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1 Why to generalize the notion of a classical solution

Let us consider the heat equation modeling heat distribution (in a thin rod) with homogeneous
Dirichlet boundary conditions, i.e., the boundary value problem⎧⎨⎩−

(
p(x)y′)′ + q(x)y = f(x) in (0, 2),

y(0) = y(2) = 0.
(1.1)

The solution, i.e., the function y, describes the stationary heat distribution in a thin rod (y = y(x)
is the temperature in the cross section) and

• p . . . characterizes the material of the bar (related to the coefficient of thermal con-
ductivity),

• q . . . characterizes heat exchange with the exterior (related to the coefficient of heat
transfer),

• f . . . related to the heat sources inside of the bar, the exterior temperature,
the coefficient of heat transfer.

Let us consider two – physically reasonable – cases, when the the classical solution to
(1.1) does not exist:

1) ⎧⎨⎩−y′′ = f(x) in (0, 2),

y(0) = y(2) = 0;
where f(x) :=

⎧⎨⎩2 for x ∈ ⟨0, 1),

−2 for x ∈ ⟨1, 2⟩

(distribution of the sources is not continuous).

2) ⎧⎨⎩−
(
p(x)y′)′ = 1 in (0, 2),

y(0) = y(2) = 0;
where p(x) :=

⎧⎨⎩1 for x ∈ ⟨0, 1),

2 for x ∈ ⟨1, 2⟩

(the bar is made of two different materials).

In either of the two cases the classical solution (i.e., a smooth function satisfying the
corresponding equation in every point of (0, 2) and vanishing in 0 and 2) does not exist, even
though from the physical point of view they are reasonable. This brings up the question of how
to solve such problems.

It seems reasonable to split the interval (0, 2) into two disjoint ones, namely (0, 1) and (1, 2).
Let us illustrate such an approach on the former example (and leave the second one as an exercise
to the reader) ⎧⎨⎩−y′′

1 = 2 in (0, 1),

y1(0) = 0;

⎧⎨⎩−y′′
2 = −2 in (1, 2),

y2(2) = 0.
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We can write ⎧⎨⎩y1(x) = c1 + c2x− x2,

y1(0) = c1 = 0,

⎧⎨⎩y2(x) = d1 + d2x+ x2,

y2(2) = d1 + 2d2 + 4 = 0,

and thus
y1(x) = c2x− x2, y2(x) = −4 − 2d2 + d2x+ x2.

Now we can ‘combine’ the solutions on individual intervals:

y(x) :=

⎧⎨⎩y1(x) = c2x− x2 for x ∈ (0, 1),

y2(x) = −4 − 2d2 + d2x+ x2 for x ∈ (1, 2).
(1.2)

It remains to compute the constants c2 a d2.

The physically reasonable assumption of the continuity of the solution in x = 1, i.e.,
the condition

y(1−) = y(1+),

leads us to

y(1−) = y1(1−) = c2 − 1 = y(1+) = y2(1+) = −4 − 2d2 + d2 + 1,

and
c2 = −2 − d2. (1.3)

To fully define the solution a transmission condition has to be added:

p(1−)y′(1−) = p(1+)y′(1+).

From a physical point of view, this condition ensures that the amount of a substance ‘flowing
into’ x = 1 is equal to the amount of a substance ‘flowing out’ of it.

In our case the condition reads
y′(1−) = y′(1+),

and thus
y′(1−) = c2 − 2 = y′(1+) = d2 + 2,

or
c2 = 4 + d2. (1.4)

From (1.3) a (1.4) one can easily conclude that c2 = 1 a d2 = −3, and so (after the substitution
into (1.2))

y(x) :=

⎧⎨⎩x− x2 for x ∈ ⟨0, 1⟩,

2 − 3x+ x2 for x ∈ ⟨1, 2⟩.

We have presented a situation, where the classical solution of a reasonable problem did not
exist, yet it was possible to find a ‘physically reasonable’ solution by ‘classical methods’. The
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aim is to generalize the notion of a solution to a differential equation (or the boundary value
problem, to be more precise) also for much more ‘exotic’ cases and for situations where the
‘classical methods’ are not sufficient.

To get an idea of an alternative approach, let us consider the following example. Let us
assume that u is a classical solution to the boundary value problem⎧⎨⎩−u′′ = f(x) in ⟨0, 2⟩,

u(0) = u(2) = 0.
(1.5)

This means that

u ∈ C2(⟨0, 2⟩), u(0) = u(2) = 0, ∀x ∈ ⟨0, 2⟩ : − u′′(x) = f(x).

For every v ∈ C1(⟨0, 2⟩) such that v(0) = v(2) = 0 it holds∫ 2

0
−u′′(x)v(x) dx =

∫ 2

0
f(x)v(x) dx.

Applying integration by parts for the right-hand-side integral∫ 2

0
−u′′(x)v(x) dx = [−u′(x)v(x)]20 +

∫ 2

0
u′(x)v′(x) dx =

∫ 2

0
u′(x)v′(x) dx

leads us to the fact that for every v of the qualities described above the (classical) solution u to
the boundary value problem (1.5) has to satisfy the equality∫ 2

0
u′(x)v′(x) dx =

∫ 2

0
f(x)v(x) dx. (1.6)

Note that this relation does not involve the second derivative of the solution u and one can
use it for the definition of the so-called ‘weak solution’ to the corresponding boundary value
problem.

Incidentally, physical reasoning (used to set up a mathematical model – an equation describing
some phenomenon) often leads to similar ‘integral equations’. The differential equation can
be derived under additional assumptions on the smoothness of the solution (in our case: u ∈
C2(⟨0, 2⟩)). In a sense, it thus seems more natural to define the solution to a particular problem
by the integral equation.

To support the above statement let us note that from (1.6) we immediately obtain the
aforementioned transmission condition. Indeed, substituting

f(x) :=

⎧⎨⎩2 for x ∈ ⟨0, 1),

−2 for x ∈ ⟨1, 2⟩,

u(x) := y(x) =

⎧⎨⎩c2x− x2 for x ∈ ⟨0, 1),

−4 − 2d2 + d2x+ x2 for x ∈ ⟨1, 2⟩,
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into (1.6) leads us to∫ 1

0
(c2 − 2x)v′(x) dx+

∫ 2

1
(d2 + 2x)v′(x) dx =

∫ 1

0
2v(x) dx+

∫ 2

1
−2v(x) dx, (1.7)

and because

•
∫ 1

0
2v(x) dx = [2xv(x)]10 −

∫ 1

0
2xv′(x) dx = 2v(1) −

∫ 1

0
2xv′(x) dx,

•
∫ 2

1
−2v(x) dx = [−2xv(x)]21 +

∫ 2

1
2xv′(x) dx = 2v(1) +

∫ 2

1
2xv′(x) dx,

we obtain from (1.7) that∫ 1

0
(c2 − 2x+ 2x)v′(x) dx+

∫ 2

1
(d2 + 2x− 2x)v′(x) dx = 4v(1),

c2[v(x)]10 + d2[v(x)]21 = 4v(1),

c2v(1) − d2v(1) = 4v(1).

Since we can choose v such that v(1) ̸= 0, it must hold that

c2 = 4 + d2.

The integrals in (1.6) are all Riemann integrals. To be able to handle as general right-hand
sides f (and other quantities) as possible, one first has to generalize the notion of the Riemann
integral. There only exist ‘few’ Riemann integrable functions, it is non-trivial to handle taking
limits, it limits us to closed intervals. . . The term function and its derivative will have to be
generalized as well.

In the following, we will get to know functions, which

• are Lebesgue integrable,
• posses ‘a generalized’ derivative.

The first chapters of these notes will be devoted to the definitions and basic properties of these
special function spaces.
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2 Lebesgue measure, Lebesgue integral, Lp(Ω) spaces

2.1 Lebesgue measure

Motivation 2.1. Let us imagine a situation of having a handful of coins. To find out how much
money we actually have we can follow two approaches:

1) taking a coin after coin and adding their value to the total sum
(e 1 + e 2 + e 1 + e 5 + e 5 + e 2 + e 1 = e 17),

2) sorting the coins first with respect to their value, counting the number of coins in individual
heaps and summing up to obtain the total value
(3 · e 1 + 2 · e 2 + 2 · e 5 = 17 e).

In a similar fashion, one can distinguish between the ‘Riemann’ and ‘Lebesgue’ approaches to
the evaluation of an integral, e.g.,

∫ b
a f(x) dx:

1) ‘Riemann sums’: ∫ b

a
f(x) dx .=

∑
k

f(xk) (xk+1 − xk)  
the length (measure)

of the interval ⟨xk, xk+1⟩

,

2) ‘Lebesgue sums’: ∫ b

a
f(x) dx .=

∑
k

yk · ‘measure Mk’,

where
Mk := {x ∈ ⟨a, b⟩ : f(x) ∈ ⟨yk, yk+1)}.

Thus,
we need to define a measure!

Definition 2.2. Let X denote an arbitrary set and P(X) the system of all its subsets (the
power set). A ⊂ P(X) is called a σ-algebra (in X), if it holds

i) X ∈ A,
ii) ∀A ∈ A : X \A ∈ A,

iii)
[
∀n ∈ N : An ∈ A

]
⇒

∞⋃
n=1

An ∈ A.

The elements of A are called measurable sets; the set X together with the σ-algebra A is
called a measurable space and we denote it by (X,A).

Exercise 2.3. Let X denote an arbitrary set. Prove that the below given system of subsets A is
a σ-algebra in X:

1) A = P(X),
2) A = {∅, X},
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3) A = {A ⊂ X : A is (at most) countable or X \A is a (at most) countable set}.

Observation 2.4. If S ⊂ P(X), there exists a σ-algebra (in X) containing S. This σ-algebra is
said to be generated by the system S.

Definition 2.5. Let (X,A) be a measurable space. A function

µ : A → ⟨0,+∞) ∪ {+∞}

is called a measure (in A), if it holds

i) µ is not identically equal to +∞,
ii) µ is σ-additive, i.e.,

∀n ∈ N : An ∈ A,

∀i, j ∈ N : [i ̸= j ⇒ Ai ∩Aj = ∅]

}
⇒ µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ (An) .

The set X together with the σ-algebra A and the measure µ is called a measure space and is
denoted by (X,A, µ).

Example 2.6.

1) A = P(X), a ∈ X, µ(A) :=
{

1, a ∈ A,

0, a /∈ A,

. . . Dirac measure;

2) A = P(X), µ(A) :=
{

number of elements in A, if A is finite,
+∞, if A is infinite,

. . . arithmetic measure.

Theorem 2.7 (Properties of a measure). Let (X,A, µ) be a measure space. Then it holds

i) µ (∅) = 0,
ii) ∀A,B ∈ A :

[
A ⊂ B ⇒ µ(A) ≤ µ(B)

]
,

iii)
[

(∀n ∈ N : An ∈ A) ∧ (An ↗ A)
]

⇒ µ(An) → µ(A)(
by An ↗ A we understand that A1 ⊂ A2 ⊂ A3 ⊂ . . . and A =

∞⋃
n=1

An

)
,

iv)
[

(∀n ∈ N : An ∈ A) ∧ (An ↘ A) ∧
(
µ(A1) < +∞

) ]
⇒ µ(An) → µ(A)(

by An ↘ A we understand that A1 ⊃ A2 ⊃ A3 ⊃ . . . and A =
∞⋂

n=1
An

)
.

Remark 2.8. Note that the fact that A =
∞⋂

n=1
An is a measurable set is one of the statements of

Theorem 2.7, part iv).
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Definition 2.9. Let (X,A, µ) denote a measure space. Then µ is a complete measure, if

∀A,B ⊂ X :
[
µ(A) = 0, B ⊂ A ⇒ B ∈ A (⇒ µ(B) = 0)

]
.

Theorem 2.10 (Completion of a measure). Let (X,A, µ) be a measure space and let A0 denote
the system of all E ⊂ X such that there exist sets A,B ∈ A satisfying

A ⊂ E ⊂ B, µ (B \A) = 0.

Let us define for E ∈ A0 :
µ0(E) := µ(A).

Then (X,A0, µ0) is a space with a complete measure.1

Observation 2.11. Obviously, A ⊂ A0 and µ = µ0 on A.

Theorem 2.12. Let us consider the measurable space (Rn,B), where n ∈ N and B is a σ-algebra
generated by the system of all open subsets of Rn. 2

Then there exists a unique measure λ on B such that for every set (an interval)

W := (a1, b1) × (a2, b2) × · · · × (an, bn)

(∀i ∈ {1, 2, . . . , n} : ai, bi ∈ R, ai < bi)

it holds
λ(W ) =

n∏
i=1

(bi − ai).

Definition 2.13. The measure λ appearing in the previous theorem is called the Lebesgue–Borel
measure. Let (Rn,B0, λ0) denote the completion of (Rn,B, λ). The measure λ0 is called
the Lebesgue measure and the system B0 consists of the Lebesgue measurable sets.

Convention 2.14. In the following we denote by λ the Lebesgue measure.

Remark 2.15. It can be shown that

B ⫋ B0 ⫋ P(Rn).

Theorem 2.16 (Properties of Lebesgue measurable sets and the Lebesgue measure).
It holds

i)

E ∈ B0 ⇔
[ (

∀ε ∈ R+
)

(∃A,B ⊂ Rn) : A is closed, B is open,

A ⊂ E ⊂ B, λ(B \A) < ε
]
;

1(X, A0, µ0) is called the completion of (X, A, µ).
2B is a σ-algebra of Borel sets.
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ii) λ is shift invariant,3 i.e.,

(∀E ∈ B0) (∀x ∈ Rn) : E + x := {y + x : y ∈ E} ∈ B0, λ(E + x) = λ(E);

iii)

∀E ∈ B0 : λ(E) = sup {λ(K) : K is compact, K ⊂ E} =

= inf {λ(G) : G is open, E ⊂ G}

. . . regularity of λ;
iv) if M ⊂ Rn is at most countable, then λ(M) = 0;
v) if T : Rn → Rn is a linear mapping, then

∀A ∈ B0 : λ (T (A)) = λ(A) · | detT |.

Remark 2.17. It can be shown that there does not exists a normalized measure in P(Rn) invariant
to shifting. This implies that if we want to work with a measure with such properties, there will
exist subsets M ⊂ Rn that are not measurable.

One may thus ask, whether our requirements on a measure (see Definition 2.5) are not too
‘strict’. Is there at least a finitely-additive normalized set function defined in P(Rn) which
would be shift invariant? In 1920, it was shown by Stefan Banach that for n = 1 or n = 2 such
a function exists, but it is not unique. In 1914 Felix Hausdorff showed that for n ≥ 3 such a
function does not exist at all.

2.2 Lebesgue integral

Definition 2.18. A function

f : Rn → R∗ := R ∪ {−∞,+∞}.

is (Lebesgue) measurable if the following conditions hold

• Df ∈ B0,
• ∀α ∈ R : {x ∈ Rn : f(x) > α} ∈ B0.

A function f is (Lebesgue) measurable on a set M ⊂ Df if its restriction, i.e., f|M , is
measurable.

Definition 2.19. Let M ⊂ Rn. The function

χM (x) :=

⎧⎨⎩1, x ∈ M,

0, x ∈ Rn \M,

is called the indicator function of the set M .
3It can be shown that λ is the only normalized (i.e., λ ((0, 1)n) = 1) Borel (i.e., defined on B) measure in Rn,

which is shift invariant.
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Observation 2.20. It holds that

M ∈ B0 ⇔ χM is a measurable function.

Definition 2.21. Any (finite) linear combination of indicator functions of sets in B0 is called
a step function (in Rn). In other words, a function s : Rn → R is a step function, if there exist
numbers α1, α2, . . . , αk ∈ R and sets A1, A2, . . . , Ak ∈ B0 such that

∀x ∈ Rn : s(x) =
k∑

i=1
αiχAi(x).

Observation 2.22. The above described step function s is thus measurable and s(Rn) is a finite
subset of R.

Definition 2.23. Let us define
0 · ∞ := 0, ∞ · 0 := 0.

Theorem 2.24 (Properties of measurable functions).
It holds:

i) if the functions f, g, fk (for every k ∈ N) are measurable (in Rn) and α ∈ R, then also
the functions αf, f + g (if the sum is well defined everywhere), |f |, fg, max(f, g),
min(f, g), f

g (if g does not vanish anywhere), sup fk, inf fk, lim sup fk, lim inf fk,
lim fk (if it exists) are measurable;

ii) if f : Rn → ⟨0,+∞)∪{+∞} is measurable in Rn, there exists a sequence (sk) of non-negative
step functions such that sk ↗ f , i.e.,

(∀k ∈ N : sk+1 ≥ sk) ∧ (∀x ∈ Rn : lim sk(x) = f(x))

(furthermore: if f is additionally bounded, the functions (sk) can be chosen such that
sk ⇒ f in Rn).

Definition 2.25. Let
s : Rn → ⟨0,∞)

denote a step function, α1, α2, . . . , αk ∈ R+ ∪ {0} its all different values and let (for every
i ∈ {1, 2, . . . , k})

Ai := {x ∈ Rn : s(x) = αi},

i.e.,

s =
k∑

i=1
αiχAi .

For every E ∈ B0 we define ∫
E
s dλ :=

k∑
i=1

αi λ(Ai ∩ E).
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Definition 2.26. Let f : Rn → ⟨0,+∞) ∪ {+∞} denote a measurable function. For every
E ∈ B0, E ⊂ Df we define∫

E
f dλ := sup

{∫
E
s dλ : 0 ≤ s ≤ f in E, s is a step function

}
.

Definition 2.27. If f : Rn → R∗ denotes a measurable function, we define for every E ∈ B0,
E ⊂ Df : ∫

E
f dλ :=

∫
E
f+ dλ−

∫
E
f− dλ, if the right-hand side is meaningful

(
f+ := max (f, 0), f− := max (−f, 0); i.e., f = f+ − f−

)
.

Notation 2.28. Sometimes we will also use the notation∫
E
f dλ :=

∫
E
f(x) dx.

Remark 2.29. It is useful also to define integrals for functions defined only almost everywhere
(abbreviated to ‘a.e.’), i.e., everywhere except for a set of measure zero – see the following
definition.

Definition 2.30. If the function f : Rn → R∗ is measurable, E ∈ B0, E \ N ⊂ Df , where
λ(N) = 0, we define ∫

E
f dλ :=

∫
E\N

f dλ.

Definition 2.31. Let 1 ≤ p < +∞, E ∈ B0. We define

Lp(E) :=
{
f : Rn → R∗ : f is measurable,

∫
E

|f |p dλ < +∞
}
.

Theorem 2.32 (Levi – ‘Lebesgue monotone convergence theorem’).
Assume that

• for every n ∈ N, fn is a measurable function,
• fn ↗ f almost everywhere in E ∈ B0,
•
∫

E f1 dλ > −∞.

Then it holds ∫
E
fn dλ →

∫
E
f dλ.

Example 2.33. Consider
fn := − 1

n
, f := 0.

Then every function fn is measurable and fn ↗ f everywhere in R, but since

∀n ∈ N :
∫
R
fn dλ = −∞,

∫
R
f dλ = 0,
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it does not hold that ∫
R
fn dλ →

∫
R
f dλ.

(The assumption
∫
R f1 dλ > −∞ is not satisfied.)

Example 2.34. Let (xn) denote a sequence such that

Q ∩ ⟨0, 1⟩ = {xn : n ∈ N},

and let
fn := χ{x1,x2,...,xn}, f := χQ ∩ ⟨0,1⟩ .

Then, since
0 ≤ fn ↗ f,

it holds ∫
⟨0,1⟩

fn dλ = 0 →
∫

⟨0,1⟩
f dλ = 0.

(Note that the Riemann integral
∫ 1

0 f(x) dx does not exist.)

Theorem 2.35 (Lebesgue – ‘Lebesgue dominated convergence theorem’).
Assume that

• for every n ∈ N, fn is a measurable function,
• fn → f almost everywhere in E ∈ B0,
• there exists a function g ∈ L1(E) such that for every n ∈ N it holds that |fn| ≤ g almost

everywhere in E.

Then it holds
f ∈ L1(E),

∫
E

|fn − f | dλ → 0,
∫

E
fn dλ →

∫
E
f dλ.

Example 2.36. Let
fn := nχ(0, 1

n
), f := 0.

Then every function fn is measurable and fn → f everywhere in R, but since

∀n ∈ N :
∫
R
fn dλ = 1,

∫
R
f dλ = 0,

it does not hold that ∫
R
fn dλ →

∫
R
f dλ

(the function g (a majorant) required in the Lebesgue theorem does not exist).

Theorem 2.37 (Fatou’s lemma).
Assume that

• for every n ∈ N, fn is a measurable function,
• g ∈ L1(E), E ∈ B0,
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• for every n ∈ N je fn ≥ g almost everywhere in E.

Then it holds that ∫
E

lim inf fn dλ ≤ lim inf
∫

E
fn dλ.

Example 2.38. Let

fn :=

⎧⎨⎩χ(−1,0), for n odd,

χ(0,1), for n even.

Then ∫
R

lim inf fn dλ =
∫
R

0 dλ = 0

∧

lim inf
∫
R
fn dλ = lim

∫
R
fn dλ = lim 1 = 1.

Theorem 2.39 (Fubini). Let p, q ∈ N and assume that the integral (finite or infinite)∫
Rp+q

f dλ

exists. Then

• for almost all x ∈ Rp the integral∫
Rq
fx dλ := φ(x) (fx(y) := f(x, y))

is well defined,
• for almost y ∈ Rq the integral∫

Rp
fy dλ := ψ(y) (fy(x) := f(x, y))

is well defined and it holds that∫
Rp+q

f dλ =
∫
Rp
φdλ =

∫
Rq
ψ dλ,

i.e., 4 ∫
Rp+q

f(x, y) dx dy =
∫
Rp

(∫
Rq
f(x, y) dy

)
dx =

∫
Rq

(∫
Rp
f(x, y) dx

)
dy.

Theorem 2.40 (substitution).
Assume that

4We denote ∫
Rp+q

f dλ :=
∫
Rp+q

f(x, y) dx dy.
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• G ⊂ Rn is an open set,
• φ : Rn → Rn is a mapping such that

– φ is injective in G,
– φ ∈ C1 in G,
– ∀z ∈ G : det φ′(z) ̸= 0,

• f : Rn → R∗.

Then it holds that ∫
φ(G)

f(x) dx =
∫

G
f(φ(t)) | det φ′(t)| dt,

if one of these integrals is well defined.

Theorem 2.41 (connection between the Riemann and Lebesgue integrals).
Let f : R → R denote a bounded function in the interval ⟨a, b⟩ ⊂ R. Then it holds:

i) if (R)
∫ b

a
f(x) dx is well defined, (L)

∫ b

a
f(x) dx is well defined too and the integrals are

equal,

ii) (R)
∫ b

a
f(x) dx is well defined ⇔ the function f is continuous almost everywhere ⟨a, b⟩.5

Definition 2.42.
Let us assume that

• −∞ ≤ a < b ≤ +∞,

• f : (a, b) → R,
• ∀x ∈ (a, b) : F ′(x) = f(x).

If the limits
F (b−) := lim

x→b−
F (x), F (a+) := lim

x→a+
F (x)

exist and are finite, we call their difference a Newton integral of the function f in (a, b); i.e.,

(N)
∫ b

a
f(x) dx = F (b−) − F (a+) =:

[
F (x)

]b
a

∈ R.

Theorem 2.43 (connection between the Newton and Lebesgue integrals).
It holds:

i) if (N)
∫ b

a
f(x) dx and (L)

∫ b

a
f(x) dx are well defined, we have

(N)
∫ b

a
f(x) dx = (L)

∫ b

a
f(x) dx,

5I.e.,
∃N ⊂ R :

[
(λ(N) = 0) ∧ (∀x ∈ ⟨a, b⟩ \ N : f is continuous in x)

]
.
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ii)
f ∈ L1((a, b))

f is continuous in (a, b)

}
⇒ (N)

∫ b

a
f(x) dx is well defined,

iii) if (N)
∫ b

a
f(x) dx is well defined, then f is measurable. Furthermore, if (L)

∫ b

a
f(x) dx

does not exist, (N)
∫ b

a
|f(x)| dx does not exist, either.

Example 2.44.

(N)
∫ ∞

0

sin x
x

dx = π

2 , (L)
∫ ∞

0

sin x
x

dx does not exist, (N)
∫ ∞

0

⏐⏐⏐⏐sin xx
⏐⏐⏐⏐ dx does not exist.

2.3 Lp(Ω) spaces

Theorem 2.45 (properties of L1(E)). Let E ∈ B0, then it holds

i) if f ∈ L1(E), then f is finite almost everywhere (in E),
ii) if f, g ∈ L1(E) and α, β ∈ R, then αf + βg ∈ L1(E) and it holds∫

E
(αf + βg) dλ = α

∫
E
f dλ+ β

∫
E
g dλ,

iii) if f ∈ L1(E), then |f | ∈ L1(E) and it holds⏐⏐⏐⏐∫
E
f dλ

⏐⏐⏐⏐ ≤
∫

E
|f | dλ

(i.e., the Lebesgue integral is absolutely convergent),
iv) if f, g ∈ L1(E), then also max (f, g), min (f, g) ∈ L1(E),
v) if f is measurable and there exists g ∈ L1(E) such that |f | ≤ g almost everywhere in E,

then f ∈ L1(E).

Theorem 2.46 (Hölder and Minkowski inequalities).
Let E ∈ B0; p, q ∈ (1,+∞);

1
p

+ 1
q

= 1 (p, q . . . conjugate exponents).

Then it holds that

(H) if f ∈ Lp(E), g ∈ Lq(E), then fg ∈ L1(E) and it holds∫
E
fg dλ ≤

(∫
E

|f |p dλ
)1/p (∫

E
|g|q dλ

)1/q

,
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(M) if f, g ∈ Lp(E), then f + g ∈ Lp(E) and it holds(∫
E

|f + g|p dλ
)1/p

≤
(∫

E
|f |p dλ

)1/p

+
(∫

E
|g|p dλ

)1/p

.

Observation and definition 2.47. Let E ∈ B0, 1 ≤ p < +∞. Although the properties of the space
Lp(E) with the classically defined addition and multiplication and the functional

∥f∥p :=
(∫

E
|f |p dλ

)1/p

resemble the structure of a normed vector space, Lp(E) is not one.6 To be able to ‘utilize’ the
theory of normed vector spaces, we assign to each function f ∈ Lp(E) a class of functions

[f ] := {g ∈ Lp(E) : g = f almost everywhere in E}

and define
Lp(E) := {[f ] : f ∈ Lp(E)} .

Then (
Lp(E),+,−, ∥ · ∥Lp(E)

)
,

where
[f ] + [g] := [f + g], α[f ] := [αf ] (α ∈ R), ∥[f ]∥Lp(E) := ∥f∥p,

is a normed vector space.7

In mathematical literature it is common not to distinguish between the functions and
classes of functions. Intuitively, we consider the functions differing on a set of
measure zero identical.

Let us generalize the spaces Lp(E) also for the case of p = ∞.

Definition 2.48. Let E ∈ B0. We denote by L∞(E) the set of all measurable functions f (more
accurately: the classes of functions equal almost everywhere in E), for which there exists M ∈ R
such that |f(x)| ≤ M for a.a. x ∈ E (i.e., |f | ≤ M almost everywhere in E).

The lowest constant M satisfying this property is called the L∞-norm of the function f , i.e.,

∥f∥L∞(E) := ess sup
E

|f | := inf
N⊂E

λ(N)=0

sup
x∈E\N

|f(x)|.

Theorem 2.49 (properties of Lp(Ω)). Let Ω denote a non-empty domain in Rn (i.e., an open
and connected set). Then it holds

6Think this through!
7The above operations +, −, ∥ · ∥Lp(E) are well defined as they are independent of the chosen representatives of

the corresponding classes.
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i) ∀p ∈ ⟨1,+∞) ∪ {+∞} : Lp(Ω) is a Banach space,

ii) L2(Ω) with the inner product

(u, v) :=
∫

Ω
uv dλ =

∫
Ω
u(x)v(x) dx

is a Hilbert space,
iii) if 1 ≤ p < +∞, then C∞(Ω) ∩ Lp(Ω) is a dense subset of Lp(Ω),
iv) if 1 < p1 < p2 < +∞ and λ(Ω) < +∞, then

L∞(Ω) ⊂ Lp2(Ω) ⊂ Lp1(Ω) ⊂ L1(Ω).

Exercise 2.50. Prove part iv) of Theorem 2.49.
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3 Generalized functions (distributions), generalized derivatives

Let Ω denote a non-empty domain in Rn (n ∈ N).

We denote by D(Ω) – the so-called space of testing functions – the set of all functions
φ ∈ C∞(Ω), for which it holds

• suppφ := {x ∈ Rn : φ(x) ̸= 0} ⊂ Ω
(suppφ . . . the so-called support of the function φ),

• suppφ is compact in Rn

(i.e., bounded and closed).

Note that if we consider addition and multiplication of functions in D(Ω) defined in the
standard way, i.e., for all φ1, φ2 ∈ D(Ω) and c ∈ R

(φ1 + φ2)(x) := φ1(x) + φ2(x), (cφ1)(x) := c φ1(x),

then D(Ω) is a vector space. In the text below we will use the following notation:

• α = (α1, α2, . . . αn) ∈ Rn, where αi ∈ N ∪ {0},
. . . multiindex;

• |α| := α1 + α2 + · · · + αn

. . . the length of a multiindex;
• u : Rn → R, u ∈ C |α|(Ω) :

Dαu := ∂α1+α2+···+αn u

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

= ∂|α| u

∂xα1
1 ∂xα2

2 . . . ∂xαn
n
.

Example 3.1. For n = 3, α = (3, 0, 2) and u ∈ C5(Ω) we have

Dαu = ∂5u

∂x3∂z2 = ∂5u

∂z2∂x3 = ∂5u

∂x∂z∂x2∂z
= . . . ,

since the derivatives of the fifth order can be interchanged for

u ∈ C |α|(Ω) = C5(Ω).

Definition 3.2. Let (φn) denote a sequence in D(Ω) and let φ ∈ D(Ω). We say that the
sequence (φn) converges in D(Ω) to a function φ, and we write

φn → φ in D(Ω),

if there exists a compact set K ⊂ Ω such that:

• for all n ∈ N:
suppφn ⊂ K, suppφ ⊂ K,

• for every multiindex α:
Dαφn ⇒ Dαφ in K.
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Remark 3.3. It can be shown that the space D(Ω) is not metrizable, i.e., that there does
not exist any metric ϱ in D(Ω) such that

φn → φ in D(Ω) ⇔ ϱ(φn, φ) → 0 (in R).

Definition 3.4. We call the space of all continuous linear functionals acting on D(Ω) the space
of distributions in Ω and denote it by D∗(Ω), i.e.,

F ∈ D∗(Ω) ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

• F : D(Ω) → R,

• φn → φ in D(Ω) ⇒ F (φn) → F (φ),

•
φ1, φ2 ∈ D(Ω)

c1, c2 ∈ R

}
⇒ F (c1φ1 + c2φ2) = c1F (φ1) + c2F (φ2).

Notation 3.5. If F ∈ D∗(Ω) and φ ∈ D(Ω), we will also use the notation

⟨F,φ⟩ := F (φ).

Definition 3.6. We say that a function f belongs to L1
loc(Ω) if

(∀x ∈ Ω) (∃U(x) ⊂ Ω) : f ∈ L1(U(x)).

Remark 3.7. It can be shown that f ∈ L1
loc(Ω) if and only if for every compact set K ⊂ Ω it

holds that f ∈ L1(K).

Example 3.8. Let us define f and g by

f(x) := 1√
x
, g(x) := 1

x
.

Then
f ∈ L1(0, 1), and thus also f ∈ L1

loc(0, 1),

g ∈ L1
loc(0, 1), but g /∈ L1(0, 1).

Remark 3.9. Let use denote
f ∈ L1

loc(Ω)

and define the mapping
F : D(Ω) → R

by8

F (φ) :=
∫

Ω
f(x)φ(x) dx.

Then F ∈ D∗(Ω).
8The (Lebesgue) integral exists under these conditions!
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Let G ∈ D∗(Ω) denote a distribution such that for some function g ∈ L1
loc(Ω) it holds that

∀φ ∈ D(Ω) : ⟨G,φ⟩ =
∫

Ω
g(x)φ(x) dx.

Then
F = G ⇔ f = g a. e. in Ω.

We can thus identify F ∼ f to obtain the inclusion

L1
loc(Ω) ⊂ D∗(Ω).

Definition 3.10. A distribution F ∈ D∗(Ω) is called regular, if there exists f ∈ L1
loc(Ω) such

that
∀φ ∈ D(Ω) : ⟨F,φ⟩ =

∫
Ω
f(x)φ(x) dx.

Example 3.11. Let a ∈ Ω. Let us define a distribution δa by

⟨δa, φ⟩ := φ(a).

Then δa (the so-called Dirac function or Dirac distribution) is not a regular distribution.
I.e.,

D(Ω) ⫋ L1
loc(Ω) ⫋ D∗(Ω).

Observation 3.12. Let

f ∈ D(R) ⊂ D∗(R)(
∀φ ∈ D(R) : ⟨f, φ⟩ =

∫
R
f(x)φ(x) dx

)
.

Then it also holds that

f ′ ∈ D(R) ⊂ D∗(R)(
∀φ ∈ D(R) : ⟨f ′, φ⟩ =

∫
R
f ′(x)φ(x) dx

)
.

Moreover,
(∀φ ∈ D(R))

(
∃a ∈ R+

)
: suppφ ⊂ ⟨−a, a⟩,

and thus

⟨f ′, φ⟩ =
∫ a

−a
f ′(x)φ(x) dx = [f(x)φ(x)]a−a  

=0

−
∫ a

−a
f(x)φ′(x) dx = −⟨f, φ′⟩.

In the following definition we generalize the concept of differentiation in D(Ω) to D∗(Ω).
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Definition 3.13. Let
F ∈ D∗(Ω).

The (generalized) derivative of a distribution F with respect to the i-th variable is a distribu-
tion

∂F

∂xi
∈ D∗(Ω)

defined by ⟨
∂F

∂xi
, φ

⟩
:= −

⟨
F,

∂φ

∂xi

⟩
.

For every multiindex α we define a distribution

DαF ∈ D∗(Ω)

by
⟨DαF,φ⟩ := (−1)|α|⟨F,Dαφ⟩.

Theorem 3.14. Let
f ∈ Ck(Ω) (⊂ L1

loc(Ω) ⊂ D∗(Ω))

and α is a multiindex such that |α| = k. Then for every φ ∈ D(Ω) it holds that 9

⟨Dαf, φ⟩ =
∫

Ω
(Dαf)(x)φ(x) dx.

Example 3.15. Let us consider the Heaviside function

η(x) :=

⎧⎨⎩0, x < 0,

1, x ≥ 0.

Then
η ∈ L1

loc(R) ⊂ D∗(R)

and for every φ ∈ D(R) it holds that

⟨η′, φ⟩ = −⟨η, φ′⟩ = −
∫
R
η(x)φ′(x) dx = −

∫ ∞

0
φ′(x) dx =

= − [φ(x)]∞0 = −(φ(∞) − φ(0)) = φ(0) = ⟨δ0, φ⟩,

and thus10

η′ = δ0.

9The so-called ‘generalized’ derivative = ‘classical’ derivative.
10By the derivative we understand the derivative in the distributional sense – see Definition 3.13.
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4 Sobolev spaces

Assume that
∅ ≠ Ω ⊂ Rn,

where n ∈ N, is a bounded domain and

k ∈ N ∪ {0}, 1 ≤ p < ∞.

Let us consider the vector space C∞(Ω) equipped with a norm

∥u∥k,p :=

⎛⎝ ∑
|α|≤k

∫
Ω

|Dαu(x)|p dx

⎞⎠1/p

.

Example 4.1.

∥u∥1,p =
(∫

Ω

(
|u(x)|p +

n∑
i=1

⏐⏐⏐⏐ ∂u∂xi
(x)
⏐⏐⏐⏐p
)

dx
)1/p

,

∥u∥2,p =

⎛⎝∫
Ω

⎛⎝|u(x)|p +
n∑

i=1

⏐⏐⏐⏐ ∂u∂xi
(x)
⏐⏐⏐⏐p +

n∑
i,j=1

⏐⏐⏐⏐⏐ ∂2u

∂xi∂xj
(x)
⏐⏐⏐⏐⏐
p
⎞⎠ dx

⎞⎠1/p

.

Definition 4.2. We define the Sobolev space

W k,p(Ω)

as the completion of the space (
C∞(Ω), ∥ · ∥k,p

)
.

Observation 4.3.
L2(Ω) = W 0,2(Ω) ⊃ W 1,2(Ω) ⊃ W 2,2(Ω) ⊃ . . .

Observation 4.4. Let u ∈ W k,2(Ω). Then there exists a sequence (un) in C∞(Ω) such that un → u
in W k,2(Ω) and thus (un) is a Cauchy sequence in W k,2(Ω). For an arbitrary multiindex α such
that |α| ≤ k it holds that

∥Dαun −Dαum∥L2(Ω) ≤ ∥un − um∥k,2,

and so (Dαun) is a Cauchy sequence in the (complete!) space L2(Ω). There thus exists a
function fα ∈ L2(Ω) such that

Dαun → fα in L2(Ω).

It can be proven that for such functions fα it holds that 11

fα = Dαf(0,0,...,0) = Dαu.

11Again, the derivatives have to be understood in the distributional sense.
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We have found out that
W k,2(Ω) ⊂ W̃ k,2(Ω),

where W̃ k,2(Ω) is defined as the set of functions u ∈ L2(Ω) such that for every multiindex
α, |α| ≤ k, the generalized (distributional) derivative Dαu is an element of L2(Ω).

This can be further generalized to obtain

W k,p(Ω) ⊂ W̃ k,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for every multiindex α, |α| ≤ k} .

‘Definition’ 4.5. Let 1 < n ∈ N. We say that a bounded domain

∅ ≠ Ω ⊂ Rn

is Lipschitz if there exists a finite cover of the boundary of Ω, i.e., a finite set of neighbourhoods
such that for every such a neighbourhood U there exist

• a Cartesian system of coordinates
(
y1, y2, . . . , yn−1  

=: y′

, yn
)

=: (y′, yn),

• ε, δ ∈ R+,
• a function a : Rn−1 → R,

so that

• Γ := U ∩ ∂Ω = {(y′, yn) : ∥y′∥ < δ, yn = a(y′)},
• U+ := {(y′, yn) : ∥y′∥ < δ, a(y′) < yn < a(y′) + ε} ⊂ Ω,

• U− := {(y′, yn) : ∥y′∥ < δ, a(y′) − ε < yn < a(y′)} ⊂ Rn \Ω,
• the function a is Lipschitz continuous in {y′ : ∥y′∥ < δ}, i.e., there exists L ∈ R+ such that

for every y′, z′ ∈ Rn−1 it holds that(
∥y′∥ < δ ∧ ∥z′∥ < δ

)
⇒ |a(y′) − a(z′)| ≤ L ∥y′ − z′∥.

In R every bounded set (i.e., every bounded open interval) is Lipschitz.

Remark 4.6. It can be shown that for a Lipschitz domain Ω and ‘almost all x ∈ ∂Ω’ there exists
a unit exterior normal vector to ∂Ω in x,

ν(x) = (ν1(x), ν2(x), . . . , νn(x)) ∈ Rn.

The coordinates
ν1, ν2, . . . , νn : Rn → R

of the unit exterior normal vectors are bounded ‘measurable’ functions on ∂Ω.

Theorem 4.7. For a Lipschitz domain Ω it holds

W k,p(Ω) = W̃ k,p(Ω).

Convention 4.8. In the following we assume that Ω ⊂ Rn denotes a Lipschitz domain.
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Theorem 4.9. The space
W k,2(Ω) = W̃ k,2(Ω)

equipped with the dot product

(u, v) :=
∑

|α|≤k

∫
Ω
Dαu(x)Dαv(x) dx

is a separable Hilbert space.

Lemma 4.10. It holds that

C∞
0 (Ω) := {φ ∈ C∞(Ω) : suppφ ⊂ Ω} ⫋ C∞

0 (Ω)∥·∥k,p ⫋W k,p(Ω).

Definition 4.11. We define the Sobolev space

W k,p
0 (Ω)

as the closure of C∞
0 (Ω) in the space W k,p(Ω), i.e.,

W k,p
0 (Ω) := C∞

0 (Ω)∥·∥k,p

=
{
u ∈ W k,p(Ω) : there exists a sequence (un) in C∞

0 (Ω) such that un → u in W k,p(Ω)
}
.

Theorem 4.12 (Friedrichs). In W k,p
0 (Ω) the functional ∥ · ∥k,p,0,

∥u∥k,p,0 :=

⎛⎝ ∑
|α|=k

∫
Ω

|Dαu(x)|p dx

⎞⎠1/p

,

defines a norm equivalent with the norm ∥ · ∥k,p.

Remark to the proof, or more precisely, to the equivalence of norms ∥ · ∥k,p,0 and ∥ · ∥k,p

in W k,p
0 (Ω) .

Obviously,
∀u ∈ W k,p

0 (Ω) : ∥u∥k,p,0 ≤ ∥u∥k,p.

Let us show, for simplicity only in a special case of

n = 1, k = 1, Ω = (a, b), where a, b ∈ R; a < b,

the validity of the so-called Friedrichs inequality(
∃s ∈ R+

) (
∀u ∈ W k,p

0 (Ω)
)

: ∥u∥k,p ≤ s∥u∥k,p,0,

i.e.,

(
∃s ∈ R+

) (
∀u ∈ W 1,p

0 (a, b)
)

:
(∫ b

a
|u|p dx+

∫ b

a
|u′|p dx

)1/p

≤ s

(∫ b

a
|u′|p dx

)1/p

.
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Taking into account that
W 1,p

0 (a, b) = C∞
0 (a, b)∥·∥1,p ,

in remains to prove

(
∃c ∈ R+

)
(∀φ ∈ C∞

0 (⟨a, b⟩)) :
∫ b

a
|φ(x)|p dx ≤ c

∫ b

a
|φ′(x)|p dx.

Let φ ∈ C∞
0 (⟨a, b⟩). Then for every x ∈ (a, b) it holds that

φ(x) =
∫ x

a
φ′(t) dt.

Using the Hölder inequality (see Theorem 2.46) we easily obtain the inequalities12

|φ(x)|p =
⏐⏐⏐⏐∫ x

a
φ′(t) · 1 dt

⏐⏐⏐⏐p ≤
∫ x

a
|φ′(t)|p dt ·

(∫ x

a
1 dt

) p
q

≤
∫ b

a
|φ′(t)|p dt · (b− a)

p
q ,

and thus ∫ b

a
|φ(x)|p dx ≤

∫ b

a
|φ′(x)|p dx · (b− a)

p
q ·
∫ b

a
1 dx = (b− a)p  

=: c

∫ b

a
|φ′(x)|p dx.

□

Example 4.13.

∥u∥1,2,0 =
(∫

Ω

n∑
i=1

(
∂u

∂xi
(x)
)2

dx
)1/2

=
√∫

Ω
|∇u|2 dx.

Remark 4.14. It makes no sense to think of the values of a function u ∈ Lp(Ω) at the boundary
u ∈ Lp(Ω), since the n-dimensional Lebesgue measure of ∂Ω vanishes and functions only different
in sets of measure zero represent the same element of Lp(Ω).

We will show that for u ∈ W 1,p(Ω) the situation is rather different: to every such an element
one can uniquely and reasonably assign a function fu ∈ Lp(∂Ω) – the so-called trace of u –
such that the mapping u ↦→ fu will be a natural extension of the restriction to the boundary.

‘Definition’ 4.15. Let 1 < n ∈ N, 1 ≤ p < ∞ and recall that Ω ⊂ Rn is a Lipschitz domain,
i.e., there exist m ∈ N Cartesian systems of coordinates(

y1 r, y2 r, . . . yn−1 r  
=: y′

r

, yn r
)

:= (y′
r, yn r),

12Obviously, q is chosen such that
1
p

+ 1
q

= 1, i.e., q := p

p − 1 .
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numbers εr, δr and Lipschitz continuous functions ar of corresponding qualities.13 We say that
the function

f : ∂Ω → R

belongs to Lp(∂Ω) if for every r ∈ {1, 2, . . . ,m} the functions

y′
r ↦→ f(y′

r, ar(y′
r))

belong to the space Lp ({y′
r : ∥y′

r∥ < δr}).

Moreover, in such a case we define

∥f∥Lp(∂Ω) :=

⎛⎜⎝ m∑
r=1

∫
{y′

r : ∥y′
r∥<δr}

|f(y′
r, ar(y′

r))|p dy′
r

⎞⎟⎠
1/p

.

Remark 4.16. Using the approach above, there exist infinitely many possibilities to describe the
boundary ∂Ω. However, it can be shown that the ‘corresponding’ spaces Lp(∂Ω) are identical
(contain the same set of functions) and the ‘corresponding’ norms ∥ · ∥Lp(∂Ω) are mutually
equivalent.

Theorem 4.17 (traces). There exists a unique continuous and linear mapping

T : W 1,p(Ω) → Lp(∂Ω)

such that for every u ∈ C∞(Ω) it holds

Tu = u|∂Ω
.

The element Tu ∈ Lp(∂Ω) is called a trace of u ∈ W 1,p(Ω).

Observation 4.18. Let u ∈ W k,p(Ω). Then for every multiindex α, |α| ≤ k − 1 it holds

Dαu ∈ W 1,p(Ω),

and thus there exists T (Dαu). Moreover, it can be shown that

W k,p
0 (Ω) = C∞

0 (Ω)∥·∥k,p =
{
u ∈ W k,p(Ω) : ∀α, |α| ≤ k − 1, it holds that T (Dαu) = 0

}
;

in particular
W 1,p

0 (Ω) =
{
u ∈ W 1,p(Ω) : T (u) = 0

}
.

The boundedness and Lipschitz regularity of ∅ ̸= Ω ⊂ Rn allows us to define a ‘surface’
integral on ∂Ω.

Lemma 4.19 (partition of unity). Let us denote by

• F ⊂ Rn a compact set,
13See ‘Definition’ 4.5 of Lipschitz domains.
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• G1, G2, . . . , Gm ⊂ Rn open sets,

• F ⊂
m⋃

r=1
Gr. (The set {Gr}m

r=1 is an open cover of the compact set F .)

Then there exist functions φ1, φ2, . . . , φm : Rn → R such that

• (∀x ∈ Rn) (∀r ∈ {1, 2, . . . ,m}) : 0 ≤ φr(x) ≤ 1,
• ∀r ∈ {1, 2, . . . ,m} : (φr ∈ C∞

0 (Rn), suppφr ⊂ Gr),

• ∀x ∈ F :
m∑

r=1
φr(x) = 1.

‘Definition’ 4.20. Let us recall the situation described in ‘Definiton’ 4.15 of the space Lp(∂Ω)
and let us define for every r ∈ {1, 2, . . . ,m}

Gr :=
{
(y′

r, yn r) : ∥y′
r∥ < δr, ar(y′

r) − εr < yn r < ar(y′
r) + εr

}
.

Let φ1, φ2, . . . , φm denote a partition of unity related to the open cover {Gr}m
r=1 of the boundary

∂Ω. For a function f ∈ L1(∂Ω) we define

∫
∂Ω
f(x) ds :=

m∑
r=1

∫
{y′

r : ∥y′
r∥<δr}

f(y′
r, ar(y′

r))φr(y′
r, ar(y′

r))

√1 +
n−1∑
i=1

(
∂ar

∂yi r
(y′

r)
)2

dy′
r.

(It can be shown that the definition is independent both of the description of ∂Ω and the partition
of unity on ∂Ω.)

Theorem 4.21 (Green).

i) For 1 < n ∈ N let ∅ ̸= Ω ⊂ Rn denote a Lipschitz domain. Then for every u, v ∈ W 1,2(Ω)
and i ∈ {1, 2, . . . , n} it holds that∫

Ω
u
∂v

∂xi
dx = −

∫
Ω

∂u

∂xi
v dx+

∫
∂Ω
T (u)T (v) νi ds

(
νi = νi(x) . . . i-th component of the exterior unit normal vector of ∂Ω in x

)
.

ii) Let a, b ∈ R, a < b. Then W 1,2(a, b) ⊂ C(⟨a, b⟩) and furthermore

∀u, v ∈ W 1,2(a, b) :
∫ b

a
uv′ dx = −

∫ b

a
u′v dx+ u(b)v(b) − u(a)v(a)  

=: [uv]ba

.

(Note that the derivatives in the Green theorem are understood in the distributional sense.)

Definition 4.22. A normed linear space X is continuously embedded in a normed linear space
Y if the conditions

• X ⊂ Y ,
•
(
∃c ∈ R+) (∀x ∈ X) : ∥x∥Y ≤ c∥x∥X .
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are met. We denote a continuous embedding by

X ↪→ Y.

Theorem 4.23 (on continuous embedding). Let

∅ ≠ Ω ⊂ Rn

denote a bounded Lipschitz domain. Then it holds:

i) if either
kp < n, 1 ≤ q ≤ q∗ := np

n− pk
,

or
kp = n, 1 ≤ q < ∞,

we have

W k,p(Ω) ↪→ Lq(Ω),

i.e.,
(
∃c ∈ R+

) (
∀u ∈ W k,p(Ω)

)
: ∥u∥Lq(Ω) ≤ c∥u∥k,p;

ii) for
kp > n,

we have

W k,p(Ω) ↪→ C(Ω),

i.e.,
(
∃c ∈ R+

) (
∀u ∈ W k,p(Ω)

)
: ∥u∥C(Ω) := max

Ω
|u| ≤ c∥u∥k,p.

Definition 4.24. A normed linear space X is compactly embedded in a normed linear space Y
if the conditions

• X ⊂ Y ,
• from each sequence (X, ∥ · ∥X) one can extract a subsequence convergent in (Y, ∥ · ∥Y ),

are met. We denote a compact embedding by

X ↪→↪→ Y.

Observation 4.25.

i) X ↪→↪→ Y ⇒ X ↪→ Y ,

ii) X ↪→↪→ Y ⇒
[
xn ⇀ x in X ⇒ xn → x in Y

]
.

Theorem 4.26 (on compact embedding). Let

∅ ≠ Ω ⊂ Rn

denote a bounded Lipschitz domain. Then it holds
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i) if either
n > 1, kp < n,

1
q
>

1
p

− k

n
,

or
n > 1, kp = n, 1 < q < ∞,

we have
W k,p(Ω) ↪→↪→ Lq(Ω);

ii) for
n ≥ 1, kp > n,

we have
W k,p(Ω) ↪→↪→ C(Ω).
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5 Weak solution to linear elliptic problems

Let us consider the Dirichlet problem for the Poisson equation{
−∆u = f v Ω,

u = 0 na ∂Ω,

where ∅ ≠ Ω ⊂ Rn denotes a bounded Lipschitz domain, f ∈ C(Ω). In the following we assume
that u ∈ C2(Ω) ∩ C(Ω) is a (classical) solution to the problem.

For every v ∈ C∞
0 (Ω) := {φ ∈ C∞(Ω) : suppφ ⊂ Ω} we have∫

Ω
−∆uv dx =

∫
Ω
f v dx.

Due to the Green theorem 4.21 we deduce 14

∫
Ω

−∆uv dx =
n∑

i=1

(∫
Ω

−∂2u

∂x2
i

v dx
)

n∑
i=1

(∫
Ω

∂u

∂xi

∂v

∂xi
dx
)

+
n∑

i=1

(
−
∫

∂Ω

∂u

∂xi
v νi ds

)

=
∫

Ω
∇u∇v dx−

∫
∂Ω

∂u

∂ν
v ds  

=0, since v ∈ C∞
0 (Ω)

=
∫

Ω
∇u∇v dx

to finally obtain ∫
Ω

∇u∇v dx =
∫

Ω
f v dx.

Note that the formula is not only meaningful for the above specified u, v and f , but also for

u, v ∈ W 1,2(Ω) and f ∈ L2(Ω).

This leads us to the idea of a generalized ‘solution’ to the given problem. Moreover, considering
only u ∈ W 1,2

0 (Ω) = {u ∈ W 1,2(Ω) : Tu = 0},15 we can naturally generalize the boundary
condition ‘u = 0 on ∂Ω’.

Definition 5.1. A function u ∈ W 1,2
0 (Ω) is a weak solution to the Dirichlet problem{

−∆u = f in Ω,
u = 0 on ∂Ω,

(5.1)

where f ∈ L2(Ω) if ∫
Ω

∇u∇v dx =
∫

Ω
f v dx for every v ∈ W 1,2

0 (Ω).

Theorem 5.2. The problem (5.1) is uniquely solvable.
14Again, by ν = (ν1, . . . , νn) we denote the exterior unit normal vector on ∂Ω.
15T denotes the trace operator.
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Proof. We already know that W 1,2
0 (Ω) equipped with the inner product

(u, v) :=
∑

|α|≤1

∫
Ω
DαuDαv dx =

∫
Ω
u v dx+

n∑
i=1

∫
Ω

∂u

∂xi

∂v

∂xi
dx =

=
∫

Ω
u v dx+

∫
Ω

∇u∇v dx

forms a Hilbert space.

Friedrichs theorem 4.12 ensures that the inner product

((u, v)) :=
∫

Ω
∇u∇v dx

induces a norm ∥ · ∥1,2,0 on W 1,2
0 (Ω), which is equivalent with the norm ∥ · ∥1,2.

Also note that the functional F : W 1,2
0 (Ω) → R defined by

F (v) :=
∫

Ω
f v dx

is:

• linear – obviously,
• continuous – here it suffices to show that it is bounded:16

|F (v)| =
⏐⏐⏐⏐∫

Ω
f v dx

⏐⏐⏐⏐ ≤
√∫

Ω
f2 dx

√∫
Ω
v2 dx ≤ ∥f∥L2(Ω) ∥v∥1,2 ≤

≤ ∥f∥L2(Ω) c ∥v∥1,2,0.

It follows that
F ∈

(
W 1,2

0 (Ω)
)∗

=
(
W 1,2

0 (Ω), ∥ · ∥1,2,0
)∗
.

From the Riesz representation theorem we finally conclude that(
∃!u ∈ W 1,2

0 (Ω)
) (

∀v ∈ W 1,2
0 (Ω)

)
: F (v) = ((u, v)).

Our goal now is to generalize the notion of ‘a solution to a boundary value problem’ for
problems more complex than the Dirichlet problem for the Poisson equation. We will study
problems of the type ⎧⎪⎨⎪⎩

Lu = f v Ω,
+

boundary conditions on ∂Ω,

(5.2)

where
16The first inequality is the Hölder inequality (see 2.46), the last one follows from the Friedrichs inequality 4.12.
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• ∅ ≠ Ω ⊂ Rn is a bounded Lipschitz domain,
• f ∈ L2(Ω),
• L is a differential operator of the 2k-th order in the (so-called divergent) form:

(Lu)(x) :=
∑

|α|,|β|≤k

(−1)|α|Dα
(
aα,β(x)Dβu(x)

)
,

• aα,β ∈ L∞(Ω) for all multiindices α, β satisfying |α|, |β| ≤ k.
Remark 5.3. Note that in the case of the classical solution to (5.2) we require k-th order
differentiability of the functions aα,β and 2k-th order differentiability of u. Using
the ‘trick’

∫
Ω Lu v dx =

∫
Ω fv dx and applying the Green theorem we only require k-th order

differentiability of u on the left-hand side of the equation.

To every operator L we can assign the bilinear form17

a(u, v) :=
∑

|α|,|β|≤k

∫
Ω
aα,β(x)Dβu(x)Dαv(x) dx. (5.3)

It can be easily verified that the bilinear form (5.3) is well defined and continuous in

W k,2(Ω) ×W k,2(Ω);

as it holds (using the Hölder inequality 2.46)⏐⏐⏐⏐∫
Ω
aα,β(x)Dβu(x)Dαv(x) dx

⏐⏐⏐⏐ ≤ ∥aα,β∥L∞(Ω)

∫
Ω

⏐⏐⏐Dβu
⏐⏐⏐ |Dαv| dx ≤

≤ ∥aα,β∥L∞(Ω)

√∫
Ω

|Dβu|2 dx
√∫

Ω
|Dαv|2 dx ≤ ∥aα,β∥L∞(Ω) ∥u∥k,2 ∥v∥k,2,

and since there only exists a finite number of combinations of the coefficients α, β such that
|α|, |β| ≤ k, there exists c > 0 satisfying

|a(u, v)| =

⏐⏐⏐⏐⏐⏐
∑

|α|,|β|≤k

∫
Ω
aα,β(x)Dβu(x)Dαv(x) dx

⏐⏐⏐⏐⏐⏐ ≤ c ∥u∥k,2 ∥v∥k,2.

Example 5.4.

Lu := − div (∇u) = −∆u =
n∑

i=1
−∂2u

∂x2
i

=
n∑

i,j=1
(−1)1 ∂

∂xi

(
ai,j(x) ∂u

∂xj

)
,

17Note that for aα,β ∈ Ck(Ω) and u, v ∈ C2k
0 (Ω) it holds

a(u, v) =
∫

Ω

(Lu)(x)v(x) dx.
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where

ai,j(x) :=
{

1, for i = j,

0, for i ̸= j;

a(u, v) =
∫

Ω
∇u∇v dx.

Example 5.5.

Lu := − div (p(x)∇u) + q(x)u =
n∑

i=1
− ∂

∂xi

(
p(x) ∂u

∂xi

)
+ q(x)u,

a(u, v) =
∫

Ω

(
p(x)∇u∇v + q(x)u v

)
dx.

Let us further denote by

• V a linear subset C∞(Ω) such that

C∞
0 (Ω) ⊂ V ⊂ C∞(Ω),

• V the closure of V in the space W k,2(Ω) (trivially, W k,2
0 (Ω) ⊂ V ⊂ W k,2(Ω)),

• b : W k,2(Ω) ×W k,2(Ω) → R a continuous bilinear form,
• g ∈ V ∗ such ∀v ∈ W k,2

0 (Ω) : g(v) = 0,
• u0 ∈ W k,2(Ω).

Below we will use the quantities V, b, g and u0 to model boundary conditions on ∂Ω.

Definition 5.6. Let
((u, v)) := a(u, v) + b(u, v).

A function u ∈ W k,2(Ω) is a weak solution to the boundary value problem, if

i) u− u0 ∈ V ,

ii) ∀v ∈ V : ((u, v)) =
∫

Ω
f(x)v(x) dx+ g(v).

Again, in the following we assume that Ω denotes a bounded Lipschitz domain.

Example 5.7 (weak solution to the Dirichlet problem).
Consider the Dirichlet problem{

− div(p(x)∇u) + q(x)u = f(x) in Ω,

u = h(x) on ∂Ω,
(5.4)

and assume that it holds:

• f ∈ L2(Ω),
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• p, q ∈ L∞(Ω),
• there exists u0 ∈ W 1,2(Ω) such that Tu0 = h ∈ L2(∂Ω).

A function u ∈ W 1,2(Ω) is a weak solution to the Dirichlet problem (5.4), if

• u− u0 ∈ W 1,2
0 (Ω),

• ∀v ∈ W 1,2
0 (Ω) :

∫
Ω

(
p(x)∇u∇v + q(x)u v

)
dx =

∫
Ω
f v dx.

Here
V := W 1,2

0 (Ω),

a(u, v) :=
∫

Ω
(p(x)∇u∇v + q(x)u v) dx,

b(u, v) := 0, g(v) := 0.

Observation 5.8. In case that the solution u and the ‘data’ of the problem (5.4) are ‘smooth
enough’, we have

• 0 = T (u − u0) = Tu − Tu0 = u|∂Ω − h ⇒ u(x) = h(x) for ‘almost all’ x ∈ ∂Ω (see the
boundary conditions from (5.4)),

• ∀v ∈ W 1,2
0 (Ω) : Tv = 0, and thus also (again using the Green theorem 4.21)∫

Ω
f v dx =

∫
Ω

(p(x)∇u∇v + q(x)u v) dx =
∫

Ω
(− div(p(x)∇u)v + q(x)u v) dx.

Thus,
∀v ∈ W 1,2

0 (Ω) :
∫

Ω

(
− div(p(x)∇u) + q(x)u− f(x)

)
v dx = 0

⇓

− div(p(x)∇u) + q(x)u = f(x) almost everywhere in Ω

(see the differential equation from (5.4)).

Conclusion: In case that the weak solution u and the ‘data’ of the problem (5.4) are ‘smooth
enough’ it holds

weak solution ≡ classical solution.

Example 5.9 (weak solution to the Neumann probem).
Consider the Neumann problem⎧⎪⎨⎪⎩

− div(p(x)∇u) + q(x)u = f(x) in Ω,

p(x)∂u
∂ν

= h(x) on ∂Ω,
(5.5)

where

• f ∈ L2(Ω),
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• p, q ∈ L∞(Ω),
• h ∈ L2(∂Ω).

The function u ∈ W 1,2(Ω) is weak solution to the Neumann problem (5.5), if

∀v ∈ W 1,2(Ω) :
∫

Ω

(
p(x)∇u∇v + q(x)u v

)
dx =

∫
Ω
f v dx+

∫
∂Ω
hTv ds.

Here we use the notation

V := W 1,2(Ω),

a(u, v) :=
∫

Ω

(
p(x)∇u∇v + q(x)u v

)
dx,

b(u, v) := 0, g(v) :=
∫

∂Ω
hTv ds.

Note that it is not necessary to define u0 ∈ W 1,2(Ω), the condition i) from Definition 5.6 is
satisfied for all u, u0 ∈ W 1,2(Ω).

Observation 5.10. In case that the weak solution u and the ‘data’ of the problem (5.5) are ‘smooth
enough’ we have

∀v ∈ W 1,2(Ω) :
∫

Ω
p(x)

n∑
i=1

∂u

∂xi

∂v

∂xi
dx+

∫
Ω
q(x)u v dx =

∫
Ω
f v dx+

∫
∂Ω
hTv ds,

since (see the Green theorem 4.21)∫
Ω
p(x)

n∑
i=1

∂u

∂xi

∂v

∂xi
dx =

∫
Ω

−
n∑

i=1

∂

∂xi

(
p(x) ∂u

∂xi

)
v dx+

∫
∂Ω
p(x)

n∑
i=1

∂u

∂xi
νi  

= ∂u
∂ν

Tv ds.

Thus, for all v ∈ W 1,2(Ω) it holds that∫
Ω

(
− div(p(x)∇u) + q(x)u− f(x)

)
v dx+

∫
∂Ω

(
p(x)∂u

∂ν
− h(x)

)
Tv ds = 0.
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It follows that

•
∀v ∈ C∞

0 (Ω) :
∫

Ω

(
− div(p(x)∇u) + q(x)u− f(x)

)
v dx = 0

⇓

− div(p(x)∇u) + q(x)u = f(x) almost everywhere in Ω

(see the differential equation from (5.5)),
•

∀v ∈ W 1,2(Ω) :
∫

∂Ω

(
p(x)∂u

∂ν
− h(x)

)
Tv ds = 0

⇓

p(x)∂u
∂ν

= h(x) ‘almost everywhere’ on ∂Ω

(see the boundary condition from (5.5)).

Example 5.11 (weak solution to the Newton problem).
Consider the Newton problem⎧⎪⎨⎪⎩

− div(p(x)∇u) + q(x)u = f(x) in Ω,

σ(x)u+ p(x)∂u
∂ν

= h(x) on ∂Ω,
(5.6)

where

• f ∈ L2(Ω),
• p, q ∈ L∞(Ω),
• 0 ̸= σ ∈ L∞(∂Ω)18,
• h ∈ L2(∂Ω).

The function u ∈ W 1,2(Ω) is a weak solution to the Newton problem (5.6), if it holds

∀v ∈ W 1,2(Ω) :
∫

Ω
(p(x)∇u∇v + q(x)u v) dx+

∫
∂Ω
σ(x)TuTv ds =

∫
Ω
f v dx+

∫
∂Ω
hTv ds.

Here we use the notation
V := W 1,2(Ω),

a(u, v) :=
∫

Ω

(
p(x)∇u∇v + q(x)u v

)
dx,

b(u, v) :=
∫

∂Ω
σ(x)TuTv ds, g(v) :=

∫
∂Ω
hTv ds.

Again, it is not necessary to define u0 ∈ W 1,2(Ω).
18 s ∈ L∞(Ω) ⇔ s is bounded and ‘measurable’ on ∂Ω
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Observation 5.12. Similarly as in both previous cases one can show (using the Green theorem 4.21)
that for a ‘smooth enough’ weak solution u and the ‘data’ of the Newton problem (5.6) it holds

∀v ∈ W 1,2(Ω) :∫
Ω

(− div(p(x)∇u) + q(x)u− f(x))v dx+
∫

∂Ω

(
p(x)∂u

∂ν
+ σ(x)Tu− h(x)

)
Tv ds = 0,

and thus

− div(p(x)∇u) + q(x)u = f(x) almost everywhere in Ω,

p(x)∂u
∂ν

+ σ(x) Tu
= u

= h(x) ‘almost everywhere’ on ∂Ω.

Example 5.13 (weak solution to the mixed problem).
Consider the mixed problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

− div(p(x)∇u) + q(x)u = f(x) in Ω,

u = h1(x) on Γ1,

p(x)∂u
∂ν

= h2(x) on Γ2,

σ(x)u+ p(x)∂u
∂ν

= h3(x) on Γ3,

(5.7)

where the boundary ∂Ω is decomposed into pairwise disjoint ‘measurable’ components Γ1, Γ2, Γ3
and it holds

• f ∈ L2(Ω),
• p, q ∈ L∞(Ω),
• 0 ̸= σ ∈ L∞(Γ3),
• u0 ∈ W 1,2(Ω) satisfies Tu0 = h1 ‘almost everywhere’ on Γ1,
• h2 ∈ L2(Γ2),
• h3 ∈ L2(Γ3).

Let
V :=

{
v ∈ W 1,2(Ω) : Tv = 0 na Γ1

}
.

A function u ∈ W 1,2(Ω) is a weak solution to the mixed problem (5.7), if

• u− u0 ∈ V ,
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• ∀v ∈ V :

=: a(u, v)  ∫
Ω

(p(x)∇u∇v + q(x)u v) dx+

=: b(u, v)  ∫
Γ3
σ(x)TuTv ds =

=
∫

Ω
f v dx+

∫
Γ2
h2(x)Tv ds+

∫
Γ3
h3(x)Tv ds  

=: g(v)

.

Observation 5.14. Note that the mixed problem is a generalization of the pure Dirichlet, Neumann,
and Newton problems, since

• Γ1 = ∂Ω, Γ2 = Γ3 = ∅, V = W 1,2
0 (Ω) . . . problem (5.4),

• Γ2 = ∂Ω, Γ1 = Γ3 = ∅, V = W 1,2(Ω) . . . problem (5.5),
• Γ3 = ∂Ω, Γ1 = Γ2 = ∅, V = W 1,2(Ω) . . . problem (5.6).

Exercise 5.15. Prove that for ‘smooth enough’ ‘data’ of (5.7) it holds

weak solution ≡ classical solution.

Example 5.16 (weak solution to the transmission problem).
Let us denote

• Ω = {(x1, . . . , xn) ∈ Rn : ∥(x1, . . . , xn)∥ < 1},
• Ω+ = Ω ∩ {(x1, . . . , xn) ∈ Rn : xn > 0},
• Ω− = Ω \Ω+,

• Γ = Ω ∩ {(x1, . . . , xn) ∈ Rn : xn = 0}.

and consider the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−α∆u = f(x) v Ω+,

−β∆u = f(x) v Ω−,

u = h(x) na ∂Ω,
u is continuous on Γ,

α
∂u

∂xn
(x1, . . . , xn−1, 0+) = β

∂u

∂xn
(x1, . . . , xn−1, 0−)

for all (x1, . . . , xn−1, 0) ∈ Γ,

(5.8)

where

• α, β ∈ R+,

• f ∈ L2(Ω),
• there exists u0 ∈ W 1,2(Ω) such that Tu0 = h ∈ L2(∂Ω).

A function u ∈ W 1,2(Ω) is a weak solution to the transmission problem if
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• u− u0 ∈ W 1,2
0 (Ω),

• ∀v ∈ W 1,2
0 (Ω) : α

∫
Ω+

∇u∇v dx+ β

∫
Ω−

∇u∇v dx =
∫

Ω
f(x)v dx.

Here we made use of

V := W 1,2
0 (Ω),

a(u, v) := α

∫
Ω+

∇u∇v dx+ β

∫
Ω−

∇u∇v dx,

b(u, v) := 0, g(v) := 0.

Observation 5.17. For a ‘smooth enough’ weak solution u and the ‘data’ in (5.8) it holds

• 0 = T (u− u0) = Tu− Tu0 = u|∂Ω − h ⇒ u(x) = h(x) for ‘almost all’ x ∈ ∂Ω,

• ∀v ∈ W 1,2
0 (Ω) :

α

∫
Ω+

∇u∇v dx+ β

∫
Ω−

∇u∇v dx =
∫

Ω+
f(x)v dx+

∫
Ω−

f(x)v dx

⇓ see the Green theorem 4.21

− α

∫
Ω+

∆uv dx+ α

∫
∂Ω+

∂u

∂ν+Tv ds− β

∫
Ω−

∆uv dx+ β

∫
∂Ω−

∂u

∂ν−Tv ds

=
∫

Ω+
f(x)v dx+

∫
Ω−

f(x)v dx.

It follows that

• ∀v ∈ C∞(Ω), supp v ⊂ Ω+ :∫
Ω+

(−α∆u− f(x))v dx = 0 ⇒ −α∆u = f(x) almost everywhere in Ω+,

• ∀v ∈ C∞(Ω), supp v ⊂ Ω− :∫
Ω−

(−β∆u− f(x))v dx = 0 ⇒ −β∆u = f(x) almost everywhere in Ω−,

and thus for all v ∈ W 1,2
0 (Ω) it holds

α

∫
∂Ω+

∂u

∂ν+Tv ds+ β

∫
∂Ω−

∂u

∂ν−Tv ds = 0

⇓∫
Γ

(
α
∂u

∂ν+ + β
∂u

∂ν−

)
Tv ds = 0,



5. Weak solution to linear elliptic problems 39

or
α
∂u

∂xn
(x1, . . . , xn−1, 0+) = β

∂u

∂xn
(x1, . . . , xn−1, 0−)

for ‘almost all’ (x1, . . . , xn−1, 0) ∈ Γ. (Moreover, with the assumption of smooth u the transmission
condition holds for every (x1, . . . , xn−1, 0) ∈ Γ.)

Theorem 5.18 (Lax-Milgram lemma).
Assume that

• H denotes a Hilbert space endowed with an inner product (·, ·) inducing the norm

∥ · ∥ =
√

(·, ·),

• B : H ×H → R is a bilinear form that is
– continuous, i.e., there exists k > 0 such that

∀u, v ∈ H : |B(u, v)| ≤ k ∥u∥ ∥v∥,

– H-elliptic, i.e., there exists c > 0 such that

∀u ∈ H : B(u, u) ≥ c ∥u∥2,

• F ∈ H∗.

Then there exists a unique element w ∈ H such that

∀v ∈ H : F (v) = B(w, v).

Furthermore, it holds
∥w∥ ≤ 1

c
∥F∥H∗ .

Proof. Let us choose an arbitrary but fixed element u ∈ H and consider the functional

G(v) := B(u, v).

Obviously, G ∈ H∗, and thus there exists (see the Riesz representation theorem) a unique element
Au ∈ H such that

∀v ∈ H : G(v) = B(u, v) = (Au, v).

For the mapping
A : H → H

it holds

• D(A) = H, A(H) ⊂ H,
• A is linear,
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• A is continuous in H, since

∀u ∈ H : ∥Au∥2 = (Au,Au) = B(u,Au) ≤ k ∥u∥ ∥Au∥

(here we used the continuity of the bilinear form B), and thus

∀u ∈ H : ∥Au∥ ≤ k ∥u∥.

• A is an injective mapping (and thus its inversion A−1 : A(H) → H) exists, because due to
the linearity of A and H-ellipticity of the bilinear form B it holds

Au1 = Au2

⇓

A(u1 − u2) = 0

⇓

c∥u1 − u2∥2 ≤ B(u1 − u2, u1 − u2) = (A(u1 − u2), u1 − u2) = (0, u1 − u2) = 0

⇓

∥u1 − u2∥ = 0

⇓

u1 = u2.

• ∀u ∈ H : c ∥u∥2 ≤ B(u, u) = (Au, u) ≤ ∥Au∥ ∥u∥, and thus19

∀u ∈ H : c ∥u∥ ≤ ∥Au∥. (5.9)

• A(H) is a closed subset of H. Let us prove this assertion. Consider a sequence (un) ⊂ H
and y ∈ H such that Aun → y. Then (Aun) is a Cauchy sequence in H, and since (see (5.9))

c ∥un − um∥ ≤ ∥A(un − um)∥ = ∥Aun −Aum∥,

also (un) is a Cauchy sequence in (the complete space) H. There thus exists x ∈ H
such that un → x. The continuity of A then leads to Aun → Ax. Since we simultaneously
assume that Aun → y, it obviously holds that Ax = y ∈ A(H).

• A(H) = H. We prove this assertion by contradiction. Assume that there exists an element
z ∈ H \A(H) and denote u = z − Pz, where P is the orthogonal projector to the closed
linear subspace A(H). Then we have u ̸= 0 and ∀y ∈ A(H) : (u, y) = 0. In particular, for
y = Au :

0 = (u,Au) = (Au, u) = B(u, u) ≥ c ∥u∥2 ⇒ u = 0,

which contradicts our assumption.
19Note that we prove the continuity A−1!
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Returning back to the functional F ∈ H∗, from the Riesz representation theorem it follows
that there exists a unique element t ∈ H such that

∀v ∈ H : F (v) = (t, v), ∥t∥ = ∥F∥H∗ .

Because A : H → H is both injective an surjective, there exists a unique w ∈ H satisfying t = Aw.
Thus,

∀v ∈ H : F (v) = (t, v) = (Aw, v)= B(w, v).

Moreover, (see (5.9))
∥w∥ ≤ 1

c
∥Aw∥ = 1

c
∥t∥ = 1

c
∥F∥H∗ .

Theorem 5.19 (existence and uniqueness of the weak solution).
Recall the setting from the definition of the weak solution to (5.6). If the bilinear from ((u, v)) is
also V -elliptic, i.e., there exists c > 0 such that

∀v ∈ V : ((v, v)) ≥ c ∥v∥2
k,2,

then there exists a unique weak solution to the boundary value problem.

Moreover, there exists j > 0 such that for the weak solution u ∈ W k,2(Ω) it holds 20

∥u∥k,2 ≤ j
(
∥f∥L2(Ω) + ∥g∥V ∗ + ∥u0∥k,2

)
.

Proof. Choosing

i) H := V ,
ii) B(u, v) := ((u, v)),

iii) F (v) :=
∫

Ω
f v dx+ g(v) − ((u0, v)) ∈ H∗,

all assumptions of the Lax-Milgram lemma 5.19 are satisfied, and thus

(∃!w ∈ V )(∀v ∈ V ) : B(w, v) = ((w, v)) = F (v),

∥w∥k,2 ≤ 1
c

∥F∥V ∗ .

Setting
u = u0 + w

leads to

i) u− u0 = w ∈ V,

20In other words, the solution is continuously dependent on the right-hand side and the boundary
conditions.
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ii) ∀v ∈ V :

((u, v)) = ((u0 + w, v)) = ((u0, v)) + ((w, v)) = ((u0, v)) + F (v) =
∫

Ω
f v dx+ g(v).

From the continuity of ((u, v)) it follows that there exists ℓ > 0 such that

∀u, v ∈ V : |((u, v))| ≤ ℓ ∥u∥k,2 ∥v∥k,2,

and thus

∥u∥k,2 = ∥u0 + w∥k,2 ≤ ∥u0∥k,2 + ∥w∥k,2 ≤ ∥u0∥k,2 + 1
c

∥F∥V ∗ ≤

≤ ∥u0∥k,2 + 1
c

(
∥f∥L2(Ω) + ∥g∥V ∗ + ℓ∥u0∥k,2

)
≤ j

(
∥f∥L2(Ω) + ∥g∥V ∗ + ∥u0∥k,2

)
,

where
j = max

{1
c
, 1 + ℓ

c

}
> 0.

Example 5.20. Let us consider the above defined mixed problem (5.7). One can show that

♠ if Γ1 denotes a non-empty subset of ∂Ω with ‘a positive measure’, the functional

∥v∥1,2,0 :=
(∫

Ω
|∇v|2 dx

) 1
2

defines a norm in V equivalent with ∥ · ∥1,2.21

♣ if Γ3 denotes a non-empty subset of ∂Ω with ‘a positive measure’, the following Friedrichs-
type inequality holds: there exists k > 0 such that

∀v ∈ W 1,2(Ω) : ∥v∥2
1,2 ≤ k

(∫
Ω

|∇v|2 dx+
∫

Γ3
|Tv|2 ds

)
.

Assume, in addition, that there exist constants p0, σ0 > 0 satisfying

• p(x) ≥ p0 > 0 for almost all x ∈ Ω,
• σ(x) ≥ σ0 > 0 for ‘almost all’ x ∈ Γ3,
• q(x) ≥ 0 for almost all x ∈ Ω.

Then it holds for every v ∈ V that

((v, v)) =
∫

Ω
p(x)|∇v|2 + q(x)v2 dx+

∫
Γ3
σ(x)|Tv|2 ds

≥ p0

∫
Ω

|∇v|2 dx+ σ0

∫
Γ3

|Tv|2 ds

≥ min{p0, σ0}
(∫

Ω
|∇v|2 dx+

∫
Γ3

|Tv|2 ds
)
,

21For Γ1 = ∂Ω one already has the Friedrichs theorem 4.12.
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and thus under the assumption of either ♠ or ♣ there exists c > 0 such that

∀v ∈ V : ((v, v)) ≥ c ∥v∥2
1,2,

e.g., the bilinear form is V -elliptic.

To summarize, we have shown that under the assumptions of ♠ or ♣ the mixed problem (5.7)
admits a unique weak solution. In particular, the Dirichlet and Newton problems (5.4) and (5.6),
respectively, admit a unique weak solution which is continuously dependent on the right-hand side
and the boundary conditions.

It remains to study the solvability of the Neumann problem (5.5). For a special case of q ≡ 0,
i.e., the boundary value problem

⎧⎪⎨⎪⎩
− div(p(x)∇u) = f(x) in Ω,

p(x)∂u
∂ν

= h(x) on ∂Ω,
(5.10)

where p again satisfies
p(x) ≥ p0 > 0 for almost all x ∈ Ω,

the bilinear form
((u, v)) =

∫
Ω
p(x)∇u∇v dx

is not V -elliptic.22 (E.g., for v ≡ 1 ∈ W 1,2(Ω) it holds ∥v∥1,2 > 0 and simultaneously ((v, v)) = 0.)
Moreover:

• v ≡ 1 ∈ W 1,2(Ω), and thus (should a weak solution exist) it must hold∫
Ω
f(x) dx+

∫
∂Ω
h(x) ds = 0;

• if u ∈ W 1,2(Ω) is a weak solution to the Neumann problem (5.10), then also every

uc(x) := u(x) + c,

with c ∈ R defines a weak solution to (5.10).

One can show that under the additional assumption∫
Ω
f(x) dx+

∫
∂Ω
h(x) ds = 0,

there exist infinitely many weak solutions to the Neumann problem.

⎧⎪⎨⎪⎩
− div(p(x)∇u) = f(x) in Ω,

p(x)∂u
∂ν

= h(x) on ∂Ω.

22Here we have V = W 1,2(Ω).
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Moreover, if u1 and u2 solve the Neumann problem (in the weak sense), there exists c ∈ R such
that

u1(x) = u2(x) + c for almost all x ∈ Ω.

Remark 5.21 (regularity of the weak solution). We have shown in several examples that under
certain smoothness assumptions on the weak solution and the corresponding ‘data’, the weak
solution is equivalent to the classical one. A natural question arises whether and how exactly
the smoothness of the weak solution to the boundary value problem depends on the quality
(smoothness) of the right-hand side, the boundary conditions, and the domain Ω itself.

In particular, which qualities should these functions and Ω possess for the weak solution to
become a classical one? The problematic of the so-called regularity of weak solutions is very
involved and there still exists a number of open problems. (By the way, the 19th and 20th
problems from the famous list of problems assembled by David Hilbert are from this area of
research.)

Let us briefly mention the known results for the boundary value problem⎧⎨⎩−(p(x)u′)′ = f(x) in (0, 1),

u(0) = u(1) = 0,
(5.11)

where

• f ∈ L2(0, 1),
• p ∈ L∞(0, 1),
• ∃p0 ∈ R : 0 < p0 ≤ p(x) for almost all x ∈ (0, 1).

we already know that there exists a unique weak solution to the problem – i.e., a function
u ∈ W 1,2

0 (0, 1) satisfying

∀v ∈ W 1,2
0 (0, 1) :

∫ 1

0
p(x)u′(x)v′(x) dx =

∫ 1

0
f(x)v(x) dx.

We shall prove the following theorem.

Theorem 5.22. If, in addition,

• p ∈ Ck+1(⟨0, 1⟩),
• f ∈ W k,2(0, 1),

where k ∈ {0, 1, 2, 3, . . .}, we have for the weak solution to (5.11) that

u ∈ W k+2,2(0, 1).

Observation 5.23. If, in addition,

• p ∈ C2(⟨0, 1⟩),
• f ∈ W 1,2(0, 1),
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it holds (due to Theorem 5.22) that u ∈ W 3,2(0, 1), and thus (see Theorem 4.23)

u′′ ∈ W 1,2(0, 1) ⊂ C(⟨0, 1⟩).

In other words, the weak solution is also the classical one.

Proof of Theorem 5.22. We will proceed in two steps.

1) First, assume that
p(x) ≡ 1.

For the weak solution u ∈ W 1,2
0 (0, 1) to (5.11) it holds

∀v ∈ W 1,2
0 (0, 1) = C∞

0 (0, 1) :
∫ 1

0
u′(x)v′(x) dx =

∫ 1

0
f(x)v(x) dx.

This formula, in fact, states that

−u′′ = f in the distributional sense.

Thus, if23

f ∈ W k,2(0, 1) =
{
v ∈ L2(0, 1) : v′, v′′, . . . , v(k) ∈ L2(0, 1)

}
,

we have
u ∈ W k+2,2(0, 1).

2) Let us now assume that
p ∈ Ck+1(⟨0, 1⟩),

∀x ∈ ⟨0, 1⟩ : 0 < p0 ≤ p(x),

f ∈ W k,2(0, 1).
Then

∀w ∈ W 1,2
0 (0, 1) : v := w

p
∈ W 1,2

0 (0, 1),

and for the weak solution u to (5.11) it thus holds

∀w ∈ W 1,2
0 (0, 1) :∫ 1

0
u′(x)w′(x) dx =

∫ 1

0
u′(x)(p(x)v(x))′ dx

=
∫ 1

0
p(x)u′(x)v′(x) dx+

∫ 1

0
u′(x)p′(x)v(x) dx

=
∫ 1

0
f(x)v(x) dx+

∫ 1

0
u′(x)p′(x)v(x) dx

=
∫ 1

0

(
f(x) + u′(x)p′(x)

)w(x)
p(x) dx =

∫ 1

0
f̃(x)w(x) dx,

23In the following formula the derivatives are understood, obviously, in the distributional sense.
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where
f̃(x) := 1

p(x)
(
f(x) + u′(x)p′(x)

)
.

From here we conclude that u solves the problem⎧⎨⎩−u′′ = f̃(x) v (0, 1),

u(0) = u(1) = 0,

in the weak sense and so (see 1)):

f̃(x) = 1
p(x)

(
f(x) + u′(x)p′(x)

)
∈ W k,2(0, 1) ⇒ u ∈ W k+2,2(0, 1).

Now it remains to think through the following ‘chain’ of implications (can be proven by
induction):

u ∈ W 1,2
0 (0, 1) ⇒ u′ ∈ L2(0, 1) ⇒ f̃ ∈ L2(0, 1) = W 0,2(0, 1)

⇒ u ∈ W 2,2(0, 1) ⇒ u′ ∈ W 1,2(0, 1) ⇒ f̃ ∈ W 1,2(0, 1)

⇒ u ∈ W 3,2(0, 1) ⇒ . . . ⇒ u ∈ W k+2,2(0, 1).

5.1 Relation to variational calculus

Recall the situation from the definition of the weak solution to the boundary value problem (see
page 32) and let us assume in addition that

• u0 = 0, g = 0 (i.e., homogeneous boundary conditions),
• the bilinear form ((u, v)) is V -elliptic, i.e.,

(∃c > 0) (∀v ∈ V ) : ((v, v)) ≥ c∥v∥2
k,2,

• the bilinear form ((u, v)) is symmetric in V , i.e.,

∀u, v ∈ V : ((u, v)) = ((v, u)).

Theorem 5.24. Under the above specified assumptions the following statements are equivalent.

1) u ∈ V is a weak solution to the boundary value problem, i.e.,

∀v ∈ V : ((u, v)) =
∫

Ω
f v dx;

2) u is the minimizer of the functional 24

J(v) := ((v, v)) − 2
∫

Ω
f v dx

24The functional J is often called the quadratic functional or the energy functional.
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in V , i.e.,
u ∈ V ∧ min

v∈V
J(v) = J(u).

Proof.

1) We will first prove the implication 1) ⇒ 2). Let u ∈ V denote the weak solution, v ∈ V an
arbitrary but fixed element and

z := v − u.

Then

J(v) = J(u+ z) = ((u+ z, u+ z)) − 2
∫

Ω
f(u+ z) dx =

= ((u, u)) + 2((u, z)) + ((z, z)) − 2
∫

Ω
f u dx− 2

∫
Ω
f z dx =

= ((u, u)) − 2
∫

Ω
f u dx+ ((z, z)) = J(u) + ((z, z)) ≥

≥ J(u) + c∥z∥2
k,2 ≥ J(u).

Here we used the symmetry and V -ellipticity of the bilinear form ((·, ·)) and the fact that
u solves the boundary value problem in the weak sense.

2) Now we prove the converse implication 2) ⇒ 1). Let u ∈ V denote a function satisfying

J(u) = min
v∈V

J(v),

and z ∈ V an arbitrary but fixed element. Then for all t ∈ R it holds

h(t) := J(u+ tz) ≥ J(u) = h(0),

i.e., the function h is minimized in R by 0, and thus: if h′(0) exists, it must vanish. From
the definition h it follows that for all t ∈ R it holds

h(t) = ((u+ tz, u+ tz)) − 2
∫

Ω
f(u+ tz) dx =

= ((u, u)) + 2t((u, z)) + t2((z, z)) − 2
∫

Ω
f u dx− 2t

∫
Ω
f z dx,

and so h is a quadratic function. We can write

h′(0) = 0 = 2((u, z)) − 2
∫

Ω
f z dx.

We have found out that
∀z ∈ V : ((u, z)) =

∫
Ω
f z dx,

and u thus defines a weak solution to the boundary value problem under consideration.
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5.2 Discretization techniques

Recall the situation from Theorem 5.24 on page 46, i.e., let us assume that the bilinear form

((·, ·)) : W k,2(Ω) ×W k,2(Ω) → R

is

• continuous,
• symmetric,
• V -elliptic (W k,2

0 (Ω) ⊂ V = V ⊂ W k,2(Ω)).

For a given function f ∈ L2(Ω) we seek u ∈ V such that

∀v ∈ V : ((u, v)) =
∫

Ω
f v dx. (5.12)

We already know that the problem is uniquely solvable in the weak sense.

First note that the bilinear form ((·, ·)) defines (under the given assumtpions) an inner
product in the space V ; moreover, from the V -ellipticity and continuity of the bilinear form
((·, ·)) we derive that

(∃c1, c2 > 0) (∀v ∈ V ) : c1∥v∥2
k,2 ≤ ((v, v)) ≤ c2∥v∥2

k,2,

and thus the norms ∥ · ∥ :=
√

((·, ·)) and ∥ · ∥k,2 are equivalent in V .

Using this result and the closedness of (V, ∥ · ∥k,2) in W k,2(Ω), we can deduce that

(V, ∥ · ∥) is a separable Hilbert space.

Theorem 5.25. Assume that {e1, e2, . . . , ej , . . .} defines a base of V orthonormal with respect
to the inner product ((·, ·)). The solution to (5.12) can then be expressed as

u =
∞∑

j=1

(∫
Ω
f ej dx

)
ej .

Proof. Let u denote the solution to (5.12) (it is well defined!). Then we have for every j ∈ N that

((u, ej)) =
∫

Ω
f ej dx,

and thus (see the definition of an orthonormal basis in [2])

u =
∞∑

j=1
((u, ej))ej =

∞∑
j=1

(∫
Ω
f ej dx

)
ej . (5.13)



5. Weak solution to linear elliptic problems 49

5.2.1 The Ritz method

We have already found out that u ∈ V solves (5.12) if and only if

J(u) = min
v∈V

J(v),

where
J(v) := ((v, v)) − 2

∫
Ω
f v dx.

We can try to approximate u as follows: let {e1, e2, . . .} denote an orthonormal basis of V(
with respect to ((·, ·))

)
. We seek a function

um ∈ span(e1, . . . , em) =: Vm

satisfying
J(um) = min

v∈Vm

J(v).

Since
um ∈ Vm ⇔

[
∃α1, . . . , αm ∈ R : um =

m∑
j=1

αj ej

]
,

we are looking for a minimizer of

h(α1, . . . , αm) := J

⎛⎝ m∑
j=1

αj ej

⎞⎠ in Rm.

Note that

h(α1, . . . , αm) =

⎛⎝⎛⎝ m∑
j=1

αj ej ,
m∑

j=1
αj ej

⎞⎠⎞⎠− 2
∫

Ω
f

m∑
j=1

αj ej dx =

=
m∑

j=1
α2

j − 2
m∑

j=1
αj

∫
Ω
f ej dx =

m∑
j=1

(
α2

j − 2αj

∫
Ω
f ej dx  

→∞ for |αj |→∞

)
,

and thus (h ∈ C∞(Rm)) the minimum of h in Rm exists. The minimum is attained in the point
(α1, . . . , αm), for which it holds

∀j ∈ {1, . . . ,m} : ∂h

∂αj
(α1, . . . , αm) = 2αj − 2

∫
Ω
f ej dx = 0.

Thus, for the approximation um we can write

um =
m∑

j=1

(∫
Ω
f ej dx

)
ej .
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This means that um ∈ Vm is in fact the sum of the first m elements in the Fourier series of u
(see (5.13)), which among other things means

∥u− um∥ = inf
z ∈ Vm

∥u− z∥,

um → u in (V, ∥ · ∥),
and thus – due to the equivalence of the norms ∥ · ∥ and ∥ · ∥k,2 – also

um → u in (V, ∥ · ∥k,2).

Also note another point: the functional J restricted to Vm is minimized by um ∈ Vm. This
holds true regardless of the basis chosen for Vm.

Let
{v1, v2, . . . , vj , . . .}

denote a basis (not necessarily orthogonal) of the space V , i.e.,

• (∀v ∈ V ) (∃(cn) ⊂ R) : v =
∑∞

j=1 cj vj := limm→∞
∑m

j=1 cj vj ,
• ∀j ∈ N : v1, . . . , vj are linearly independent,

and denote
Vm = span(v1, . . . , vm).

Then (as we already know)

∃!um ∈ Vm : J(um) = min
v ∈ Vm

J(v).

Similarly as in the previous case, let us show how to find the approximation

um =
m∑

j=1
cj vj ∈ Vm.

We define

h̃(c1, . . . , cm) := J

⎛⎝ m∑
j=1

cj vj

⎞⎠ =
m∑

i=1
ci

(
m∑

ℓ=1
cℓ((vi, vℓ))

)
− 2

m∑
j=1

cj

∫
Ω
f vj dx.

Then

∀j ∈ {1, . . . ,m} : ∂h̃
∂cj

(c1, . . . , cm) =
m∑

i=1
i ̸=j

ci((vi, vj)) + ∂

∂cj

(
cj

m∑
ℓ=1

cℓ((vj , vℓ))
)

− 2
∫

Ω
f vj dx

=
m∑

i=1
i ̸=j

ci((vi, vj)) +
m∑

ℓ=1
cℓ((vj , vℓ)) + cj((vj , vj)) − 2

∫
Ω
f vj dx =

= 2
m∑

i=1
ci((vi, vj)) − 2

∫
Ω
f vj dx = 0

⇕
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∀j ∈ {1, . . . ,m} :
m∑

i=1
ci((vi, vj)) =

∫
Ω
f vj dx. (5.14)

The solution of this system of linear equations (uniquely!) defines the sought coefficients
c1, . . . , cm. We have thus proven the following theorem.

Theorem 5.26. Assume that {v1, v2, . . . , vm, . . .} denotes a basis of the space V and for every
m ∈ N

um :=
m∑

j=1
cj vj ,

where c1, . . . , cm ∈ R solve the system (5.14).

Then
u := lim um

solves the problem (5.12).

In ‘real-life’ situations it is rather difficult to find a basis of the space V (defined in a bounded
domain Ω) and thus also the finite dimensional subspaces Vm. This difficulty is partially overcome
by the Galerkin method described in the following section. Differently from the Ritz method,
the Galerkin approach can also be extended to problems with non-symmetric bilinear forms
((·, ·)).

5.2.2 The Galerkin method

Definition 5.27. Consider a class of finite dimensional subspaces of V denoted by

{Vh}h∈(0,1).

We say that
Vh → V for h → 0+ ,

if
∀v ∈ V : lim

h→0+
(dist(Vh, v)) = 0,

where
dist(Vh, v) := inf

z∈Vh

∥v − z∥k,2.

Example 5.28. If {v1, . . . , vm, . . .} denotes a basis of V , Vm = span(v1, . . . , vm), we can con-
struct a subspace {Vh}h∈(0,1) satisfying the property Vh → V pro h → 0+ as

Vh := Vm for 1
m+ 1 ≤ h <

1
m
.
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Theorem 5.29. Assume that u solves (5.12) and Vh → V for h → 0+. Then for all h ∈ (0, 1)
there exists a unique uh ∈ Vh satisfying

∀v ∈ Vh : ((uh, v)) =
∫

Ω
f v dx.

Moreover, it holds
lim

h→0+
uh = u (in W k,2(Ω)),

i.e.,
(∀ε > 0) (∃δ > 0) (∀h ∈ (0, δ)) : ∥u− uh∥k,2 < ε.

Proof. 25

1) Choose h ∈ (0, 1) and Vh = span(v1, v2, . . . , vmh
), where v1, . . . , vmh

are linearly indepen-
dent. We will seek the function uh ∈ Vh in the form

uh =
mh∑
i=1

ci vi,

where c1, . . . , cmh
∈ R. Obviously, it holds for uh that

∀v ∈ Vh : ((uh, v)) =
∫

Ω
f v dx

if and only if (substitute v = vj)

∀j ∈ {1, . . . ,mh} :
mh∑
i=1

ci((vi, vj)) =
∫

Ω
f vj dx.

This results in the same system of linear equations (with a unique solution c1, . . . , cmh
)

as in the case of the Ritz method (see (5.14)).
2) It remains to prove that

lim
h→0+

uh = u.

For an arbitrary but fixed h ∈ (0, 1)) consider:
• u ∈ V solving the problem (5.12), i.e.,

∀v ∈ V : ((u, v)) =
∫

Ω
f v dx, (5.15)

• uh ∈ Vh ⊂ V such that

∀v ∈ Vh : ((uh, v)) =
∫

Ω
f v dx, (5.16)

(such uh, as we already know, is uniquely defined!),
25Thanks, Dalibor!
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• an arbitrary element vh ∈ Vh.
Then there exist constants c1, c2 > 0 (independent of u, uh, vh!) such that

c1∥u− uh∥2
k,2 ≤ ((u− uh, u− uh)) = ((u− uh, u− uh)) +

=0 (see (5.15) and (5.16))  
((u− uh, uh − vh  

∈Vh⊂V

))

= ((u− uh, u− uh + uh − vh)) = ((u− uh, u− vh))

≤ c2∥u− uh∥k,2∥u− vh∥k,2,

and thus
∥u− uh∥k,2 ≤ c2

c1
∥u− vh∥k,2 .

Using this results and the property Vh → V for h → 0+ finally leads to

lim
h→0+

uh = u.

Remark 5.30. A special choice of the spaces Vh (i.e., a special case of the Galerkin method) leads
to the so-called finite element method. The key idea of this method is to define the elements of
the basis v1, . . . , vmh

∈ Vh in such a way that the matrix

A = ((vi, vj))mh
i,j=1

is sparse (i.e., most of its entries vanish) and the non-zero entries are distributed close to the
main diagonal. This is a quality crucial for practical (numerical) solution of ‘large’ systems (i.e.,
for ‘large’ mh).
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