

• conditional probability  

• theorem of total probability and Bayes theorem 
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c) For a collection of mutually disjoint sets, the probability of their union is 
equal to the sum of their probabilities. 

 

{B} P +{A} P =B} {A  P
  then,  =  B A   If

�

∅∩  

 
In general, 

}P{  =  }{ P

j,  i ;  j i,  1   , = A  

11=i

j

�
∞

=

∞

≠∞≤≤∀∅∩

i
ii

i

AA

A

�

 

                  
                        Function P is called probability measure or shorter probability. 
  
Example – tossing a dice: 
� = {1,2,3,4,5,6,}, 
S is a set of subsets of � (sometimes we denote S = exp �) and probability is defined by 

P(A)=
6

cardA
 where card A is number of set A elements.  

Basic Theorems of Probability 

The following theorems are the logical consequences of the three basic probability axioms we 
have postulated. 
 

1. For disjoint events A and B hold:  
      ∅∩   =  B A  then        

P{B} + P{A} = B} P{A �
 

 
2. If for two events A,B hold:  
      A  B ⊂ A} P{    B} P{ then  ≤  
      - note that A is partitioned by B and its complement, and hence P{A} is sum of these  
        two parts 

 
3. For every event A holds: P }A{  = 1- P{A}  

- the union of the two sets is the sample space, the intersection is the null sets 
 

4. It holds:  P }  {∅ = 0 
 
5. It hold: }AP{B- P{B}     A}-B P{ �=  

- note that B-A and B intersection A are two disjoint sets whose union is B 
 

6. Especially if B A ⊂  P{A}- P{B}     A}-B P{then  =  
                     
7. For arbitrary events A,B hold: 

B}P{A-P{B}+P{A}=B}P{A ∩∪       
        

8. Follows from de Morgan's laws 
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       }B  A P{ - 1  =                  

 B} A  P{ - 1  =  B} A  P{

∩
∪∪

 
 

Definition of Conditional Probability 

The definition of conditional probability determines how probabilities adjust to changing 
conditions.  When we say that the condition B applies, we mean that the set B is known to 
have occurred and therefore the rest of the sample space in the complement of B has zero 
probability.  Under these new circumstances, the revised probability of any other event, A, 
can be determined from the following definition of conditional probability: 
 

   P{B}
B}P{A

B}P{A
∩=

        
            
By this formula, the probability of that part of the event A which is in B or intersects with B is 
revised upwards to reflect the condition that B has occurred and becomes the new probability 
of A. It is assumed that the probability of B is not zero. 
 

 
 

B}P{A  - probability of the event A conditional by the event B 

 

Conditional Probability Definition of Independence 

If the condition that B has occurred does not affect the probability of A, then we say that A is 
independent of B. 
 
   {A} P  = B}{AP  
 
From the definition of conditional probability, this implies 
 

   
P{B}

B}P{A
  =  {A}

�
P  

 
and hence, 
 
   P{B}P{A}  = B}P{A ⋅�  
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It is clear from this demonstration that if A is independent of B, then B is also independent of 
A. 
 
Example – tossing a dice: 
For events A - "we toss 1 in the first toss" and B - "we toss 1 in the second toss" and event C 
= A ∩ B - "we toss 1 in the both tosses" then it holds: 

P{C} = P{A ∩ B} = P{A}.P{B} =  
36
1

6
1

6
1 =⋅  

Theorem of Total Probability 

If a collection of sets {B1, B2, B3, . . ., Bn} partition the sample space Ω, that is, 
 

  
Ω

≠∀∅=

=

  =  

   ;

1
�

�

n

i
i

ji

B

jiBB
 

 
 then for any set A (P{A}�0) in the sample space Ω, 

 

  � ⋅
n

1=i
ii }P{B}BP{A   =  P{A}  

 
n=7 

1 2 3

4

5

6 7

B B B

B

B

B

B
� 

 
 
Proof: Since the collection of sets {B1, B2, B3, . . ., Bn} partitions the sample space Ω, 

 

 �
n

1=i
i}BP{A   =  P{A} �  

 
From the definition of conditional probability 
 

 }P{B }BP{A = }BP{A iii�  
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Bayes Theorem  

If the collection of sets {B1, B2, B3, . . ., Bn} partitions the sample space Ω, then 
 
 

�
=

n

i

P
A

1
ii

kk
k

}P{B }B{A

}P{B }BP{A
  =  }P{B

 

 
Proof: From the definition of conditional probability, 

  

P{A}
}B{P{A}P

  =
P{A}

}P{B
  =    }P{B kk

k
A

A
�

 

 
Substituting for P{A} from the Theorem of Total Probability, the proof follows. 
 
Graphical representation of Bayes theorem (vyšrafovaná plocha znázor�uje jev A):  
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PROBABILITY THEORY – SOLVED EXAMPLES 
 

      Solved example 
 
Probability of failing of the extinguishing system is 20%. Probability that alarming system 
fails is 10%  and probability that both systems fail is 4%. What is a probability that: 
a) at least one system will be working? 
b) both systems will be working? 

 
Solution:  

 
We denote:  H  ...  extinguishing system works  

          S   ...  alarming system woks 
 

We know that: ( ) 20,0=HP  
  ( ) 10,0=SP  
  ( ) 04,0=∩ SHP  
 

We must find: 
 

ada)  ( )SHP ∪  
   

We have two possibilities for solving: 
 
By the definition: Events H and S are not the disjoint events and hence: 
 

( ) ( ) ( ) ( )SHPSPHPSHP ∩−+=∪ , 
 
but would be a problem determine a ( )SHP ∩  
 
 
By the opposite event: From de Morgan’s laws we can write:  
 

( ) ( ) ( )SHPSHPSHP ∩−=∪−=∪ 11 , 
 

( ) 96,004,01 =−=∪ SHP  

 
The probability (that at least one system will be working) is 96%. 

 
adb)  ( )SHP ∩  

 
We can’t solve it by the definition: 
 
 ( ( ) ( ) ( ) ( ) ( )HPHSPSPSHPSHP ⋅=⋅=∩ ), 
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because we have no information about dependency of the failures of the individual systems. 
Hence we try to use the opposite event: 
 

( ) ( ) ( ) ( ) ( ) ( )[ ]SHPSPHPSHPSHPSHP ∩−+−=∪−=∩−=∩ 111 , 
 

( ) ( ) ( ) ( )[ ] [ ] 74,004,010,020,011 =−+−=∩−+−=∩ SHPSPHPSHP  

 
The probability (that both systems will be working) is 74%. 
 
 

      Solved example 
 
120 students passed mathematics and physics exams. 30 of them failed to pass both exams. 8 
failed to pass only math exam and 5 failed to pass only physics exam. What is probability that 
random student: 
a) passed math exam if we know that he failed to pass physics exam 
b) passed physics exam if we know that he failed to pass math exam 
c) passed math exam if we know that he passed physics exam 
 
Solution:  

 
We denote: M ... he passed mathematics exam 
                    F ... he passed physics exam 

 
We know that:  

( )
120
30=∩ FMP  

  ( )
120

8=∩ FMP  

  ( )
120

5=∩ FMP  

 
We must find: 

 
ada)  ( )FMP  

 
by the definition of conditional probability: 

 

( ) ( )
( )

( )
( ) ( )FMPFMP

FMP
FP

FMP
FMP

∩+∩
∩=∩= , 

 

( ) ( )
( ) ( ) 14,0

7
1

35
5

120
30

120
5

120
5

≅==
+

=
∩+∩

∩=
FMPFMP

FMP
FMP

 

 
The probability (that he passed math exam if we know that he failed to pass physics exam) is 
14%. 
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adb)  ( )MFP  

 
the same way as ada): 

 

( ) ( )
( )

( )
( ) ( )MFPMFP

MFP
MP

MFP
MFP

∩+∩
∩=∩= , 

 

( ) ( )
( ) ( ) 21,0

19
4

38
8

120
30

120
8

120
8

≅==
+

=
∩+∩

∩=
MFPMFP

MFP
MFP

 

 
The probability (that he passed physics exam if we know that he failed to pass math exam) is 
21%. 

 
adc)  ( )FMP  

 
from the definition: 

 

( ) ( )
)(FP
FMP

FMP
∩= , 

 
we have two possibilities: 

 
1)  

( ) ( ) ( )
( )

( )
( ) ( )[ ]

( ) ( ) ( )[ ]
( ) ( )[ ]

( ) ( )[ ] ( ) ( )[ ] ( )[ ]
( ) ( )[ ]

( ) ( ) ( )[ ]
( ) ( )[ ] 91,0

85
77

120
85

120
77

120
30

120
5

1

120
30

120
8

120
5

1

1
1

1
1

1
1

1
1

1
1

)(

≅==

��

�
��

� +−

��

�
��

� ++−
=

∩+∩−
∩+∩+∩−=

=
∩+∩−

∩−∩+∩+∩+∩−=

=
∩+∩−

∩−+−=
∩+∩−

∪−=
−

∩−=∩=

MFPMFP
MFPMFPMFP

MFPMFP
MFPMFPMFPMFPMFP

MFPMFP
MFPMPFP

MFPMFP
FMP

FP
FMP

FP
FMP

FMP
 

 
2) 
We write given data into the table: 
 

 They passed math 
exam 

They failed to pass 
math exam 

Total 

They passed physics exam   8  
They failed to pass physics exam  5 30 35 

Total  38 120 
 

and we calculate remaining data: 
   

How much students passed physics exam? It is total number(120) minus number of students 
who failed to pass physics exam (35) and that is 85. Analogously for number of students who 
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passed math exam: 120 – 38 = 82. And for number of students who passed both exams: 82 – 5 
= 77. 
 

 They passed math exam They failed to pass 
math exam  

Total 

They passed physics exam 77 8      85 
They failed to pass physics exam 5 30 35 

Total 82 38 120 
 
Finding probabilities are: 

 

( ) ( )
120
85

;
120
77 ==∩ FPFMP , 

 
from that imply: 

 

( ) ( )
91,0

85
77

120
85

120
77

)(
≅==∩=

FP
FMP

FMP
 

 
The probability (that he passed math exam if we know that he passed physics exam) is 91%. 
 
 

      Solved example (Example of an Application of Bayes's Theorem) 
 
In a famous television game show, the winner of the preliminary round is given the 
opportunity to enhance his winnings.  The contestant is presented with three closed doors and 
told that behind one of the doors is a new automobile while behind the other two doors are 
goats.  If the contestant correctly selects the door which conceals the automobile, he will win 
the automobile. 
 
 The game show host asks the contestant to make a preliminary selection, after which 
the host opens one of the other two doors to reveal a goat.  The contestant is then given the 
option of switching his choice to the other door which remains closed.  Should he change his 
choice? 

1 2 3

 
 
Solution: 
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The sample space consists of three possible arrangements {AGG, GAG, GGA}. 
 
Assume that each of the three arrangements have the following probabilities: 
 
p1  =  P{AGG} p2  =  P{GAG} p3  =  P{GGA} 
 
where   p1  +  p2  +  p3  =  1. 
 
Assume without loss of generality that the contestant's preliminary choice is Door #1 and the 
host opens Door #3 to reveal a goat.  One the basis of this information we must revise our 
probability assessments.  It is clear that the host cannot open Door #3 if it conceals the 
automobile. 
 
 0  = GGA}  #3P{Door  
 
Also, the host must open Door #3 if Door #2 conceals the automobile since he cannot open 
Door #1, the contestant's choice. 

 
 1  = GAG}  #3P{Door  
 

Finally if the automobile is behind the contestant's first choice, Door #1, the host can choose 
to open either Door #2 or Door #3.  Suppose he chooses to open Door #3 with some 
probability q. 
 
 q  =  AGG}  #3P{Door  

 
Then by Bayes' Theorem, we can compute the revised probability that the automobile is 
behind Door #2 as 
 

#3}P{Door 
P{GAG}GAG}  #3Door {P

 = }#3Door  P{GAG 
⋅

 
 
Substituting known values into this equation we obtain, 
 

21

2

321

2

p + qp
p

  = 
)0()1()(

1
  =  #3}Door  GAG {P

pppq
p

×+×+×
×

 
 
Thus the probability that the automobile is behind Door #2 after the host has opened Door #3 
is greater than one half if, 
 
 

21 p < qp . 

 
In this case, the contestant should change his choice.  In the normal case where the original 
probabilities of the three arrangements, pi, are equal and the host chooses randomly between 
Door #2 and Door #3, the revised probability of Door #2 concealing the automobile will be 
greater than one half.  Therefore, unless the contestant has a strong a priori belief that Door #1 
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conceals the automobile, and/or believes that the host will prefer to open Door #3 before Door 
#2, he should switch his choice. 
 

  

 

 
 
As the above diagram illustrates, if the original probabilities of all three arrangements are 
equal and the host chooses randomly which door to open, then of the one half of the sample 
space covered by opening Door #3, two thirds falls in the region occupied by arrangement 
GAG.  Therefore, if the host opens Door #3, Door #2 becomes twice as likely as Door #1 to 
conceal the automobile. 
 

 

 Summary of notions 
 

Random experiment is every finite process whose result is not determined in advance by 
conditions upon whose it runs and which is at least theoretically infinitely repeatable. 
Possible results of random experiment are called elementary events. 
A set of all elementary events we call a sample space. 
Probability measure is real function defined upon subset system of the sample space which 
is non-negative normed and �-aditive. 
Conditional probability is a probability of event with conditional that some other (not 
impossible) event happened. 
A and B events are independent if intersection probability of these two events is equal to a 
product of individual event probabilities. 
Total probability theorem gives us a way how to determine probability of some event A 
while presuming that complete set of mutual disjoint events is given. 
Bayes's theorem allows us to determine conditional probabilities of individual events in this 
complete set while presuming that A event happened. 
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1. How we determine probability of two events union? 

2. How we determine probability of two events intersection?  

3. When are two events independent? 

 
 

 

 

 

 
 
Example  1: Suppose that a man and a woman each have a pack of 52 playing cards. Each draws a 
card from his/her pack. Find the probability that they each draw the ace of clubs. 
 
{Answer: independent events - 0.00037} 
 
Example  2: A glass jar contains 6 red, 5 green, 8 blue and 3 yellow marbles. If a single marble is 
chosen at random from the jar, what is the probability of choosing a red marble? a green marble? a 
blue marble? a yellow marble? 
 
{Answer: P(red)=3/11, P(green)=5/22, P(blue)=4/11, P(yellow)=3/22} 

 
Example  3: Suppose there are two bowls full of cookies. Bowl #1 has 10 chocolate chip cookies and 
30 plain cookies, while bowl #2 has 20 of each. Fred picks a bowl at random, and then picks a cookie 
at random. We may assume there is no reason to believe Fred treats one bowl differently from another, 
likewise for the cookies. The cookie turns out to be a plain one. How probable is it that Fred picked it 
out of bowl #1? 
 
{Answer: Conditional probability - 0.6} 
 
Example  4: Suppose a certain drug test is 99% accurate, that is, the test will correctly identify a drug 
user as testing positive 99% of the time, and will correctly identify a non-user as testing negative 99% 
of the time. This would seem to be a relatively accurate test, but Bayes's theorem will reveal a 
potential flaw. Let's assume a corporation decides to test its employees for opium use, and 0.5% of the 
employees use the drug. We want to know the probability that, given a positive drug test, an employee 
is actually a drug user. 
 
{Answer: Bayes's theorem - 0.3322} 

 
 

 

   Problems  
 

  Questions 
 


