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   Study time:  60 minutes 
 

6. THE NORMAL DISTRIBUTION AND THE LIMIT THEOREMS  
 

 

 
 

 Explication 

 

6.1. Normal Distribution 
Astronomers were responsible for one of the earliest attempts to formally model the random 
variation inherent in the measurement process.  The probability density function which was 
adopted at that time has been alternatively called the error function, the Gaussian curve, and 
today most commonly, the normal distribution.  The normal distribution is the most widely 
used model of random variation.  Its popularity is partly based on its intuitive appeal as a 
simple mathematical model of our instinctual notions of what constitutes random variation.  
However, there is also sound theoretical support for the belief that the normal distribution 
frequently occurs in practice. 
 
The form of the normal density model is a simple symmetric bell-shaped curve with a single 
mode.  This shape is achieved by the use of a negative exponential function whose argument 
is the square of the distance from the mode.  Since squared distance makes values near zero 
smaller, the normal curve has a smooth rounded shape in the region of its mode.  The normal 
density has two parameters, µ , its mode and the point about which the density is symmetric, 
and �, a scale or dispersion parameter which determines the concentration of the density about 
the mode and the rate of decrease of the density towards the tails of the distribution.  The 
family of normally distributed random variables is denoted by 
 

),(    2σµNX →  

The probability density of the random variable X with the normal 
distribution: ),(    2σµNX →   

    Aim -  you will be able to 

• characterize the normal and the standard normal distribution 

• formulate and use the limit theorems 

• describe special distributions  
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pro - ∞ < µ < ∞ ,      σ2 > 0  

This density is symmetric about µ and therefore the mean, median, and mode are all equal to 
µ.  Also due to the symmetric bell shape of this density, the interquartile range equals the 
Shorth which is twice the MAD. 
 
The following charts illustrate the distribution of probabilities for a normal random variable.  
The first chart shows that the probability of being between 0 and 1 standard deviation (�) 
above the mean (µ) is 0.3413 or approximately one-third.  Since the distribution is symmetric, 
the probability of being between 0 and 1 standard deviation (�) below the mean (µ) is also 
approximately one third.  Therefore the probability of being more than one standard deviation 
from the mean in either direction is again one third. 
 
                )(xf  
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                                                  x 
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Conversely, the upper and lower quartiles are two thirds of a standard deviation above and 
below the mean.  Thus µ �+/- 0.67 � divides the probability of the distribution into four equal 
parts of 25%. 
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The mean and variance of a normal random variable are equal to its location parameter µ, and 
the square of its scale parameter �2, respectively. 
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The distribution function of the normal distribution: 
  

dtedttfxF
x dt

tx

��
∞−

−−

∞−

⋅== 2

2

2

)(

2
1

)()( σ
µ

πσ
 

  
 

Standard normal distribution 

A normal random variable with location parameter 0 and scale parameter 1 is called a 
standard normal random variable.  Because of the form of the normal density, it is possible to 
determine probabilities for any normal random variable from the distribution function of the 
standard normal variable.  Consequently, the standard normal random variable has been given 
the special symbolic destination, Z, from which the z-score derives.  The standard normal 
distribution function is given the special symbol, �. 

Then, 
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where �(z) is the standard normal density 
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Standardization - relation between normal and standard normal distribution 
 
Therefore if X is any normal random variable N(µ, σ2) we can define a related standard 

normal random variable Z = 
X − µ

σ
 and it has the standard normal distribution. 

                          X ... N(µ, σ2)   �  Z = 
X − µ

σ
   , Z ... Φ( 0, 1 )  

 
The distribution function of X can therefore be computed from the derived random variable Z 
which has a standard normal distribution: 
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      Solved example 

X ... N( 2, 25 ), determine P( 2 < X < 8 )     

Solution:       

P( 2 < X < 8 ) = F( 8 ) - F( 2 ) = Φ( 
8 2

25

−
 ) - Φ( 

2 2

25

−
 ) = Φ( 1.2 ) - Φ( 0 ) = 0.885 - 0.5 = 0.385 
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In the tables or by suitable software we can find: Φ( 1.2 ) = 0.885, Φ( 0 ) = 0.5 
 
Example:  

The following chart illustrates the normal density with zero mean for selected values of σ.  It 
is clear that the mean, median, and mode of a normal random variable are all equal, and the 
two parameters of the normal distribution are the embodiment of our intuitive notions about 
the general distributional characteristics of location and scale. 
 

                                                                  )z(ϕ                                                                    
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Standard normal 

σ = 2 

σ = 1.5 

 
 
 
6.2. Limit Theorems  
Definitions of the basic notions 

 Convergence in probability:  
               1)(lim =<−

∞→
εXXP nn

    � Xn p →  X;  i.e. a sequence of random variables {Xn} 

converges in probability to random variable X                       
 
Convergence in distribution: 
{Fn(x)} ... is a sequence of distribution functions corresponding to random variables {Xn} 
  
The sequence {Xn} converges towards X in distribution, if:  
 

( )lim
n nF x

→∞
= F(x), 

 
for every real number x at which F is continuous. 
 
Consequence:   
The sequence {Xn} converges in distribution to distribution N(µ, σ2), i.e. the random variable 

Xn has asymptotical normal distribution if lim ( )
n nF x

→∞
= )

�

�x
�(

−
. 
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Limit theorems 
 

Chebyshev's inequality: 

X ... is an arbitrary random variable with mean  EX and variance DX.  
Then 

 

P( 	X - EX 	≥  ε ) ≤ DX
ε 2

,        ε > 0 

 
This relation results from the variance definition: 
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Using of the Chebyshev's inequality (for calculation probabilities): 
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e.g. we can apply it to XX =  with respect to following limit theorems: 
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Law of large numbers:   

{Xn} ... is a sequence of independent random variables, each having a mean EXn =� and a 
variance DXn  =�2 .        
 
Define a new variable                           
   

nX   �
=

=
n

j
jX

n 1

.
1

,       n ∈ N 

 
The sequence { nX  } converges in probability to �: nX p → �. 
 
Notion: This affirmation results from the Chebyshev's inequality. 
 
Bernoulli theorem: {Xn} ... is a sequence of the binomial independent random variables with 
parameters n=1 a )1,0(∈p  (so-called alternative random variable, let Xn = 1 in case the event 
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will be at one trial and Xn = 0 in case the event won't be; P(Xn = 1) = p  a P(Xn = 0) = 1-p). 
Then we know that 

nX   �
=

=
n

j
jX

n 1

.
1

pp→  

 
The expression on the left side represents a relative frequency of the event occurrence in the 
sequence n trials. That is why we can estimate a probability ingoing any occurrence by 
relative frequency of this event occurrence in the sequence n trials when we have a great 
number of the trials. 

 

Central limit theorem 

Lindeberg's theorem: 
Let X1, X2, ... , Xn ... be a sequence of independent random variables, n → ∞ . 
Xi ... have the same probability distribution, EXi = µ, DXi = σ2.  
Then  
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                                for  - ∞ < < ∞u , it's mean that nY  converges in distribution to distribution 
N(0,1). 
 
For sufficiently large numbers n holds: 
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n

i
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1

  � EX = nµ, DX = nσ2 , we can approximate the distribution nX  by the 

distribution N( nµ, nσ2 ), i.e. nX  has the asymptotic normal distribution, 
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2. Analogous for X : 

      X = 
n

X
n

i
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=1  has the asymptotic normal distribution with parameters  E X  = µ, 

D X = σ 2
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Special case of the above theorem is Moivre-Laplace theorem: 
 
Let Sn ... Bi( n, p );  ESn  = np;  DSn  = np( 1-p ) 

[ �
=

=
n

i
in XS

1

,   Xi ... has the alternative distribution thus binomial Bi(1, p)] 

then for large n hold that  )1,0(
)1(

N
pnp

npS
U n

n →
−

−= .       
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Applications of the Central Limit Theorem – Normal Approximations to 
the binomial and Poisson distributions 
 
Taking n observations of a Bernoulli distribution and computing the sample average p̂  is 
equivalent to defining the sample proportion random variable 
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The sample proportion will have a Binomial distribution will the values re-scaled from 0 to 1.  
That is, if X has a binomial distribution with parameters n and p. 
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Therefore by the Central Limit Theorem, we can approximate the binomial distribution by the 
normal distribution for large n. 
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Probabilities concerning ranges of value for these variables can then be calculated as 
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For smaller sample sizes a so-called continuity correction is often employed to improve the 
accuracy of the approximation.  Thus we would compute the preceding probability as  
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The Central Limit Theorem applies broadly to most distributions.  In particular, the normal 
distribution can be used to approximate the Poisson distribution when the interval of 
observation, t, and hence the expected number of events, λt, is large. Let 
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We know that the mean and variance of the number of events during an interval t is λt, and 
therefore the mean and variance of the rate at which events occur is 
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Probabilities concerning Poisson counts or rates can then be calculated as 
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Applying the continuity correction, we would calculate the probability as, 
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6.3. Special sampling distribution 

Chi-square distribution  

The chi-squared random variable arises as the sum of squared standard normal random 
variables.  The distribution has a single parameter n, the number of squared normal random 
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variables in the sum.  This parameter is called the degrees of freedom of the chi-squared 
distribution. 
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A χ-squared random variable with one degree of freedom 2

1χ  is simply a squared standard 
normal random variable.  The distribution function of this random variable is 
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The probability density function of a χ1

2  random variable can be found from the derivative of 
its distribution function. 
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The general density for a   χn

2  random variable is 
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where ( )tΓ  is a gamma function. 
 
The mean and variance of the chi-squared distribution are 
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 The density function for various values of the parameter n: 
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The   χn
2  arises as the sampling distribution of the sample variance 
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If the Xi are a sample from a normal population with mean µ and standard deviation σ, then 
the sample variance has distribution 
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To see this, consider the sum of squared standardized observations from a normal population 
with mean µ and standard deviation σ. 
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This expression clearly has a   χn

2  distribution.  Now re-express the numerator by added and 
subtracting the sample mean from the squared terms. 
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Expanding and simplifying, we obtain 
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The second term is simply the squared standardized sample mean and therefore has a χ1

2  

distribution.  Since the   χn
2  is the sum of n squared normals, the first term must be the 

remaining n-1 squared normals.  Therefore, 
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Note that this argument is only heuristic and not a formal proof.  The independence of the 
sample mean from the deviations about the sample mean has not been established. 
 
This fact is important at the statistical hypothesis testing.  
1. We use this distribution for verification of the random variables independence.  
2. We can use chi-square distribution when we test that the random variables follow from 
certain distribution. This test is known as "Goodness-of-Fit Test".  
 
Student’s distribution (t distribution) 

The Student's t distribution is the sampling distribution of the standardized sample mean when 
the sample variance is used to estimate the true population variance.  The origin of the 
distribution's name, Student's t has an interesting history.  An Irish statistician, W. S. Gosset 
first published this distribution anonymously under the pseudonym "Student" because his 
employer, Guiness Breweries of Dublin, prohibited its employees from publishing under their 
own names for fear that its competitors would discover the secret of their excellent beer.  In 
his original paper, Gosset used the designation "t" for his statistic.  Hence the name is 
Student's. 
 
The Student's t distribution with n degrees of freedom is the ratio of a standard normal 
random variable over the square root of a chi-squared random variable divided by its degrees 
of freedom.  The t distribution has a single parameter, n the degrees of freedom of the chi-
squared random variable in the denominator. 
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The probability density function of this random variable is 
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The mean and variance of the t-distribution are 
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The following figure shows the density function for different values of number of the degrees 
of freedom: 
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If random variables X1,X2,...,Xn have the normal distribution N(µ,σ2) and they are 
independent then we can show that  

),(    
2

nNX σµ→   
and  
 

)1,0(  N

n

X →−
σ

µ

 
 
then 

1

2

2

1

 )1(

      n-t

n

n
S

n

X

n
S

X →

−

−

�
�
�

�

�

�
�
�

�

�
−

=−

σ

σ
µ

µ

 

Student's t-distribution has a wide exercise.  
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Fisher-Snedecor‘s distribution - F distribution 

Snedecor's F distribution arises as the ratio of two chi-squared distributions divided by their 
respective degrees of freedom. The F distribution has two parameters, n the degrees of 
freedom of the chi-squared random variable in the numerator and m the degrees of freedom of 
the chi-squared random variable in the denominator. 
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The probability density function of this random variable is     
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The mean and variance of the t distribution are 
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The following figure shows the density function for different values m a n: 
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Clearly such a distribution would arise as the sampling distribution of the ratio of the sample 
variances from two independent populations with the same standard deviation σ.  The degrees 
of freedom represent one less than the samples sizes of the numerator and denominator 
sample variances respectively. 
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We use this distribution for evaluation of statistical analysis results.  

 

 Summary of notions 
 

One of the most important continuous distributions is a normal distribution. It is distribution 
with two parameters, when the first parameter is a mean and the second one is a variance. We 
get standard normal distribution for special choice of parameters (the mean is equal 0 and the 
variance is equal 1).   
Chebyshev's inequality puts an upper bound on the probability that an observation should be 
far from its mean. 
Chí-square distribution is a distribution derived from sum of squared standard normal 
random variables.  
Central limit theorem describes asymptotic statistic behavior of mean. We can use it for 
substitution of binomial (Poisson) distribution by normal distribution. 
Student's t-distribution with n degrees of freedom is the ratio of a standard normal random 
variable over the square root of a chi-squared random variable divided by its degrees of 
freedom.  
F distribution is the ratio of two chi-squared distributions divided by their respective degrees 
of freedom.    

 

 
 

 

1. Define relation between normal and standard normal distributions. 

2. What is Chebyshev's inequality? 

3. Explain law of large numbers. 

4. Describe chi-square distribution. 

 

 

 

  Questions  



 103 

 

 

 

 
 

Example  1: If the mean (µ) height of a group of students is equal to 170cm with a standard deviation 
(σ) of 10 cm, calculate the probability that a student is between 160cm and 180cm. 
 
{Answer: 0,6828} 

Example  2: Let X = "height of a randomly chosen male", and suppose that X is normally distributed 
with µ = 176cm and σ2 = 25 cm2,i.e. X is N(176,25): 

(i) calculate the probability that the height of a randomly chosen male is less than or equal to 
182 

(ii) calculate the probability that the height of a randomly chosen male is less than or equal to 
170 

(iii) calculate the probability that the height of a randomly chosen male is not greater than 176 
(iv) calculate the probability that the height of a randomly chosen male is between 170 and 182 

cm 
(v) calculate the probability that the height of a randomly chosen male is not less than 160 
 

{Answer: (i) 0.885, (ii) 0.115, (iii) 0.5, (iv) 0.7698. (v) 0.9993} 
 

Example  3: We take the heights of 9 males and we assume that the heights are i.i.d. N(176,25) as 
before. What is the probability that the sample mean height is between 174 and 178 cm? 
 
{Answer: 0.7698} 
 
Example   4: Premature babies are those born more than 3 weeks early. A local newspaper reports that 
10% of the live births in a country are premature. Suppose that 250 live births are randomly selected 
and the number Y of "preemies" is determined. 

(i) What is the probability that X lies in between 15 and 30 (both included)? 
(ii) Find the proportion of the event fewer than 20 births are premature? 
 

{Answer: (i) 0.86, (ii) 0.12} 

   Problems  
 


