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INSTEAD OF PREFACE

It was all very well to say ‘Drink me,’ but the wise little Alice was not going to do that in a
hurry. ‘No, I’ll look first,’ she said, ‘and see whether it’s marked “poison” or not’; for she had
read several nice little histories about children who had got burnt, and eaten up by wild beasts
and other unpleasant things, all because they would not remember the simple rules their friends
had taught them: such as, that a red-hot poker will burn you if you hold it too long; and that
if you cut your finger very deeply with a knife, it usually bleeds; and she had never forgotten
that, if you drink much from a bottle marked ‘poison,’ it is almost certain to disagree with you,
sooner or later.

However, this bottle was not marked ‘poison,’ so Alice ventured to taste it, and finding it
very nice, (it had, in fact, a sort of mixed flavour of cherry-tart, custard, pine-apple, roast turkey,
toffee, and hot buttered toast,) she very soon finished it off.

(Lewis Carroll, ‘Alice’s Adventures In Wonderland’)
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A THE REAL NUMBER SYSTEM;
THE SUPREMUM THEOREM

1 NUMBER SYSTEMS, THEIR NOTATION AND SOME
PROPOSITIONS

1.1 N = {1, 2, 3, 4, 5, . . .} . . . the set of all natural numbers.
The following theorem is useful not only when thinking about a structure of the natural

numbers, but it is also a good instrument for proving many mathematical propositions.

1.2 Theorem (Principle of Mathematical Induction). Let M be a subset of N such that

i) 1 ∈ M ,

ii) ∀n ∈ M : n + 1 ∈ M .

Then M = N.

1.3 Example. Prove that

∀n ∈ N : 1 + 2 + . . . + n =
1

2
n (n + 1).

PROOF. Let us denote

M :=

{

k ∈ N : 1 + 2 + . . . + k =
1

2
k (k + 1)

}

.

The task is to prove that M = N. According to Theorem 1.2 it is sufficient to show that the
premises i) and ii) hold for M . The premise i) holds clearly since 1 = 1

2
· 1 · (1 + 1). In order

to prove ii) let us assume that n ∈ M , i.e.,

1 + 2 + . . . + n =
1

2
n (n + 1).

We shall show that then n + 1 ∈ M , i.e.,

1 + 2 + . . . + n + (n + 1) =
1

2
(n + 1) (n + 1 + 1).

This is easy since from our assumption it follows that

(1 + 2 + . . . + n) + (n + 1) =
1

2
n (n + 1) + (n + 1) =

1

2
(n + 1) (n + 1 + 1).

Thus the premise ii) holds too.
�

There is also another way how to prove this proposition. Given n ∈ N,

2 (1 + 2 + 3 + . . . + n) = 1 + 2 + 3 + . . . + n +
+ n + (n − 1) + (n − 2) + . . . + 1 = n (n + 1).

�
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1.4 Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} =
⋃

n∈N

{n,−n, 0} . . . the set of all integer numbers.

1.5 Q = {p
q

: p, q ∈ Z ∧ q 6= 0} . . . the set of all rational numbers.
There is a lot of ideas showing certain incompleteness of the rational number system, de-

spite the fact that between each two - arbitrarily near - distinct rational numbers there still lies
an infinite number of them. For example,

i) (∀ε > 0)(∃ p1, p2 ∈ Q) : 2 − ε < p2
1 < 2 < p2

2 < 2 + ε,

ii) there is no rational number p such that p2 = 2.

Let us prove at least the second proposition.

PROOF. Conversely, we assume that there is a rational number p such that

p2 = 2.

Since p ∈ Q, there are integer coprime nonzero numbers m,n such that

p =
m

n
.

Thus we get
m2

n2
= 2

and so m2 = 2n2. This implies that m has to be even (note that the square of an even num-
ber is even and the square of an odd number is odd). Therefore there is a k ∈ Z such that
m = 2k. By inserting this relation into m2 = 2n2, we obtain 4k2 = 2n2. Hence it follows that
n2 = 2k2. This implies that also n has to be even which contradicts our assumption that m
and n are coprime.

�

1.6 R . . . the set of all real numbers.
Let us recall that we have number of operations defined in R (and also in N, Z

and Q): +, −, ·, :, | |.
An order of the real numbers is their other essential characteristic:

• for every two real numbers x, y exactly one of the following possibilities holds

i) x < y,

ii) x = y,

iii) x > y;

• for every three real numbers x, y, z it holds that (x < y ∧ y < z) ⇒ (x < z).

Let us also introduce the notation

R+ = {x ∈ R : x > 0} . . . the set of all positive real numbers,
R− = {x ∈ R : x < 0} . . . the set of all negative real numbers,
R \ Q . . . the set of all irrational numbers.
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1.7 R∗ = R ∪ {+∞,−∞} . . . the extended real number system.
Let us extend the order from R to R∗:

• ∀x ∈ R : −∞ < x ∧ x < +∞,

• −∞ < +∞.

Let us also define the following operations in R∗:

• ∀x > −∞ : x + (+∞) = +∞ + x = +∞,

• ∀x < +∞ : x + (−∞) = −∞ + x = −∞,

• ∀x ∈ R+ ∪ {+∞} : x · (+∞) = +∞ · x = +∞,
x · (−∞) = −∞ · x = −∞,

• ∀x ∈ R− ∪ {−∞} : x · (+∞) = +∞ · x = −∞,
x · (−∞) = −∞ · x = +∞,

• ∀x ∈ R : x
+∞ = x

−∞ = 0,

• | −∞| = | + ∞| = +∞.

Instead of x + (+∞) we usually write x + ∞. Similarly, instead of x + (−∞) we write
x −∞. Also, we denote +∞ briefly by ∞.

1.8 Remark. N ⊂ Z ⊂ Q ⊂ R ⊂ R∗

1.9 Caution. We do not define: +∞−∞, −∞ + ∞, 0 · (±∞), (±∞)
(±∞)

, x
0

(x ∈ R∗).

2 MAXIMUM, MINIMUM; SUPREMUM, INFIMUM

Already since secondary school we have been used to dealing with various sets of numbers.
For instance, let us consider the intervals (−1, 1) and (−1, 1] and number 1 which in both
intervals plays role of a “right bound”: any number lying to the right from it belongs neither
to (−1, 1) nor to (−1, 1]. Also, every number from the set [1, +∞) ∪ {+∞} has this quality
(in a while: to be an upper bound). However, number 1 is the best since it is the smallest one.
The fact that in the first case number 1 does not belong to the given interval and in the sec-
ond case it does is an essence of the difference between the concepts “supremum” and “maxi-
mum”. These concepts (together with other concepts defined below) are used for characteriza-
tion of even much more complicated subsets of R∗.

2.1 Definitions. Let M ⊂ R∗.

• A number k ∈ R∗ is said to be an upper bound of the set M if

∀x ∈ M : x ≤ k.
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• A number l ∈ R∗ is said to be a lower bound of the set M if

∀x ∈ M : x ≥ l.

2.2 Definitions. Let M ⊂ R∗.

• If an upper bound of M exists and belongs to M , we call it a maximum of M and denote
it by max M .

• If a lower bound of M exists and belongs to M , we call it a minimum of M and denote
it by min M .

2.3 Definitions. Let M ⊂ R∗.

• A number s ∈ R∗ is called a supremum of the set M if

i) ∀x ∈ M : x ≤ s
(i.e., s is the upper bound of M ),

ii) (∀k ∈ R∗, k < s) (∃x ∈ M) : x > k
(i.e., any number smaller than s is not the upper bound of M ).

We write s = sup M .

• A number i ∈ R∗ is called an infimum of the set M if

i) ∀x ∈ M : x ≥ i
(i.e., i is the lower bound of M ),

ii) (∀l ∈ R∗, l > i) (∃x ∈ M) : x < l
(i.e., any number larger than i is not the lower bound of M ).

We write i = inf M .

2.4 Observation. sup M is the least upper bound of M and inf M is the greatest lower bound
of M .

2.5 Examples.

1) M = (−1, 1] . . . min M does not exist, inf M = −1, sup M = max M = 1.

2) M = R+ . . . neither min M nor max M exists, inf M = 0, sup M = +∞.

3) M = ∅ . . . neither min M nor max M exists, inf M = +∞, sup M = −∞.

4) M =
{
− 1

n
: n ∈ N

}
. . . min M = inf M = −1, max M does not exist, sup M = 0.

2.6 Definitions. Let M ⊂ R∗.

• If sup M < +∞, we call M bounded above.

• If inf M > −∞, we call M bounded below.

• If M is bounded above and bounded below, we call it bounded.
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• If M is not bounded, we call it unbounded.

2.7 Theorem (Supremum Theorem). Every subset of R∗ has exactly one supremum.

2.8 Corollary. Every subset of R∗ has exactly one infimum.

2.9 Exercises.

1) Think over the relation between max M and sup M (min M and inf M ).

2) Find out what is the relation between sup M and inf(−M), where

−M := {−x : x ∈ M} ,

and prove that the existence of infimum is really a consequence of Theorem 2.7.

3) Determine sup M and inf M (and also max M and min M , in case they exist), if

a) M = {q ∈ Q : q2 < 3},

b) M =
{
x ∈ R : sin 1

x
= 1

2

}
,

c) M = {x ∈ R : x2 + 3x − 6 ≥ 0}.

4) Prove the proposition:

A set M ⊂ R∗ is bounded ⇔ ∃k ∈ R+ : M ⊂ [−k, k] .

5) Prove that inf
{
1 + 2

n
: n ∈ N

}
= 1 and min

{
1 + 2

n
: n ∈ N

}
fails to exist.
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B REAL FUNCTIONS OF A SINGLE REAL VARIABLE

3 DEFINITION OF A FUNCTION

3.1 Definitions. We call every mapping of R into R a function (more precisely: a real function
of a single real variable). In other words, a function f is a prescription that associates each
element x ∈ D(f) ⊂ R with exactly one value f(x) ∈ H(f) ⊂ R (D(f) . . . the domain of f ;
H(f) . . . the range of f ). If f is a real function of a single real variable, we write

f : R 7→ R.

From now on we shall deal only with functions whose domains are not empty.

3.2 Examples.

1) f(x) := x2; D(f) = [−1, 1] . . . see Fig. 1.

2) g(x) := x2; D(g) = [−1, 1) . . . see Fig. 2.

Caution: f 6= g
(f = g ⇔ [D(f) = D(g) ∧ ∀x ∈ D(f) : f(x) = g(x)]).

0

0.2

0.4

0.6

0.8

1

–1 –0.5 0.5 1
x

0.2

0.4

0.6

0.8

1

–1 –0.5 0.5 1
x

Fig. 1 Fig. 2

3) η(x) :=

{
0, x < 0,
1, x ≥ 0;

D(η) = R, η . . . the so-called Heaviside function . . . see Fig. 3.

4) sgn(x) :=







−1, x < 0,
0, x = 0,
1, x > 0;

D(sgn) = R, sgn . . . the so-called sign function . . . see Fig. 4.

5) h(x) := bxc ; D(h) = R (bxc ∈ Z : bxc ≤ x < bxc + 1),
bxc . . . the so-called lower integer part of a number x . . . see Fig. 5.

6) Id(x) := x; D(Id) = R, Id . . . the so-called identity . . . see Fig. 6.
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7) l(x) := |x| =

{
−x, x < 0,

x, x ≥ 0;

D(l) = R, |x| . . . the so-called absolute value of a number x . . . see Fig. 7.
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2.5

3

–3 –2 –1 1 2 3
x

Fig. 7

8) χ(x) :=

{
0, x ∈ Q,
1, x ∈ R \ Q;

D(χ) = R, χ . . . the so-called Dirichlet function.

3.3 Definition. A graph of a function f is defined by

Graph f :=
{
(x, y) ∈ R × R =: R2 : x ∈ D(f) ∧ y = f(x)

}
.

3.4 Remark and convention. Now we know that a function is determined by its domain and
its prescription which associates each element of the domain with exactly one value. We often
determine a function only by its prescription; in this case the domain is a set of all real numbers
for which the prescription is meaningful.
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3.5 Example. Let us determine the domain and the graph of the function

k(x) :=
√

1 − x.

SOLUTION. D(k) =
{
x ∈ R :

√
1 − x is defined

}
= {x ∈ R : 1 − x ≥ 0} = (−∞, 1] .

Graph k =
{
(x, y) ∈ R2 : x ∈ (−∞, 1] ∧ y =

√
1 − x

}
=

= {(x, y) ∈ R2 : x ∈ (−∞, 1] ∧ y ≥ 0 ∧ y2 = 1 − x} . . . see Fig. 8.

0.5

1

1.5

2

–3 –2 –1 1
x
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4 SOME SPECIAL PROPERTIES OF FUNCTIONS

4.1 Monotonic Functions

4.1.1 Definitions. Let M ⊂ R. A function f is said to be

• increasing on the set M if

∀x1, x2 ∈ M : x1 < x2 ⇒ f(x1) < f(x2),

• non-decreasing on the set M if

∀x1, x2 ∈ M : x1 < x2 ⇒ f(x1) ≤ f(x2),

• decreasing on the set M if

∀x1, x2 ∈ M : x1 < x2 ⇒ f(x1) > f(x2),

• non-increasing on the set M if

∀x1, x2 ∈ M : x1 < x2 ⇒ f(x1) ≥ f(x2).

A function is said to be increasing (non-decreasing, decreasing, non-increasing) if it is in-
creasing (non-decreasing, decreasing, non-increasing) on its domain. Increasing and decreasing
functions are called strictly monotonic, non-increasing and non-decreasing functions are called
monotonic.

12



4.1.2 Examples. Let us consider the above-mentioned functions. Then

1) Id is increasing,

2) η, sgn, h, Id are non-decreasing,

3) k is decreasing,

4) k is non-increasing.

4.1.3 Remark. It is obvious that every strictly monotonic function is monotonic.

4.2 Even and Odd Functions

4.2.1 Definitions. A function f is called

• even if
∀x ∈ D(f) : f(−x) = f(x),

• odd if
∀x ∈ D(f) : f(−x) = −f(x).

4.2.2 Remark. Note that if f is even or odd, then ∀x ∈ D(f) : −x ∈ D(f).

4.2.3 Examples. Let us consider the above-mentioned functions again. Then

1) f, l, χ are even (g is not even!),

2) sgn, Id are odd.

4.2.4 Observation. Graph of an even function is symmetric to the line x = 0. Graph of an odd
function is symmetric to the origin.

4.3 Periodic Functions

4.3.1 Definitions. A function f is said to be periodic if there exists a T ∈ R+ such that

∀x ∈ D(f) : f(x) = f(x + T ).

We call such T a period of f .

4.3.2 Observation. For any periodic function f it holds: ∀x ∈ D(f) : x + T ∈ D(f).

4.3.3 Exercise. Prove the proposition:

T ∈ R+ ∩ Q ⇒ χ is periodic with the period T.

13



4.4 Injective Functions

4.4.1 Definition. A function is said to be injective if

∀x1, x2 ∈ D(f) : x1 6= x2 ⇒ f(x1) 6= f(x2).

4.4.2 Example. Functions Id and k are injective.

4.5 Bounded Functions

4.5.1 Definitions. Let M ⊂ D(f). A function f is said to be bounded above on the set M
if a set

f(M) := {f(x) : x ∈ M}
is bounded above. A function f is said to be bounded above if it is bounded above on D(f).
Below-bounded functions and bounded functions are defined analogously.

4.5.2 Examples.

1) f, g, η, sgn are bounded,

2) l, k are bounded below.

5 OPERATIONS WITH FUNCTIONS

5.1 Sum, Difference, Product, Quotient and Composition of Functions

5.1.1 Definitions. Let f and g be functions. Then the functions f + g, f − g, f · g, f
g

and g ◦ f
are defined by the following prescriptions:

• (f + g) (x) := f(x) + g(x),

• (f − g) (x) := f(x) − g(x),

• (f · g) (x) := f(x) · g(x),

•
(

f
g

)

(x) := f(x)
g(x)

,

• (g ◦ f) (x) := g(f(x)).

5.1.2 If we take a close look at the previous definitions, we note certain incorrectness there.
For example, in the relation (f + g) (x) := f(x) + g(x) we use symbol “+” in two different
meanings. On the left side of this equality it means the operation between two functions: the pair
f and g is associated with the function f +g; on the right side of the equality symbol “+” means
the sum of two real numbers f(x) and g(x). Similar incorrectness also appears in the definitions
of the other operations.

This inaccuracy is usual in mathematical literature, but with a little attention we cannot
make a mistake.

14



5.1.3 Examples.

1) Id = Id ◦ Id,

2) k = f2 ◦ f1, where f1(x) = 1 − x and f2(x) =
√

x,

3) |x| = x · sgn(x) =
√

x2.

5.2 Inverse Function

5.2.1 Definition. Let f be a function. A function f−1 is called an inverse of f if

i) D(f−1) = H(f),

ii) ∀x, y ∈ R : f−1(x) = y ⇔ x = f(y).

5.2.2 Theorem (Existence of an Inverse Function). Let f be a function. Then f−1 exists if and
only if f is injective.

PROOF.

i) f−1 exists ?⇒ f is injective
Let us consider arbitrary x1, x2 ∈ D(f) such that f(x1) = f(x2) and denote the value
f(x1) = f(x2) by x. This gives x ∈ H(f) = D(f−1). Hence it follows that f−1(x) = x1

and f−1(x) = x2. We thus get x1 = x2.

ii) f is injective ?⇒ f−1 exists
Let x ∈ H(f). As f is injective there exists a unique yx ∈ D(f) such that f(yx) = x.
Now we define a function g on H(f) by the prescription g(x) := yx. It is clear that
g = f−1.

5.2.3 Example. Find the inverse, in case it exists, of the function

v(x) :=
√

1 − x2, D(v) = [−1, 0] . . . see Fig. 9.

SOLUTION.

i) ∀x1, x2 ∈ D(v) = [−1, 0]:
v(x1) = v(x2) ⇒

√

1 − x2
1 =

√

1 − x2
2 ⇒ x2

1 = x2
2 ⇒

√

x2
1 =

√

x2
2 ⇒ |x1| = |x2| ⇒

−x1 = −x2 ⇒ x1 = x2. Hence v is injective and thus v−1 exists!

ii) ∀x ∈ D(v−1) = H(v) = [0, 1]:
v−1(x) = y ⇔ x = v(y) =

√

1 − y2 ⇒ x2 + y2 = 1 ⇒
√

y2 = |y| =
√

1 − x2.
Therefore y = v−1(x) = −

√
1 − x2 and we get

v−1(x) := −
√

1 − x2, D(v−1) = [0, 1] . . . see Fig. 9.
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5.2.4 Observations. Let f be an injective function. Then

• ∀x ∈ D(f−1) : (f ◦ f−1)(x) = x,

• ∀x ∈ D(f) : (f−1 ◦ f)(x) = x,

• (f−1)−1 = f ,

• (x, y) ∈ Graph f ⇔ (y, x) ∈ Graph f−1

(the graphs of f and f−1 are symmetric to the line y = x).

5.3 Restriction of a Function

5.3.1 Definition. We say that a function h is a restriction of a function f to a set M (we write
h = f |M ) if the following conditions hold:

i) M = D(h) ⊂ D(f),

ii) ∀x ∈ M : f(x) = h(x).

5.3.2 Examples.

1) g = f |[−1, 1),

2) sgn|R+ = η|R+ .
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C ELEMENTARY FUNCTIONS

6 BASIC ELEMENTARY FUNCTIONS

1

2
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4
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x

Fig. 10

6.1 An exponential function ex (we shall denote it also by exp(x)) . . . see Fig. 10.
This is undoubtedly the most important function in mathematics.
This is exactly how the wonderful Walter Rudin’s book “Real and Complex Analysis” starts.

Then it continues with an exact definition of the exponential function and with a proof of its
basic properties. However, this way is too difficult for us, in this moment we know too little.
For illustration, let us note that the exponential function can be defined using a sum of a series:

exp(x) := 1 + x +
x2

2!
+

x3

3!
+ . . . =

+∞∑

n=0

xn

n!
.

Since we do not know now what the given sum of the series means, we have to make
do with what we know about the exponential function from secondary school.

In what follows, we shall define other basic elementary functions (except the goniometric
functions) exactly.

6.2 A logarithmic function is defined as the inverse of the exponential function, i.e.,

log := exp−1 . . . see Fig. 11.
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6.3 A constant function is defined by

f(x) := c (c ∈ R) .

In the case c = 0 we speak about a zero function.
For instance: f(x) := 1 . . . see Fig. 12.
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Fig. 12

6.4 The power functions:

• a power function with a natural exponent n ∈ N is given by

f(x) = xn := x · x · x · · · x
︸ ︷︷ ︸

n times

.

For example: f(x) := x . . . see Fig. 6,
f(x) := x2 . . . see Fig. 13,
f(x) := x3 . . . see Fig. 14.

• a power function with a negative integer exponent −n (n ∈ N) is given by

f(x) = x−n :=
1

xn
=

1

x · x · x · · · x.

For example: f(x) := x−1 = 1
x

. . . see Fig. 15,
f(x) := x−2 = 1

x2 . . . see Fig. 16.
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• a function nth root (n ∈ N, n > 1) is defined by

i) f(x) :=
(
xn|[0, +∞)

)

−1
for every even n,

ii) f(x) := (xn|R)−1 for every odd n.

We write f(x) = n
√

x.
For example: f(x) := 2

√
x =:

√
x . . . see Fig. 17,

f(x) := 3
√

x . . . see Fig. 18.

• a power function with a real exponent r ∈ R \ Z is defined by

f(x) = xr := er log x .

For example: f(x) := x
√

5 . . . see Fig. 19,
f(x) := x

1√
5 . . . see Fig. 20.
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• moreover, we define
∀x ∈ R : x0 := 1.

6.5 Remark. It can be proved that

(∀p, q ∈ Z, q ≥ 2)
(
∀x ∈ R+

)
: x

p

q = e
p

q
log x = q

√
xp.

We can further ask why we do not define – for these p and q when, moreover, p is even –
the function x

p

q by the prescription x
p

q := q
√

xp also for a negative x. The answer is obvious.
Such definition would not be correct since we could get

−1 = (−1)1 = (−1)
2
2 =

√

(−1)2 =
√

1 = 1.

6.6 The goniometric functions:

• sin (sine) . . . see Fig. 21,

• cos (cosine) . . . see Fig. 22,

• tan := sin
cos

(tangent) . . . see Fig. 23,

• cot := cos
sin

(cotangent) . . . see Fig. 24.
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We again find ourselves in a situation when we work with the functions whose definitions
are beyond our comprehension in this moment. Similarly as in the case of the exponential
function, let us mention that the functions sine and cosine are defined by the following sums
of the infinite series:

sin x := x − x3

3!
+

x5

5!
− . . . =

+∞∑

n=0

(−1)n x2n+1

(2n + 1)!
,

cos x := 1 − x2

2!
+

x4

4!
− . . . =

+∞∑

n=0

(−1)n x2n

(2n)!
.
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6.7 Caution. Note that the domain of every goniometric function is a subset of R; we do not use
the degrees at all. In this context it is good to recall that equalities of the type 90◦ = π

2
, 30◦ = π

6
,

etc., are meaningless.

6.8 The cyclometric functions:

• arcsin :=
(

sin |[−π
2

, π
2 ]

)

−1
(arcsine) . . . see Fig. 25,

• arccos :=
(
cos |[0, π]

)

−1
(arccosine) . . . see Fig. 26,

• arctan :=
(

tan |(−π
2

, π
2 )

)

−1
(arctangent) . . . see Fig. 27,

• arccot :=
(
cot |(0, π)

)

−1
(arccotangent) . . . see Fig. 28.
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6.9 The hyperbolic functions:

• sinh x := ex−e−x

2
(hyperbolic sine) . . . see Fig. 29,

• cosh x := ex+e−x

2
(hyperbolic cosine) . . . see Fig. 30,

• tanh x := sinh x
cosh x

= ex−e−x

ex+e−x (hyperbolic tangent) . . . see Fig. 31,

• coth x := cosh x
sinh x

= ex+e−x

ex−e−x (hyperbolic cotangent) . . . see Fig. 32.

6.10 The hyperbolometric functions:

• arg sinh := (sinh)−1 (argument of hyperbolic sine) . . . see Fig. 33,

• arg cosh :=
(
cosh |[0, +∞)

)

−1
(argument of hyperbolic cosine) . . . see Fig. 34,

• arg tanh := (tanh)−1 (argument of hyperbolic tangent) . . . see Fig. 35,

• arg coth := (coth)−1 (argument of hyperbolic cotangent) . . . see Fig. 36.
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7 ELEMENTARY FUNCTIONS

7.1 Definition. A function is said to be elementary if it is formed by the basic elementary func-
tions using a finite number of algebraic operations (+, −, ·, :) and composition of functions.

23



–2

–1

0

1

2

y

–1–0.8 –0.4 0.2 0.4 0.6 0.8 1

x

–4

–3

–2

–1

0

1

2

3

4

y

–4 –3 –2 –1 1 2 3 4
x

Fig. 35 Fig. 36

7.2 Examples.

1) The function f(x) = ax := ex log a (a ∈ R+) is elementary.

2) The inverse of ax (a ∈ R+ \ {1}) is elementary
(

loga x = log x
log a

)

.

3) sgn is not elementary.

4) |x| =
√

x2 is elementary.

5) Every real polynomial p, i.e., a function given by

p(x) := anx
n + an−1x

n−1 + . . . + a1x + a0 (ai ∈ R, i = 0, 1, . . . , n),

is elementary.

7.3 Exercises. Prove the following propositions:

1) ∀x ∈ [−1, 1] : arcsin x + arccos x = π
2
,

2) ∀x ∈ R : arctan x + arccot x = π
2
,

3) ∀x ∈ R : cosh2 x − sinh2 x = 1,

4) ∀x ∈ R : arg sinh x = log
(
x +

√
x2 + 1

)
,

5) ∀x ∈ [1, +∞) : arg cosh x = log
(
x +

√
x2 − 1

)
,

6) ∀x ∈ (−1, 1) : arg tanh x = 1
2
log 1+x

1−x
,

7) ∀x ∈ R \ [−1, 1] : arg coth x = 1
2
log x+1

x−1
,

8) ∀u, v ∈ R : cosh(u + v) = cosh(u) cosh(v) + sinh(u) sinh(v),

9) ∀u, v ∈ R : sinh(u + v) = sinh(u) cosh(v) + cosh(u) sinh(v).
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D SEQUENCES OF REAL NUMBERS

8 LIMIT OF A SEQUENCE

8.1 Definitions. By a sequence (more precisely: a sequence of the real numbers), we mean
a function f whose domain equals to N.

A sequence which associates every n ∈ N with a number an ∈ R (an . . . the so-called
nth term of the sequence (an)) shall be denoted by one of the following ways:

• a1, a2, a3, . . . ;

• (an);

• {an}∞n=1.

8.2 Caution. {an}∞n=1 6= {an : n ∈ N} . . . the range of a sequence.

8.3 Examples.

1)
√

13,
√

13,
√

13, . . . ; an :=
√

13
. . . a constant sequence, ∀n ∈ N : an+1 = an.

2) 1, 2, 3, 4, 5, . . . ; an := n
. . . an arithmetic sequence, (∃δ ∈ R)(∀n ∈ N) : an+1 = an + δ.

3) 1, 2, 4, 8, 16, . . . ; an := 2n−1

. . . a geometric sequence, (∃q ∈ R)(∀n ∈ N) : an+1 = q an.

4) 1, 1
2
, 1

3
, 1

4
, 1

5
, . . . ; an := 1

n

. . . a harmonic sequence.

5) 1, 1, 2, 3, 5, 8, 13, . . . ; a1 = a2 = 1, ∀n ∈ N : an+2 := an+1 + an

. . . a Fibonacci sequence (defined recurrently).

6) 0, 1,−1, 2,−2, 3,−3, 0, 0,−27, 27, . . . = f(0), f(1), f(−1), . . . , f(n), f(−n), . . . ,

where f(x) := x
1260

(1296 − 49x2 + 14x4 − x6) . . . see Fig. 37.

8.4 Definitions. We say that a sequence (an) has a limit a ∈ R (we write lim an = a or an → a)
if

(∀ε ∈ R+)(∃n0 ∈ N)(∀n ∈ N, n > n0) : |an − a| < ε.

If a sequence has a (finite) limit, we call it convergent. In the opposite case we call the sequence
divergent.

8.5 Examples.

1) an :=
√

13 →
√

13.
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PROOF. The proposition is obvious since

(∀ε ∈ R+)(∃n0 ∈ N)(∀n ∈ N, n > n0) : |an −
√

13| = 0 < ε.

�

2) an := 1
n
→ 0.

PROOF. We have to prove that

(∀ε ∈ R+)(∃n0 ∈ N)(∀n ∈ N, n > n0) : |an − 0| < ε,

i.e.,

(∀ε ∈ R+)(∃n0 ∈ N)(∀n ∈ N, n > n0) :
1

n
< ε.

First of all, let us note that for n, ε > 0 we have 1
n

< ε ⇔ 1
ε

< n. Now we fix ε ∈ R+

and choose an n0 ∈ N such that
1

ε
< n0.

This is certainly possible. For instance, we can consider n0 =
⌊

1
ε

⌋
+ 1. Then

(∀n ∈ N, n > n0) : n > n0 >
1

ε
.

�

8.6 Exercises. Prove that

1) the sequence {an}∞n=1 := {(−1)n}∞n=1 has no limit;

2) the sequence {an}∞n=1 := {−n}∞n=1 is not convergent.
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8.7 Theorem. Every convergent sequence is bounded.

PROOF. The task is to show that

lim an = a ∈ R ⇒ ∃k ∈ R+ : {an : n ∈ N} ⊂ [−k, k] .

an → a ⇒ (∀ε ∈ R+)(∃n0 ∈ N)(∀n ∈ N, n > n0) : |an − a| < ε ⇒
⇒ (∃n0 ∈ N)(∀n ∈ N, n > n0) : |an − a| < 1.

Let us take such an n0 and put

k = max{|a1|, |a2|, . . . , |an0 |, |a| + 1}.

Clearly k ∈ R+.
It remains to prove that ∀n ∈ N : an ∈ [−k, k]:

∀n ∈ {1, 2, . . . , n0} : an ∈ {−|an|, |an|} ⊂ [−k, k] ,

(∀n ∈ N, n > n0) : an ∈ (a − 1, a + 1) ⊂ [−k, k] .

�

8.8 Caution. Theorem 8.7 cannot be reversed. More precisely, not every bounded sequence is
convergent. For instance, the sequence defined by an := (−1)n is bounded and lim (−1)n fails
to exist.

8.9 Definition. Let (an) be a sequence. Then a sequence

{akn
}∞n=1 = ak1 , ak2 , . . . , akn

, . . . ,

where (kn) is an increasing sequence of the natural numbers, i.e.,

∀n ∈ N : kn < kn+1 ∧ kn ∈ N,

is called a subsequence of (an).

8.10 Example.
(an) = 1, 3,

√
3, 8, 12, 1,−2, . . . ,

(akn
) = 1,

√
3, 1,−2, . . . ,

(kn) = 1, 3, 6, 7, . . . .

8.11 Theorem. Every bounded sequence contains a convergent subsequence.

8.12 Definitions. A sequence (an) is said to be a Cauchy sequence if it satisfies the so-called
Bolzano-Cauchy criterion:

(∀ε ∈ R+)(∃n0 ∈ N)(∀n,m ∈ N; n,m > n0) : |an − am| < ε.
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8.13 Theorem. A sequence is convergent if and only if it is a Cauchy sequence.

8.14 Definitions. Let (an) be a sequence. Then

• (an) has a limit +∞ (we write lim an = +∞ or an → +∞) if

(∀k ∈ R)(∃n0 ∈ N)(∀n ∈ N, n > n0) : an > k,

• (an) has a limit −∞ (we write lim an = −∞ or an → −∞) if

(∀l ∈ R)(∃n0 ∈ N)(∀n ∈ N, n > n0) : an < l.

8.15 Examples.

1) an := n3 → +∞,

2) an := −n → −∞.

8.16 Theorem. Every sequence has at most one limit.

PROOF. Let (an) be a sequence and a, b ∈ R∗. Conversely, we suppose that an → a,
an → b, a 6= b. Let, for example, a < b and let us choose c ∈ (a, b). Then there exist
n1, n2 ∈ N such that

(∀n ∈ N, n > n1) : an < c,

(∀n ∈ N, n > n2) : an > c.

Hence
(∀n ∈ N, n > max {n1, n2}) : c < an < c

which is impossible.
�

8.17 Theorem (Limit of a Subsequence). Let lim an = a ∈ R∗ and (akn
) be a subsequence

of the sequence (an). Then lim akn
= a.

The above-mentioned theorem can be very useful, for example, when proving that a se-
quence does not have any limit.

8.18 Example. The sequence {an}∞n=1 := {(−1)n}∞n=1 does not have any limit.

PROOF. By Theorem 8.17, it is sufficient to find two convergent subsequences of (an)
whose limits differ. And that is quite easy:

• for a subsequence containing only even terms of (an) we have

a2n = (−1)2n = 1 → 1,

• for a subsequence containing only odd terms of (an) we have

a2n−1 = (−1)2n−1 = −1 → −1.
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8.19 Theorem (Limit of a Monotonic Sequence). Let (an) be a sequence.

• If (an) is non-decreasing, then

lim an = sup {an : n ∈ N}.

• If (an) is non-increasing, then

lim an = inf {an : n ∈ N}.

PROOF. We assume, for example, that (an) is non-decreasing (if (an) is non-increasing,
we proceed analogously, or we can employ the fact that (−an) is non-decreasing). We put
s = sup {an : n ∈ N} and split the proof into two parts.

i) Let us consider primarily a situation when s = +∞ (i.e., (an) is not bounded above).
The task is to prove that lim an = +∞ which means that

(∀k ∈ R)(∃n0 ∈ N)(∀n ∈ N, n > n0) : an > k.

Let k ∈ R be given. Then k < +∞ = sup {an : n ∈ N}, and therefore there exists
an n0 ∈ N such that an0 > k. Hence and from the assumption of monotonicity of (an)
the desired proposition follows since

(∀n ∈ N, n > n0) : an ≥ an0 > k.

ii) Now if s ∈ R (i.e., (an) is above-bounded), we have to prove that

(∀ε ∈ R+)(∃n0 ∈ N)(∀n ∈ N, n > n0) : s − ε < an < s + ε.

Let ε ∈ R+ be given. Since s − ε < s = sup {an : n ∈ N}, there exists an n0 ∈ N such
that an0 > s − ε. From the monotonicity of (an) and from the fact that supremum is also
an upper bound we finally get that

(∀n ∈ N, n > n0) : s − ε < an0 ≤ an ≤ s < s + ε.

�

8.20 Examples.

1) It can be shown that the sequence (an), where an :=
(
1 + 1

n

)n, is increasing and bounded
above. Therefore it is also convergent. Furthermore, it can be proved that

lim

(

1 +
1

n

)n

= e (≈ 2.718281828459045 . . .).
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2) The sequence (an), where

an :=
n∑

k=1

1

k
= 1 +

1

2
+

1

3
+ . . . +

1

n
,

is clearly increasing, and therefore its limit exists. However, for every n ∈ N we have

|a2n − an| =
1

n + 1
+

1

n + 2
+ . . . +

1

2n
≥ 1

2n
n =

1

2
.

Hence (an) fails to be the Cauchy sequence, and therefore its finite limit does not exist,
by Theorem 8.13. So

lim

(

1 +
1

2
+

1

3
+ . . . +

1

n

)

=:
+∞∑

n=1

1

n
= +∞.

3) The sequence (an), where

an :=
n∑

k=1

1

k2
= 1 +

1

22
+

1

32
+ . . . +

1

n2
,

is clearly increasing. Since

1

k2
<

1

k · (k − 1)
=

1

k − 1
− 1

k

holds for every k ∈ N \ {1}, we obtain

an =
n∑

k=1

1

k2
< 1 +

1

2 · 1 +
1

3 · 2 +
1

4 · 3 + . . . +
1

n · (n − 1)
=

= 1 +

(
1

1
− 1

2

)

+

(
1

2
− 1

3

)

+

(
1

3
− 1

4

)

+ . . . +

(
1

n − 1
− 1

n

)

= 2 − 1

n
,

which holds for every n ∈ N \ {1}. Hence (an) is bounded above, and therefore it is
convergent. Moreover, it can be shown that

lim

(

1 +
1

22
+

1

32
+ . . . +

1

n2

)

=:
+∞∑

n=1

1

n2
=

π2

6
≈ 1.6449 . . . .

9 CALCULATING LIMITS

9.1 Theorem. Let lim an = a ∈ R∗ and lim bn = b ∈ R∗. Then

i) lim |an| = |a|,
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ii) lim (an ± bn) = a ± b whenever the right side of the equality is meaningful,

iii) lim (anbn) = ab whenever the right side of the equality is meaningful,

iv) lim an

bn
= a

b
whenever the right side of the equality is meaningful and bn 6= 0 for all n ∈ N,

v) lim k
√

an = k
√

a whenever k ∈ N \ {1}, a ∈ R and an ≥ 0 for all n ∈ N.

9.2 Remarks. Let us think over the last theorem in more detail.

• Every of the mentioned propositions gives the information (of course, on the assumption
that the right side is meaningful):

i) that the relevant limit exists,

ii) how to calculate it using numbers a and b.

• Proposition i) cannot be reversed for a 6= 0. In other words, the statement

lim |an| exists ⇒ lim an exists

fails to be true. As a contrary example we can consider the sequence {(−1)n}∞n=1. How-
ever, directly from the definition of the limit it follows that

lim an = 0 ⇔ lim |an| = 0.

• Caution! If the right side in equalities ii) - iv) is meaningless, it does not imply that
the relevant limit does not exist. Let us have a look at the following examples:

i)
an := 2n → +∞
bn := n → +∞

}

⇒ an − bn = n → +∞,

ii)
an := n → +∞
bn := 2n → +∞

}

⇒ an − bn = −n → −∞,

iii)
an := n → +∞
bn := n − a → +∞

}

⇒ an − bn = a → a (a ∈ R can be chosen arbitrarily),

iv)
an := n → +∞
bn := n − (−1)n → +∞

}

⇒ an − bn = (−1)n . . . this sequence has no limit.

The examples above also show why it is not reasonable to define (+∞)− (+∞). We can
also find similar examples for other operations.

9.3 Examples.

1)

lim
n2 + 6n + 7

3n2 − 2
= lim

1 + 6
n

+ 7
n2

3 − 2
n2

=
lim(1 + 6

n
+ 7

n2 )

lim(3 − 2
n2 )

=
1 + 6

+∞ + 7
+∞·(+∞)

3 − 2
+∞·(+∞)

=

=
1 + 0 + 0

3 − 0
=

1

3
.
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2)

lim

(

1 +
1

3n

)n

= lim
3

√
(

1 +
1

3n

)3n

=
3

√

lim

(

1 +
1

3n

)3n

= 3
√

e

(here we use the fact that
{
(1 + 1

3n
)3n
}∞

n=1
is a subsequence of the convergent sequence

{
(1 + 1

n
)n
}∞

n=1
, and therefore it has the same limit e).

9.4 Convention. To say that S(n) holds for all large enough n ∈ N means that

(∃n0 ∈ N)(∀n ∈ N, n > n0) : S(n).

9.5 Observations.

• an → a ∈ R ⇒ ∀ε ∈ R+ : |an − a| < ε for all large enough n ∈ N.

• Let a limit of a sequence (an) exist and let (bn) be a sequence such that an = bn for all
large enough n ∈ N. Then lim bn = lim an.

9.6 Definition. From now on by a sequence we shall now also mean a function defined (only)
on a set N \ K, where K ⊂ N is some finite set.

The above-mentioned definitions of the limit remain (without any change!) valid although
we have generalized the concept of a sequence.

9.7 Examples.

1) lim 1
n−3

= 0 (although 1
n−3

is not defined for n = 3),

2) lim 1+2n+n3

(n−13)(n−2007)
= +∞ (despite the numbers 13 and 2007 do not belong to the domain

of the sequence).

9.8 Theorem (Passing a Limit in Inequalities). Let (an), (bn) and (cn) be sequences and let
lim an = a ∈ R∗ and lim bn = b ∈ R∗.

i) If a < b, then an < bn for all large enough n ∈ N.

ii) If an ≤ bn for all large enough n ∈ N, then a ≤ b.

iii) If an ≤ cn ≤ bn for all large enough n ∈ N and a = b, then lim cn exists and
lim cn = a = b.

iv) If an ≤ cn for all large enough n ∈ N and a = +∞, then lim cn = +∞.

v) If cn ≤ bn for all large enough n ∈ N and b = −∞, then lim cn = −∞.

9.9 Caution. The following proposition

an < bn for all large enough n ∈ N,
an → a,
bn → b,






⇒ a < b

fails to be true (it is enough to consider, for example, an = 0 → 0, bn = 1
n
→ 0).
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9.10 Examples.

1) an := sin(2007n3−log n+e3n)
n

→ 0.

PROOF. We first observe that

− 1

n
≤ sin(2007n3 − log n + e3n)

n
≤ 1

n

holds for all n ∈ N. Now, since ± 1
n
→ 0, we obtain, by Theorem 9.8 iii), an → 0.

�

2) an := n
√

n → 1.

PROOF. Let the sequence (hn) be defined by

n
√

n = 1 + hn, n ∈ N \ {1}.

By Theorem 9.1 ii), it suffices now to show that hn → 0. First of all, let us note that
hn ≥ 0 for all n ∈ N \ {1}. Since

n = (1 + hn)n =
n∑

k=0

(
n

k

)

hk
n ≥

(
n

2

)

h2
n =

n(n − 1)

2
h2

n

holds for all n ∈ N \ {1}, it follows that also

2

n − 1
≥ h2

n ≥ 0

holds for all n ∈ N \ {1}. As 2
n−1

→ 0, we have, by Theorem 9.8 iii), h2
n → 0 and hence,

by Theorem 9.1 v), hn = |hn| =
√

h2
n → 0.

�

9.11 Exercises. Let (an) be a sequence defined by

an := qn,

where q ∈ R. Prove that

1) lim an does not exist if q ≤ −1,

2) lim an = 0 if |q| < 1,

3) lim an = 1 if q = 1,

4) lim an = +∞ if q > 1.

9.12 Theorem. Let lim an = 0.

i) If an > 0 for all large enough n ∈ N, then lim 1
an

= +∞.

ii) If an < 0 for all large enough n ∈ N, then lim 1
an

= −∞.
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E LIMIT AND CONTINUITY OF A FUNCTION

10 LIMIT OF A FUNCTION

10.1 Convention. By writing x0 6= xn → x0 we mean that xn → x0 and xn 6= x0 for all large
enough n ∈ N.

We understand the relations x0 < xn → x0 and x0 > xn → x0 in the similar way.

10.2 Definitions. We say that a function f has at x0 ∈ R∗

• a limit a ∈ R∗ (we write lim
x→x0

f(x) = a ) if

x0 6= xn → x0 ⇒ f (xn) → a

(i.e., f (xn) → a for all sequences (xn) satisfying x0 6= xn → x0),

• a limit from the right a ∈ R∗ (we write lim
x→x0+

f(x) = a) if

x0 < xn → x0 ⇒ f (xn) → a,

• a limit from the left a ∈ R∗ (we write lim
x→x0−

f(x) = a) if

x0 > xn → x0 ⇒ f (xn) → a.

10.3 Examples. Let f(x) := 1
x

(see Fig. 15). Then

1) lim
x→1

f(x) = 1,

2) lim
x→+∞

f(x) = 0,

3) lim
x→−∞

f(x) = 0,

4) lim
x→0+

f(x) = +∞,

5) lim
x→0−

f(x) = −∞,

6) lim
x→0

f(x) does not exist since, for example, 0 6= xn := (−1)n

n
→ 0 and f(xn) = (−1)nn

does not have any limit.

10.4 Definitions. Let x0 ∈ R and δ ∈ R+. We define the following sets:

• U(x0, δ) := (x0 − δ, x0 + δ)
. . . a neighbourhood of x0 (with radius δ),

• U(x0, δ) := [x0, x0 + δ)
. . . a right neighbourhood of x0 (with radius δ),
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• U−(x0, δ) := (x0 − δ, x0]
. . . a left neighbourhood of x0 (with radius δ),

• U(+∞, δ) :=
{
x ∈ R∗ : x > 1

δ

}
=
(

1
δ
, +∞

)
∪ {+∞}

. . . a neighbourhood of +∞ (with radius δ),

• U(−∞, δ) :=
{
x ∈ R∗ : x < −1

δ

}
=
(
−∞, −1

δ

)
∪ {−∞}

. . . a neighbourhood of −∞ (with radius δ),

• P (x0, δ) := U(x0, δ) \ {x0}
. . . an annular neighbourhood of x0 (with radius δ)
Analogously we define P + (x0, δ), P− (x0, δ), P (+∞, δ) and P (−∞, δ).

If we do not care about the size δ of a neighbourhood, we write briefly U(x0), P (x0), . . . .

10.5 Theorem. Let a ∈ R∗.

• For any x0 ∈ R∗,

lim
x→x0

f(x) = a ⇔ (∀U(a))(∃P (x0))(∀x ∈ P (x0)) : f(x) ∈ U(a).

• For any x0 ∈ R,

lim
x→x0+

f(x) = a ⇔ (∀U(a))(∃P +(x0))(∀x ∈ P+(x0)) : f(x) ∈ U(a)

and

lim
x→x0−

f(x) = a ⇔ (∀U(a))(∃P−(x0))(∀x ∈ P−(x0)) : f(x) ∈ U(a).

PROOF. We shall prove only the first equivalence for x0, a ∈ R. To check the remaining
cases, it is enough to modify slightly the following steps. It is left it to the reader.

i) ?⇒
Conversely, we suppose that

(
∃ε ∈ R+

) (
∀δ ∈ R+

)
(∃x ∈ P (x0, δ)) : [x /∈ D(f) ∨ |f(x) − a| ≥ ε] .

Hence it follows that

(∃ε ∈ R+) (∀n ∈ N)
(
∃xn ∈ P

(
x0,

1
n

))
: [xn /∈ D(f) ∨ |f(xn) − a| ≥ ε] .

In this way we obtain the sequence (xn) satisfying clearly x0 6= xn → x0, but not
f (xn) → a. This contradicts our assumption that lim

x→x0

f(x) = a.

ii) ?⇐
We consider a sequence (xn) satisfying x0 6= xn → x0. Our task is to prove that
f(xn) → a, i.e.,

∀ε ∈ R+ : |f (xn) − a| < ε for all large enough n ∈ N.

Given ε ∈ R+, there exists a δ > 0 such that

∀x ∈ P (x0, δ) : |f (x) − a| < ε.

Since xn ∈ P (x0, δ) (and therefore |f (xn) − a| < ε) for all large enough n ∈ N,
the proof is actually completed.
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10.6 Remark. Neither existence nor value of lim
x→x0

f(x) depends on the existence or value

of f(x0). However, if lim
x→x0

f(x) exists, then the function f has to be defined on a P (x0, δ).

10.7 Example.

lim
x→−3

x2 − 9

x + 3
= lim

x→−3

(x − 3)(x + 3)

x + 3
= lim

x→−3
(x − 3) = −6.

The following three theorems are consequences of the definition of the limit of a function
and corresponding theorems concerning the limit of a sequence.

10.8 Theorem. A function f has at most one limit at x0 ∈ R∗.

10.9 Theorem (Limit of Sum, Difference, Product and Quotient of Functions). Let f, g :
R → R and x0 ∈ R∗. Then

i) lim
x→x0

(f(x) ± g(x)) = lim
x→x0

f(x) ± lim
x→x0

g(x) whenever the right side of the equality is

meaningful,

ii) lim
x→x0

(f(x)g(x)) = lim
x→x0

f(x) lim
x→x0

g(x) whenever the right side of the equality is mean-

ingful,

iii) lim
x→x0

f(x)
g(x)

=
lim

x→x0
f(x)

lim
x→x0

g(x)
whenever the right side of the equality is meaningful.

10.10 Examples.

1) lim
x→+∞

(x3 − x2) = lim
x→+∞

(x2(x − 1)) = +∞,

2) lim
x→1

√
x−1

x−1
= lim

x→1

(√
x−1

x−1

√
x+1√
x+1

)

= lim
x→1

x−1
(x−1)(

√
x+1)

= lim
x→1

1√
x+1

= 1
2
,

3) lim sin(nπ) = 0, but lim
n→+∞

sin(nπ) does not exist.

10.11 Theorem. Let

• f, g, h : R → R,

• x0, a ∈ R∗,

• lim
x→x0

f(x) = lim
x→x0

g(x) = a,

• (∃P (x0))(∀x ∈ P (x0)) : f(x) ≤ h(x) ≤ g(x).

Then
lim

x→x0

h(x) = a.
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10.12 Example.

lim
x→0

(

x2 sin
1

x

)

= 0.

PROOF. The equality follows directly from Theorem 10.11 since

• ∀x ∈ R \ {0} : −x2 ≤ x2 sin 1
x
≤ x2,

• lim
x→0

(−x2) = lim
x→0

x2 = 0.

(Note the fact that lim
x→0

sin 1
x

does not exist.)
�

10.13 Theorem. Let x0 ∈ R and a ∈ R∗. Then lim
x→x0

f(x) = a if and only if

lim
x→x0+

f(x) = lim
x→x0−

f(x) = a.

11 CONTINUITY OF A FUNCTION

11.1 Definitions. Let x0 ∈ R. A function f is said to be

• continuous at x0 if
lim

x→x0

f(x) = f(x0),

• continuous from the right at x0 if

lim
x→x0+

f(x) = f(x0),

• continuous from the left at x0 if

lim
x→x0−

f(x) = f(x0).

Note that the continuity of f

• at x0 implies the existence of a U(x0) belonging to D(f),

• from the right at x0 implies the existence of a U+(x0) belonging to D(f),

• from the left at x0 implies the existence of a U−(x0) belonging to D(f).

11.2 Theorem. Let f : R → R and x0 ∈ R. Then the following propositions are equivalent:

i) f is continuous at x0,

ii) x0 ∈ D(f) ∧ (∀U(f(x0)))(∃U(x0))(∀x ∈ U(x0)) : f(x) ∈ U(f(x0)),

iii) (∀ε ∈ R+)(∃δ ∈ R+)(∀x ∈ R) : |x − x0| < δ ⇒ |f(x) − f(x0)| < ε,
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iv) xn → x0 ⇒ f(xn) → f(x0).

11.3 Examples.

1) A constant function is continuous at every x0 ∈ R.

2) The function Id is continuous at every x0 ∈ R.

3) A function f defined by f(x) := |x| is continuous at every x0 ∈ R.

4) The function sgn is continuous at every x0 ∈ R \ {0}, but not at x0 = 0.

5) The Dirichlet function χ is not continuous at any point.

11.4 Theorem (Continuity of Sum, Difference, Product and Quotient of Functions). Let
functions f and g be continuous at x0 ∈ R. Then also functions f + g, f − g and f · g are
continuous at x0. If, moreover, g(x0) 6= 0, then the function f

g
is continuous at x0.

PROOF. From the assumptions

lim
x→x0

f(x) = f(x0), lim
x→x0

g(x) = g(x0),

the definition of operations with functions and Theorem 10.9 it follows that

lim
x→x0

(f + g)(x) = lim
x→x0

(f(x)+ g(x)) = lim
x→x0

f(x)+ lim
x→x0

g(x) = f(x0)+ g(x0) = (f + g)(x0)

Hence the function f + g is continuous at x0.
We proceed similarly in the case of the functions f − g, f · g and f

g
.

�

11.5 Theorem (Continuity of Composition of Functions). Let a function f be continuous
at x0 ∈ R and let a function g be continuous at f(x0). Then the function g ◦ f is continuous
at x0.

PROOF. We have that

xn → x0 ⇒ f(xn) → f(x0) ⇒ g(f(xn)) → g(f(x0)),

and therefore, according to Theorem 11.2, the function g ◦ f is continuous at x0.
�

11.6 Definition. A function f is continuous on an interval I ⊂ R if the following conditions
hold:

• f is continuous at every interior point of the interval I;

• if the basepoint of I belongs to I , then f is continuous from the right at it;

• if the endpoint of I belongs to I , then f is continuous from the left at it.
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11.7 Theorem (Continuity of Basic Elementary Functions). Let f be a basic elementary
function and let I ⊂ D(f) be an interval. Then f is continuous on I .

11.8 Example.

lim
x→0

sin x

x
= 1.

PROOF. By comparing the areas of the triangle OAC, sector of the circle OBC and the
triangle OBD (see Fig. 38), we obtain the following inequalities:

∀x ∈
(

0,
π

2

)

:
cos x sin x

2
≤ x

2
≤ tan x

2
.

tan x

x

sin x

cos x

C

BA

D

–1

–0.5

0

0.5

1

–1 –0.5 0.5 1
x

Fig. 38

Hence it follows that
∀x ∈

(

0,
π

2

)

: cos x ≤ sin x

x
≤ 1

cos x
.

Furthermore, since cosine and sine are even and odd function, respectively, it holds that

∀x ∈
(

−π

2
,

π

2

)

\ {0} : cos x ≤ sin x

x
≤ 1

cos x
.

Finally, the continuity of the functions cos x and 1
cos x

at 0, i.e.,

lim
x→0

cos x = 1 = lim
x→0

1

cos x
,

implies, according to Theorem 10.11, that

lim
x→0

sin x

x
= 1.

�

11.9 Theorem (Limit of Composition of Functions). Let x0, a, b ∈ R∗ and assume

• lim
x→x0

f(x) = a,
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• lim
y→a

g(y) = b,

• (∃P (x0))(∀x ∈ P (x0)) : f(x) 6= a or g is continuous at a.

Then
lim

x→x0

g(f(x)) = b.

11.10 Examples. Let us show that the third assumption of the previous theorem cannot be
omitted.

1) Let

f(x) := 0, g(x) :=
1

x2
.

Then
lim
x→1

f(x) = 0, lim
y→0

g(y) = +∞,

but lim
x→1

g(f(x)) does not exist since D(g ◦ f) = ∅.

2) Let

f(x) := 0, g(x) :=

{
1
x2 x 6= 0,

1918 x = 0.

Then
lim
x→1

f(x) = 0, lim
y→0

g(y) = +∞,

but
lim
x→1

g(f(x)) = lim
x→1

g(0) = lim
x→1

1918 = 1918 6= +∞.

11.11 Exercises.

1) Prove Theorem 11.9.

2) Modify (and prove) Theorem 11.9 for the case of one-sided limits.

11.12 Examples.

1)

lim
x→0

sin
(√

5x
)

√
5x

= 1

since

• lim
x→0

(√
5x
)

= 0,

• lim
y→0

sin y
y

= 1,

• ∀x ∈ R \ {0} :
√

5x 6= 0.
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2)

lim
x→0

cos

(

x2 sin
1

x

)

= 1

since

• lim
x→0

x2 sin 1
x

= 0 (see Example 10.12),

• the function cosine is continuous at 0 (i.e., lim
y→0

cos y = 1).

(Note that (∀P (0))(∃x ∈ P (0)) : x2 sin 1
x

= 0.)
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F DIFFERENTIAL AND DERIVATIVE OF A FUNCTION

12 MOTIVATION

12.1 It is often useful to substitute a function f (at least locally, i.e., on a neighbourhood) by
a simpler function, preferably linear. However, this simplification (for a non-linear f ) causes
a certain error.

Let us try to find a linear function approximating a function f on a neighbourhood of a point
c so that the approximation error is small. More precisely, we try to find a k ∈ R such that
f(c + h) ≈ f(c) + kh for any small h. Let us define a function ω(h) (an error) by

ω(h) := f(c + h) − f(c) − kh.

Thus we want w(h) to be small for any small h. We could require

lim
h→0

ω(h) = 0.

However, this is not very reasonable, since for a continuous function f any choice of k ∈ R

complies with this accuracy rate. It is more reasonable to ask for

lim
h→0

ω(h)

h
= 0,

i.e.,

lim
h→0

f(c + h) − f(c) − kh

h
= lim

h→0

(
f(c + h) − f(c)

h
− k

)

= 0.

It follows that

k = lim
h→0

f(c + h) − f(c)

h
=: f ′(c).

If f ′(c) ∈ R, then we call a function dfc defined by

dfc(h) := kh = f ′(c)h

a differential of f at c. Note, by the way, that the line

y = f(c) + f ′(c)(x − c)

is said to be a tangent of a graph of f at (c, f(c)). Number f ′(c) is the slope of the tangent.

12.2 Now let us consider a mass point moving along a line and let us denote its position in a time
t by s(t). An average velocity of the point on a time interval [c, c + h] can be expressed by

s(c + h) − s(c)

h
.

If h tends to zero, then the average velocity clearly tends to an immediate velocity of given mass
point in the time c, i.e.,

v(c) = lim
h→0

s(c + h) − s(c)

h
=: s′(c).
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13 DIFFERENTIAL AND DERIVATIVE; CALCULATING
DERIVATIVES

13.1 Definitions. Let f : R 7→ R and x ∈ R.

• If

lim
h→0

f(x + h) − f(x)

h

exists, we denote it by f ′(x) and we call it a derivative of the function f at the point x.

• If

lim
h→0+

f(x + h) − f(x)

h

exists, we denote it by f ′
+(x) and we call it a derivative from the right of the

function f at the point x.

• If

lim
h→0−

f(x + h) − f(x)

h

exists, we denote it by f ′
−(x) and we call it a derivative from the left of the

function f at the point x.

13.2 Convention. Unless otherwise stated, we shall use the concept of derivation in the meaning
of the proper (i.e., finite) derivation.

13.3 Observations.

• If f ′(x) exists (proper or improper), then there is a U(x) such that U(x) ⊂ D(f).

• lim
h→0

f(x0+h)−f(x0)
h

= lim
x→x0

f(x)−f(x0)
x−x0

whenever one side of the equality is meaningful.

13.4 Examples.

1) If f is constant, then f ′(x) = 0 for all x ∈ R.

PROOF. Let us assume that (∃c ∈ R)(∀x ∈ R) : f(x) = c, and therefore for all x ∈ R

we have

f ′(x) = lim
h→0

f(x + h) − f(x)

h
= lim

h→0

c − c

h
= lim

h→0

0

h
= 0.

�

2) (Id)′ = 1 in R.

PROOF. For all x ∈ R, we have

(Id)′(x) = lim
h→0

(x + h) − (x)

h
= lim

h→0

h

h
= lim

h→0
1 = 1.

�
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13.5 Definitions. If there is a k ∈ R such that for a function ω defined by

ω(h) := f(c + h) − f(c) − kh

it holds that

lim
h→0

ω(h)

h
= 0,

then the function f is said to be differentiable at the point c. A linear function dfc defined by

dfc(h) := kh

is called a differential of the function f at the point c.

13.6 Theorem (Existence of a Differential). A function f is differentiable at a point c ∈ R if
and only if the (finite!) derivative of the function f at the point c exists. Moreover, in such case
∀h ∈ R : dfc(h) = f ′(c) h.

13.7 Theorem (Continuity of a Differentiable Function). If a function f is differentiable
at a point x0, then it is continuous at x0.

PROOF. The task is to prove that

lim
x→x0

(f(x) − f(x0)) = 0.

First, we note that for all x, x0 ∈ D(f) such that x 6= x0 we have

f(x) − f(x0) =
f(x) − f(x0)

x − x0

(x − x0).

Hence it follows that

lim
x→x0

(f(x) − f(x0)) = lim
x→x0

[
f(x) − f(x0)

x − x0

(x − x0)

]

= f ′(x0) · 0 = 0.

(From the assumption and Theorem 13.6 it follows that f ′(x0) = lim
x→x0

f(x)−f(x0)
x−x0

∈ R.)

�

13.8 Examples.

1) The function sgn has an (improper) derivative at the point 0, but it is not continuous at 0.

PROOF.

sgn′(0) = lim
x→0

sgn(x) − sgn(0)

x − 0
= lim

x→0

sgn(x)

x
= lim

x→0

1

|x| = +∞.

�
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2) The function f(x) := 3
√

x has an (improper) derivative at the point 0 and it is continuous
at 0.

PROOF.

f ′(0) = lim
x→0

3
√

x − 3
√

0

x − 0
= lim

x→0

3
√

x

x
= lim

x→0

1
3
√

x2
= +∞.

�

3) The function f(x) := |x| is continuous at the point 0, but f ′(0) does not exist.

PROOF. We can easily calculate that

f ′
+(0) = 1 and f ′

−(0) = −1,

and therefore, by Theorem 10.13, f ′(0) does not exist.
�

13.9 Theorem (Derivative of Sum, Difference, Product and Quotient of functions). Let
x ∈ R. Then

i) (f ± g)′(x) = f ′(x) ± g′(x) whenever the right side of the equality is meaningful,

ii) (fg)′(x) = f ′(x)g(x) + f(x)g′(x) whenever f ′(x) and g′(x) exist finite,

iii)
(

f
g

)′
(x) = f ′(x)g(x)−f(x)g′(x)

g2(x)
whenever f ′(x) and g′(x) exist finite and g(x) 6= 0.

PROOF.

i)

(f ± g)′(x) = lim
h→0

(f ± g)(x + h) − (f ± g)(x)

h
=

= lim
h→0

f(x + h) − f(x)

h
± g(x + h) − g(x)

h
= f ′(x) ± g′(x)

whenever f ′(x) ± g′(x) is meaningful (see Theorem 10.9).
�

ii)

(fg)′(x) = lim
h→0

(
f(x + h)g(x + h) − f(x)g(x)

h
± f(x)g(x + h)

h

)

=

= lim
h→0

(
f(x + h) − f(x)

h
g(x + h) + f(x)

g(x + h) − g(x)

h

)

= f ′(x)g(x) + f(x)g′(x),

where the last equality follows from

g′(x) ∈ R ⇒ g is continuous at x ⇒ lim
h→0

g(x + h) = g(x)

and the fact that f ′(x) ∈ R.
�
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iii)
(

f

g

)′
(x) = lim

h→0

f(x+h)
g(x+h)

− f(x)
g(x)

h
= lim

h→0

f(x + h)g(x) − f(x)g(x + h)

hg(x + h)g(x)
=

= lim
h→0

[
1

g(x + h)g(x)

(
f(x + h) − f(x)

h
g(x) − f(x)

g(x + h) − g(x)

h

)]

=

=
1

g2(x)
(f ′(x)g(x) − f(x)g′(x)) .

�

13.10 Remark. Analogous propositions hold also for the one-sided derivatives.

13.11 Theorem (Derivative of Composition of Functions). Let x ∈ R and let f ′(x) and
g′(f(x)) exist finite. Then

(g ◦ f)′(x) = g′(f(x))f ′(x).

13.12 Remark. For the sake of lucidity, we shall write, not very correctly, (f(x))′ instead
of f ′(x).

13.13 Examples.

1) ∀x ∈ R : sin′ x = cos x.

PROOF. First, we recall that

∀x ∈ R : sin2 x =
1 − cos(2x)

2
and lim

x→0

sin x

x
= 1.

Therefore for all x ∈ R we get

sin′ x = lim
h→0

sin(x + h) − sin x

h
= lim

h→0

sin x cos h + cos x sin h − sin x

h
=

= lim
h→0

(

cos x
sin h

h
− sin x

1 − cos h

h

)

= lim
h→0

(

cos x
sin h

h
− sin x

2 sin2 h
2

h

)

=

= lim
h→0

(

cos x
sin h

h
− sin x

sin h
2

h
2

sin
h

2

)

= cos x · 1 − sin x · 1 · 0 = cos x.

�

2) ∀x ∈ R : cos′ x = − sin x.

PROOF. From Theorem 13.11 and the previous example it follows that for all x ∈ R we
have

(cos x)′ =
(

sin
(π

2
− x
))′

= sin′
(π

2
− x
)(π

2
− x
)′

= cos
(π

2
− x
)

(0−1) = − sin x.

�
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3) ∀x ∈ D(tan) : tan′ x = 1
cos2 x

.

PROOF. From Theorem 13.9 and the previous examples, it follows that for all x ∈
D(tan) we have

(tan x)′ =

(
sin x

cos x

)′
=

(sin x)′ cos x − sin x(cos x)′

cos2 x
=

cos2 x + sin2 x

cos2 x
=

1

cos2 x
.

�

4) ∀x ∈ D(cot) : cot′ x = − 1
sin2 x

.

PROOF.

∀x ∈ D(cot) : (cot x)′ =
(cos x

sin x

)′
=

− sin2 x − cos2 x

sin2 x
= − 1

sin2 x
.

�

5) ∀x ∈ R : (ex)′ = ex.

(Let us leave this proposition without proof . . . )

13.14 Theorem (Derivative of an Inverse Function). Let a function f be continuous and
strictly monotonic on an interval I ⊂ R, let x be an interior point of I , and let f ′(f−1(x))
exist. Then (f−1)′(x) exists and is defined by

(f−1)′(x) =







1
f ′(f−1(x))

if f ′(f−1(x)) 6= 0,

+∞ if f ′(f−1(x)) = 0 and f is increasing on I,
−∞ if f ′(f−1(x)) = 0 and f is decreasing on I.

13.15 Examples.

1) ∀x ∈ R+ : log′ x = 1
x
.

PROOF.
∀x ∈ R+ : log′ x =

1

exp′(log x)
=

1

exp(log x)
=

1

x
.

�

2) Let n ∈ N. Then ∀x ∈ R : (xn)′ = nxn−1.

PROOF. We shall use the mathematical induction.

i) ∀x ∈ R : (x)′ = Id′(x) = 1.

ii) The task is to prove the implication
(
n ∈ N ∧ ∀x ∈ R : (xn)′ = nxn−1

)
⇒ ∀x ∈ R : (xn+1)′ = (n + 1)xn.

(xn+1)′ = (xnx)′ = (xn)′x + xnx′ = nxn−1x + xn = (n + 1)xn.
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�

3) Let −n ∈ N. Then ∀x ∈ R \ {0} : (xn)′ = nxn−1.

PROOF.

∀x ∈ R \ {0} : (xn)′ =

(
1

x−n

)′
=

(1)′x−n − 1(x−n)′

(x−n)2
=

=
−(−n)x−n−1

x−2n
= nx−n−1−(−2n) = nxn−1.

�

4) Let r ∈ R. Then ∀x ∈ R+ : (xr)′ = rxr−1.

PROOF.

∀x ∈ R+ : (xr)′ = (er log x)′ = er log x(r log x)′ = xrr
1

x
= rxr−1.

�

5) Let x ∈ R and let f and g be functions satisfying f(x) > 0 and f ′(x), g′(x) ∈ R. Then

(f(x)g(x))′ =
(
eg(x) log f(x)

)′
= eg(x) log f(x)(g(x) log f(x))′ =

= f(x)g(x)

(

g′(x) log f(x) + g(x)
f ′(x)

f(x)

)

.

6) ∀x ∈ (−1, 1) : arcsin′ x = 1√
1−x2 .

PROOF. First, let us recall that ∀x ∈ (−1, 1) : arcsin x ∈ (− π
2
, π

2
) and ∀x ∈ (−π

2
, π

2
) :

cos x > 0. Therefore

∀x ∈ (−1, 1) : (arcsin x)′ =
1

sin′(arcsin x)
=

1

cos(arcsin x)
=

=
1

| cos(arcsin x)| =
1

√

1 − sin2(arcsin x)
=

1√
1 − x2

.

�

7) ∀x ∈ (−1, 1) : arccos′ x = − 1√
1−x2 .

PROOF. Since ∀x ∈ (−1, 1) : arccos x ∈ (0, π) and ∀x ∈ (0, π) : sin x > 0, we get

∀x ∈ (−1, 1) : (arccos x)′ =
1

cos′(arccos x)
= − 1

sin(arccos x)
=

= − 1

| sin(arccos x)| = − 1
√

1 − cos2(arccos x)
= − 1√

1 − x2
.

�

48



7) ∀x ∈ R : arctan′ x = 1
1+x2 .

PROOF. First, let us observe that ∀x ∈ R : arctan x ∈ (− π
2
, π

2
) and ∀x ∈ (−π

2
, π

2
) :

1
cos2 x

= cos2 x+sin2 x
cos2 x

= 1 + tan2 x. Therefore

∀x ∈ R : arctan′ x =
1

tan′(arctan x)
=

1
1

cos2(arctan x)

=
1

1 + tan2(arctan x)
=

1

1 + x2
.

�

8) ∀x ∈ R : arccot′ x = − 1
1+x2 .

PROOF. First, let us observe that ∀x ∈ R : arccot x ∈ (0, π) and ∀x ∈ (0, π) :
1

sin2 x
= sin2 x+cos2 x

sin2 x
= 1 + cot2 x. Therefore

∀x ∈ R : arccot′ x =
1

cot′(arccot x)
=

1
−1

sin2(arccot x)

=
−1

1 + cot2(arccot x)
=

−1

1 + x2
.

�

13.16 Definition. Let f be a function. A function f ′ defined by

f ′(x) := f ′(x)

is said to be a derivative of the function f . Analogously we define functions f ′
+ and f ′

−.

13.17 Definitions. Let I ⊂ R be an interval with end points a, b ∈ R∗, a < b. A function f is
said to be

• differentiable on the interval I if the following three conditions hold:

i) ∀x ∈ (a, b) : f ′(x) ∈ R,

ii) if a ∈ I , then f ′
+(a) ∈ R,

iii) if b ∈ I , then f ′
−(b) ∈ R;

• continuously differentiable on the interval I if the following three conditions hold:

i) the function f ′ is continuous on (a, b),

ii) if a ∈ I , then the function f ′
+ is continuous from the right at the point a,

iii) if b ∈ I , then the function f ′
− is continuous from the left at the point b.

13.18 Definitions. Let n ∈ N. Let us define a function called (n + 1)th derivative of a function
f by induction

f (n+1) :=
(
f (n)

)′
.

Moreover, let us define a function f (0) by

f (0)(x) := f(x).
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13.19 Example.
sin(0) x = sin x,
sin′ x = cos x,
sin′′ x = (sin′ x)′ = (cos x)′ = − sin x,
sin′′′ x = (sin′′ x)′ = (− sin x)′ = − cos x,
sin(4) x = (sin′′′ x)′ = (− cos x)′ = sin x,
sin(5) x = (sin(4) x)′ = (sin x)′ = cos x,
. . . .
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G BASIC THEOREMS OF DIFFERENTIAL CALCULUS

14 THEOREMS ON FUNCTION INCREMENT

14.1 Theorem (Rolle). Let a function f be continuous on an interval [a, b] and differentiable
on (a, b), and let f(a) = f(b). Then there is a ξ ∈ (a, b) such that f ′(ξ) = 0.

PROOF. We shall carry out the proof later (see 17.2.6).
�

The meaning of Rolle’s theorem is illustrated in Fig. 39.
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Fig. 39 Fig. 40

14.2 Theorem (Lagrange’s Mean Value Theorem). Let a function f be continuous on an in-
terval [a, b] and differentiable on (a, b). Then there is a ξ ∈ (a, b) such that

f ′(ξ) =
f(b) − f(a)

b − a
.

PROOF. Let us define a function F by

F (x) := f(x) − f(b) − f(a)

b − a
(x − a).

From the assumptions it follows that F is continuous on the interval [a, b] and differentiable
on (a, b). Moreover, since F (a) = F (b) (= f(a)), there is (see Rolle’s theorem) a ξ ∈ (a, b)
such that F ′(ξ) = 0. For all x ∈ (a, b), the derivative of F is given by

F ′(x) = f ′(x) − f(b) − f(a)

b − a
.

Hence and from F ′(ξ) = 0 it follows that

f ′(ξ) =
f(b) − f(a)

b − a
.

�

The meaning of the latter theorem is illustrated in Fig. 40.
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14.3 Theorem (Cauchy’s Mean Value Theorem). Let functions f and g be continuous on an in-
terval [a, b] and differentiable on (a, b). Let g ′ be finite and nonzero on (a, b). Then there is
a ξ ∈ (a, b) such that

f(b) − f(a)

g(b) − g(a)
=

f ′(ξ)

g′(ξ)
.

PROOF. First, note that g(b) − g(a) 6= 0. (If it were true that g(a) = g(b), there would be,
by Rolle’s theorem, a point ξ ∈ (a, b) such that g ′(ξ) = 0, which contradicts the assumption.)
Let us define a function F by

F (x) := f(x)(g(b) − g(a)) − g(x)(f(b) − f(a)).

It can be easily checked that this function satisfies all assumptions of Rolle’s theorem. Therefore
there is a ξ ∈ (a, b) such that

F ′(ξ) = f ′(ξ)(g(b) − g(a)) − g′(ξ)(f(b) − f(a)) = 0.

Hence and from g′(ξ) 6= 0 and g(b) − g(a) 6= 0 we get

f(b) − f(a)

g(b) − g(a)
=

f ′(ξ)

g′(ξ)
.

�

15 L’HOSPITAL’S RULE

15.1 Theorem (l’Hospital’s Rule). Let

• x0, a ∈ R∗,

• lim
x→x0

f(x) = lim
x→x0

g(x) = 0 or lim
x→x0

|g(x)| = +∞,

• lim
x→x0

f ′(x)
g′(x)

= a.

Then

lim
x→x0

f(x)

g(x)
= a.

PROOF. We give the proof only for the case

x0 ∈ R and lim
x→x0+

f(x) = lim
x→x0+

g(x) = 0.

In other words, we prove only the implication

lim
x→x0+

f(x) = lim
x→x0+

g(x) = 0,

lim
x→x0+

f ′(x)
g′(x)

= a ∈ R∗,






⇒ lim

x→x0+

f(x)

g(x)
= a.
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Let us first define (or redefine) functions f and g at the point x0 by

f(x0) = g(x0) = 0.

(This step affects neither existence nor value of the studied limit since the limit depends neither
on the value f(x0) nor on the value g(x0).) The assumption

lim
x→x0+

f ′(x)

g′(x)
= a

yields the existence of a δ > 0 such that for every x ∈ (x0, x0 + δ) there are f ′(x), g′(x) ∈ R

and, moreover, g′(x) 6= 0. Hence (see Theorem 13.7) it follows that functions f and g are
continuous on [x0, x0 + δ). Therefore (see Theorem 14.3)

(∀x ∈ (x0, x0 + δ)) (∃ξ ∈ (x0, x)) :
f(x)

g(x)
=

f(x) − 0

g(x) − 0
=

f(x) − f(x0)

g(x) − g(x0)
=

f ′(ξ)

g′(ξ)
.

Hence it is easily seen that

lim
x→x0+

f(x)

g(x)
= lim

ξ→x0+

f ′(ξ)

g′(ξ)
= a.

�

If x0 ∈ R, then the analogous propositions hold also for the one-sided limits.

15.2 Examples.

1)

lim
x→0

tan x

3x
l’H.
= lim

x→0

1
cos2 x

3
=

1

3
.

2)

lim
x→0

1 − cos x

x2

l’H.
= lim

x→0

sin x

2x
l’H.
= lim

x→0

cos x

2
=

1

2
.

3)

lim
x→+∞

x3 − 2x2 + x − 1

2x2 + 3x + 1
l’H.
= lim

x→+∞

3x2 − 4x + 1

4x + 3
l’H.
= lim

x→+∞

6x − 4

4
= +∞.

4) Caution!

lim
x→+∞

x + sin x

x
= lim

x→+∞

(

1 +
sin x

x

)

= 1,

but

lim
x→+∞

(x + sin x)′

(x)′
= lim

x→+∞

1 + cos x

1

does not exist.

5)

lim
x→0+

(x log x) = lim
x→0+

log x
1
x

l’H.
= lim

x→0+

1
x

− 1
x2

= lim
x→0+

(−x) = 0.
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6)

lim
x→0+

(
1

sin x
− 1

x

)

= lim
x→0+

x − sin x

x sin x
l’H.
= lim

x→0+

1 − cos x

sin x + x cos x
l’H.
=

l’H.
= lim

x→0+

sin x

cos x + cos x − x sin x
= 0.

7)

lim
x→+∞

(

1 +
1

x

)x

= e1 = e,

since (see Theorem 11.9)

a) ∀x ∈ R+ :
(
1 + 1

x

)x
= ex log(1+ 1

x),

b) lim
x→+∞

(
x log

(
1 + 1

x

))
= lim

x→+∞
log x+1

x
1
x

l’H.
= lim

x→+∞
x

x+1
= lim

x→+∞
1

1+ 1
x

= 1,

c) the exponential function is continuous at 1.

15.3 Observation. If a function f is continuous from the right at a point x0 ∈ R and if
lim

x→x0+
f ′(x) exists, then

f ′
+(x0) = lim

x→x0+

f(x) − f(x0)

x − x0

l’H.
= lim

x→x0+
f ′(x).

Analogous proposition holds also for f ′
−(x0).

15.4 Example. Let the function f be defined by

f(x) := | sin x|.

Decide whether f ′(0) exists.

SOLUTION. The function f is clearly continuous on R, and therefore

f ′
+(0) = lim

x→0+
f ′(x) = lim

x→0+
(sin x)′ = lim

x→0+
cos x = 1,

f ′
−(0) = lim

x→0−
f ′(x) = lim

x→0−
(− sin x)′ = lim

x→0−
(− cos x) = −1.

Since f ′
+(0) 6= f ′

−(0), the derivative of f at the point 0 does not exist.
�

15.5 Caution. +∞ = sgn′(0) = sgn′
+(0) 6= lim

x→0+
sgn′(x) = lim

x→0+
0 = 0 . . . see Fig. 4.
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H FUNCTION BEHAVIOUR

16 INTERVALS OF STRICT MONOTONICITY

16.1 Theorem. Let a function f be continuous on an interval I with end points a, b ∈ R∗, a < b.

• If f ′(x) > 0 for all x ∈ (a, b), then the function f is increasing on the interval I .

• If f ′(x) ≥ 0 for all x ∈ (a, b), then the function f is non-decreasing on the interval I .

• If f ′(x) < 0 for all x ∈ (a, b), then the function f is decreasing on the interval I .

• If f ′(x) ≤ 0 for all x ∈ (a, b), then the function f is non-increasing on the interval I .

• If f ′(x) = 0 for all x ∈ (a, b), then the function f is constant on the interval I .

PROOF. We give the proof only for the first statement of the above theorem (the other
ones can be proved analogously). Let x1 and x2 be arbitrary points of the interval I such that
x1 < x2. The task is to show that f(x1) < f(x2). From the assumption it follows that f is
continuous on [x1, x2] and differentiable on (x1, x2). Therefore (see Theorem 14.2) there is
a ξ ∈ (x1, x2) ⊂ (a, b) such that

f(x2) − f(x1)

x2 − x1

= f ′(ξ) > 0.

Hence it is evident that
f(x2) − f(x1) = f ′(ξ)(x2 − x1) > 0,

so that
f(x1) < f(x2).

�

16.2 Example. Find the intervals of strict monotonicity of the function f defined by

f(x) := 2x3 − 3x2 − 12x + 1.

SOLUTION. The function f is continuous on R and

∀x ∈ R : f ′(x) = 6x2 − 6x − 12 = 6 (x + 1)(x − 2).

Since it is obvious that

• f ′(x) > 0 ⇔ x ∈ (−∞, −1) ∪ (2, +∞),

• f ′(x) < 0 ⇔ x ∈ (−1, 2),

it follows from Theorem 16.1 that

• f is increasing on (−∞, −1] and on [2, +∞),
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• f is decreasing on [−1, 2].

It is important to note that f is not increasing on (−∞, −1] ∪ [2, +∞)!
�

16.3 Theorem (Darboux’s Property of a Continuous Function and its Derivative). Let
a function f be continuous on an interval [a, b].

• If f(a)f(b) < 0, then there is a ξ ∈ (a, b) such that f(ξ) = 0.

• If f ′(x) exists for all x ∈ [a, b] and if f ′(a)f ′(b) < 0, then there is a ξ ∈ (a, b) such that
f ′(ξ) = 0.

16.4 Corollaries.

i) If a function f is continuous on an interval J , then f(J) is either a one-point set or
an interval.

ii) If a continuous function f has a nonzero derivative at all points of an interval J , then f
is strictly monotonic on J .

PROOF.

i) It is sufficient to prove the implication

(a, b ∈ f(J) and a < c < b) ⇒ c ∈ f(J).

So let us assume that a, b ∈ f(J) and a < c < b. Hence it follows that there are
points x1, x2 ∈ J such that a = f(x1) < c < f(x2) = b which implies (f(x1) −
c)(f(x2)− c) < 0. Since, by the assumption, the function g(x) := f(x)− c is continuous
on the interval [x1, x2], it follows from the first proposition of Theorem 16.3 that there is
an x ∈ (x1, x2) ⊂ J such that g(x) = f(x) − c = 0. Hence c = f(x) ∈ f(J).

�

ii) Note that f ′ does not change the sign on J , in other words, f ′ is either positive or neg-
ative on J . (If there were numbers a, b ∈ J satisfying f ′(a) < 0 < f ′(b), then the sec-
ond proposition of Theorem 16.3 would imply that there is a ξ ∈ (a, b) ⊂ J such that
f ′(ξ) = 0. But this contradicts the assumption that f ′ is nonzero on J .) The proposition
now clearly follows from Theorem 16.1.

�

16.5 Remark. Proposition i) certainly corresponds to our notion of a continuous function.
Proposition ii) is more interesting since the function f ′ need not be continuous!

16.6 Remark. Let us focus on solving the equation f(x) = 0 numerically. Let a function f be
continuous on an interval [a, b] and satisfying f(a)f(b) < 0. We look for a point ξ ∈ (a, b) such
that f(ξ) = 0 (such point does exist!). We put c := a+b

2
, so that exactly one of the following

cases happens:

i) f(c) = 0,
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ii) f(a)f(c) < 0,

iii) f(c)f(b) < 0.

In situation i) we choose ξ := c (we have found the root). If the second or the third case happens,
we are in the same situation as at the beginning, but on a half interval [a, c] or [c, b]. After certain
number of these steps (we speak of the bisection method) we shall either find the desired root
of the equation f(x) = 0, or get arbitrarily near to it (i.e., we shall find an interval of an arbitrary
pre-given small length where the root lies).

17 EXTREMES OF FUNCTIONS

17.1 Local Extremes

17.1.1 Definitions. Let x0 ∈ R. A function f has

• a local maximum at x0 if there is a P (x0) such that

∀x ∈ P (x0) : f(x) ≤ f(x0);

• a local minimum at x0 if there is a P (x0) such that

∀x ∈ P (x0) : f(x) ≥ f(x0);

• a strict local maximum at x0 if there is a P (x0) such that

∀x ∈ P (x0) : f(x) < f(x0);

• a strict local minimum at x0 if there is a P (x0) such that

∀x ∈ P (x0) : f(x) > f(x0).

17.1.2 Observation. If a function f has a local extreme (i.e., local maximum or local minimum)
at a point x0, then there is a U(x0) such that

U(x0) ⊂ D(f).

17.1.3 Examples.

1) Function f(x) := |x| has a strict local minimum at 0 (note that f ′(0) does not exist)
. . . see Fig. 7.

2) Function f(x) := x2 has a strict local minimum at 0 (note that f ′(0) = 0)
. . . see Fig. 13.

3) Function f(x) := x3 does not have a local extreme at 0 (note that f ′(0) = 0)
. . . see Fig. 14.
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17.1.4 Theorem (Necessary Condition for Existence of a Local Extreme). If a function f
has a local extreme at x0 ∈ R, then either f ′(x0) = 0 or f ′(x0) does not exist.

PROOF. It is sufficient to prove the validity of the implication

0 6= f ′(x0) ∈ R∗ ⇒ f does not have a local extreme at x0.

Assume f ′(x0) = lim
x→x0

f(x)−f(x0)
x−x0

> 0 (in case f ′(x0) < 0 it is possible to proceed analogously,

or get to the function −f ). Hence it follows

(∃P (x0))(∀x ∈ P (x0)) :
f(x) − f(x0)

x − x0

> 0,

and thus (P (x0) = P+(x0) ∪ P−(x0)):

• f(x) > f(x0) for every x ∈ P +(x0),

• f(x) < f(x0) for every x ∈ P−(x0).

Therefore f does not have a local extreme at x0.
�

17.1.5 Theorem (Sufficient Condition for Existence of a Local Extreme). Assume f ′(x0) = 0.
If

• f ′′(x0) > 0, then the function f has a strict local minimum at the point x0,

• f ′′(x0) < 0, then the function f has a strict local maximum at the point x0.

17.1.6 Remarks. Let n ∈ N and

f ′(x0) = f ′′(x0) = . . . = f (n−1)(x0) = 0 6= f (n)(x0).

Then

• if n is odd, the function f does not have a local extreme at the point x0;

• if n is even and f (n)(x0) > 0, the function f has a strict local minimum at the point x0;

• if n is even and f (n)(x0) < 0, the function f has a strict local maximum at the point x0.

SKETCH OF THE PROOF. Similarly as in the proof of Theorem 17.1.4, it can be shown
that the assumption

f ′(x0) = 0 < f ′′(x0)

implies that there is a δ > 0 such that

i) f ′(x) > 0 for every x0 < x ∈ P (x0, δ),

ii) f ′(x) < 0 for every x0 > x ∈ P (x0, δ).
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Moreover, the function f is clearly continuous at the point x0 (f ′(x0) = 0 ∈ R). There-
fore (see Theorem 16.1) f is increasing in [x0, x0 + δ) and decreasing in (x0 − δ, x0].
Hence we get that f has a strict local minimum at x0. Now we can employ the mathemat-
ical induction to finish the proof.
(The previous two statements can be proved analogously.)

�

17.1.7 Definition. If f ′(x0) = 0, then we call x0 a stationary point of the function f .

17.1.8 Example. Find all local extremes of the function f defined by

f(x) := x3(x − 7).

SOLUTION. First, f is differentiable on R, and therefore (see Theorem 17.1.4) it can have
local extremes only at stationary points. It is easily seen that

• ∀x ∈ R : f ′(x) = x2(4x − 21),

• f ′(x) = 0 ⇔
[
x = 0 ∨ x = 21

4

]
,

• f ′′(0) = 0 6= −42 = f ′′′(0),

• f ′′(21
4
) = 441

4
> 0,

and therefore (see Theorem 17.1.5) the function f has a unique local extreme: f has a strict
local minimum at the point 21

4
. The situation is illustrated in Fig. 41.

�
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17.2 Global Extremes

17.2.1 Definitions. A function f attains its maximum on a set M ⊂ D(f) at a point x0 if

x0 ∈ M ∧ f(x0) = max {f(x) : x ∈ M} =: max
x∈M

f(x).

A function f attains its minimum on a set M ⊂ D(f) at a point x0 if

x0 ∈ M ∧ f(x0) = min {f(x) : x ∈ M} =: min
x∈M

f(x).

17.2.2 Example. Let the function f be defined by f(x) := arctan x . . . see Fig. 27.
Then

• neither min
x∈R

f(x) nor max
x∈R

f(x) exists,

• min
x∈[0, +∞)

f(x) = 0, max
x∈[0, +∞)

f(x) does not exist,

• min
x∈[−1, 1]

f(x) = −π
4
, max

x∈[−1, 1]
f(x) = π

4
.

17.2.3 Theorem (Weierstrass). If a function f is continuous in an interval [a, b] (a, b ∈ R,
a < b), then both max

x∈[a, b]
f(x) and min

x∈[a, b]
f(x) exist.

PROOF. Let us show that
max
x∈[a, b]

f(x)

exists (the existence of the minimum can be shown analogously).
We know (see Theorem 2.7) that

sup {f(x) : x ∈ [a, b]} =: s

exists, so that we have to prove that

∃x0 ∈ [a, b] : f(x0) = s.

From the definition of the supremum it follows that there is a sequence (xn) such that
xn ∈ [a, b] for every n ∈ N and f(xn) → s.

Now let us choose a convergent subsequence (xkn
) of the bounded sequence (xn) (it is

possible due to Theorem 8.11), i.e., there is an x0 ∈ R such that xkn
→ x0. Since for every

n ∈ N it holds that xkn
∈ [a, b], we get

x0 ∈ [a, b].

To finish the proof, it suffices to note that since (f(xkn
)) is a subsequence of (f(xn)), it has

to have the same limit s (see Theorem 8.17). Moreover,

[a, b] 3 xkn
→ x0 ∈ [a, b],

and therefore (f is continuous in [a, b]) f(xkn
) → f(x0). Since any sequence can have no more

than one limit (see Theorem 8.16), we get

f(x0) = s.

�
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17.2.4 Examples.

1) Let f(x) := x2 and M = (0, 1). Then neither min
x∈M

f(x) nor max
x∈M

f(x) exists.

2) Let f(x) := −x + sgn(x) and M = [−1, 1]. Then neither min
x∈M

f(x) nor max
x∈M

f(x) exists.

3) Let f(x) := sgn(x) and M = R. Then min
x∈M

f(x) = −1 and max
x∈M

f(x) = 1.

17.2.5 Example. Find global extremes of the function

f(x) := x3 − 2x2

on the set M =
[
−1

2
, 3
]
.

SOLUTION. From the Weierstrass theorem it follows that the desired extremes exist!
If f attains its extreme on M at a point x0, then either x0 ∈

{
−1

2
, 3
}

or x0 ∈ (−1
2
, 3).

If the second possibility happens, x0 is obviously also a local extreme, and since f is differen-
tiable on R, we get f ′(x0) = 0 (see Theorem 17.1.4). It holds that

f ′(x) = 3x2 − 4x = 0 ⇔
[

x = 0 ∨ x =
4

3

]

and 0,
4

3
∈
(

−1

2
, 3

)

.

Thus −1
2
, 0, 4

3
, 3 are the so-called “suspicious points” (points at which f can have an extreme

on M ). By comparison of the function values

f

(

−1

2

)

= −5

8
≈ −0.6; f(0) = 0; f

(
4

3

)

= −32

27
≈ −1.2; f(3) = 9,

we conclude that f attains its maximum on M at the point 3 and minimum on M at the point 4
3
.

�

17.2.6 Proof of the Rolle Theorem (see Theorem 14.1). At least one of the following possi-
bilities is bound to happen:

i) there is an x1 ∈ [a, b] such that f(x1) > f(a),

ii) there is an x2 ∈ [a, b] such that f(x2) < f(a),

iii) for every x ∈ [a, b] it holds that f(x) = f(a).

If the first case happens, let us consider ξ ∈ [a, b] such that f attains its maximum on [a, b]
at it. (It follows from the Weierstrass theorem that such ξ exists!) Then obviously f(ξ) ≥
f(x1) > f(a) = f(b), and therefore ξ ∈ (a, b). Hence it follows that f has a local maximum
at ξ, and thus (according to the assumption that f ′(ξ) exists) f ′(ξ) = 0 (see Theorem 17.1.4).

If the second case happens, we choose ξ so that f attains its minimum on [a, b] at ξ. Simi-
larly as in the first case, it can be shown that ξ ∈ (a, b) and f ′(ξ) = 0.

If the third case happens, f ′(ξ) = 0 even for every ξ ∈ (a, b) since f is constant in [a, b].
�
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18 CONVEX AND CONCAVE FUNCTIONS

18.1 Definitions. Assume I ⊂ R is an interval. A function f is

• strictly convex in I if

∀x1, x2, x3 ∈ I; x1 < x2 < x3 : f(x2) < f(x1) +
f(x3) − f(x1)

x3 − x1

(x2 − x1).

• convex in I if

∀x1, x2, x3 ∈ I; x1 < x2 < x3 : f(x2) ≤ f(x1) +
f(x3) − f(x1)

x3 − x1

(x2 − x1).

• strictly concave in I if

∀x1, x2, x3 ∈ I; x1 < x2 < x3 : f(x2) > f(x1) +
f(x3) − f(x1)

x3 − x1

(x2 − x1).

• concave if

∀x1, x2, x3 ∈ I; x1 < x2 < x3 : f(x2) ≥ f(x1) +
f(x3) − f(x1)

x3 − x1

(x2 − x1).

18.2 Observation. Assume I ⊂ R is an interval, x1, x2, x3 ∈ I , x1 < x2 < x3, and f is
a function defined on I . Let p is a line passing through the points (x1, f(x1)) and (x3, f(x3)),
i.e.,

p : y = f(x1) +
f(x3) − f(x1)

x3 − x1

(x − x1).

If the function f is strictly convex in I , then the point (x2, f(x2)) “lies under the line” p. Sim-
ilarly, if the function f is strictly concave in I , then the point (x2, f(x2)) “lies above the line”
p.

18.3 Example. Function f(x) := x3 is strictly concave in the interval (−∞, 0] and strictly
convex in the interval [0, +∞) . . . see Fig. 14.

18.4 Theorem. Assume f is a continuous function in an interval I and f ′′(x) exists at every
interior point x of I . Then f is

• convex in I if and only if f ′′(x) ≥ 0 at every interior point x of I;

• concave in I if and only if f ′′(x) ≤ 0 at every interior point x of I .

Moreover,

• if f ′′(x) > 0 at every interior point x of I , then f is strictly convex in I;

• if f ′′(x) < 0 at every interior point x of I , then f is strictly concave in I .

18.5 Remark. It is useful to note that
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• if f ′′(x) > 0 for every x ∈ I , then the function f ′ is increasing in I;

• if f ′′(x) < 0 for every x ∈ I , then the function f ′ is decreasing in I .

18.6 Definition. We say that a function f has an inflection point at a point x0 if the derivative
f ′(x0) exists finite and there is a neighbourhood P (x0) = P+(x0) ∪ P−(x0) such that either

• f is strictly convex in P−(x0) and strictly concave in P +(x0), or

• f is strictly concave in P−(x0) and strictly convex in P +(x0).

In other words, f has an inflection point at a point at which the derivative exists proper and
at which the function f changes from being strictly convex to being strictly concave, or vice
versa.

18.7 Example. A function f(x) := arctan x has an inflection point at the point 0
. . . see Fig. 27.

18.8 Exercise. Prove the following proposition: if a function f has an inflection point at a point
x0 and f ′′(x0) exists, then f ′′(x0) = 0.

19 ASYMPTOTES OF (A GRAPH OF) A FUNCTION

19.1 Definition. A line x = x0 (x0 ∈ R) is called a vertical asymptote of a function f if at least
one of the one-sided limits of the function f at the point x0 is improper (i.e., equal to +∞ or
−∞).

19.2 Example. The line x = 1 is a vertical asymptote of the function f defined by

f(x) :=

{

1, x ≤ 1,
1

x−1
, x > 1,

since
lim

x→1+
f(x) = lim

x→1+

1

x − 1
= +∞.

The situation is depicted in Fig. 42.

19.3 Definition. A line y = ax + b (a, b ∈ R) is called

• an asymptote of a function f at +∞ if lim
x→+∞

(f(x) − (ax + b)) = 0,

• an asymptote of a function f at −∞ if lim
x→−∞

(f(x) − (ax + b)) = 0.

19.4 Example. Let the function f be defined by

f(x) :=

{

20 ex, x ≤ 0,

2x + 10 sin(2x)
x

, x > 0.

Then
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• lim
x→−∞

(f(x) − 0) = lim
x→−∞

(20 ex) = 0,

• lim
x→+∞

(f(x) − 2x) = lim
x→+∞

10 sin(2x)
x

= 0,

and therefore

• the line y = 0 is the asymptote of f at −∞,

• the line y = 2x is the asymptote of f at +∞.

The situation is depicted in Fig. 43.
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19.5 Observation. Assume a line y = ax + b is an asymptote of f at +∞, i.e.,

lim
x→+∞

(f(x) − (ax + b)) = 0.

Hence it follows
lim

x→+∞
(f(x) − ax) = b (∈ R),

and therefore

0 = lim
x→+∞

f(x) − ax

x
= lim

x→+∞

(
f(x)

x
− a

)

,

so that

lim
x→+∞

f(x)

x
= a (∈ R).

(Similar relations can be derived also for an asymptote of f at −∞.)

19.6 Theorem (Existence of Asymptotes at +∞ and −∞). A line y = ax+b is an asymptote
of a function f at +∞ if and only if
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• lim
x→+∞

f(x)
x

= a ∈ R,

• lim
x→+∞

(f(x) − ax) = b ∈ R.

A line y = ax + b is an asymptote of a function f at −∞ if and only if

• lim
x→−∞

f(x)
x

= a ∈ R,

• lim
x→−∞

(f(x) − ax) = b ∈ R.

Note that the statements of the theorem include formulas saying how to find the asymptotes
of a given function f at +∞ and at −∞.

19.7 Example. Find all asymptotes of the function f defined by

f(x) :=
x

arctan x
.

SOLUTION. The function f is clearly continuous at every point of its domain D(f) =
R \ {0}, and since

lim
x→0

f(x) = lim
x→0

x

arctan x
l’H.
= lim

x→0

1
1

1+x2

= 1,

there is no vertical asymptote of the function f . Moreover, since

• lim
x→±∞

f(x)
x

= lim
x→±∞

1
arctan x

= 1
±π

2
= ± 2

π
,

• lim
x→±∞

(
f(x) −

(
± 2

π
x
))

= lim
x→±∞

x(π∓2 arctan x)
π arctan x

=

=

(

lim
x→±∞

1
π arctan x

)(

lim
x→±∞

π∓2 arctan x
1
x

)

l’H.
=
(
± 2

π2

)
(±2) = + 4

π2 ,

it follows from Theorem 19.6 that

• the line y = 2
π
x + 4

π2 is the asymptote of f at +∞,

• the line y = − 2
π
x + 4

π2 is the asymptote of f at −∞.

The situation is depicted in Fig. 44.
�
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20 EXAMINATION OF A FUNCTION BEHAVIOUR

20.1 To examine the function behaviour means to determine (calculate)

• domain of the function;

• points (and intervals!) in which the function is continuous;

• whether the function is even or odd; whether the function is periodic;

• one-sided limits at the end points of the domain of the function and at the points of dis-
continuity;

• derivative of the function;

• intervals of the strict monotonicity of the function;

• intervals of the strict convexity and strict concavity of the function; inflexion points of
the function;

• asymptotes of the function;

• eventually other properties of the function (for example: function values at significant
points, one-sided derivatives at significant points, intersection points with axis, . . .);

and to draw the graph of the function with all essential qualitative characteristics.

20.2 Example. Examine the behaviour of the function f defined by

f(x) := arcsin
2x

1 + x2
.

SOLUTION. It can be easily checked that

• D(f) = R,

• f is continuous in R,

• f is odd,

• lim
x→+∞

f(x) = 0,

• ∀x ∈ [0, 1) : f ′(x) = 2
1+x2 ,

∀x ∈ (1, +∞) : f ′(x) = − 2
1+x2 ,

• ∀x ∈ [0, 1) : f ′′(x) = −4x
(1+x2)2

,

∀x ∈ (1, +∞) : f ′′(x) = 4x
(1+x2)2

,

• f(0) = 0, f(1) = π
2
, f ′(0) = 2, f ′

+(1) = −1, f ′
−(1) = 1.

Now let us think over the validity of the following statements:
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• f is continuous in R, and therefore f has no vertical asymptote;

• f is odd and lim
x→+∞

f(x) = 0, and therefore the line y = 0 is the asymptote of f at +∞
and at −∞;

• f is continuous in R, f is odd, ∀x ∈ [0, 1) : f ′(x) > 0, ∀x ∈ (1, +∞) : f ′(x) < 0, and
therefore f is increasing in the interval [−1, 1] and decreasing in the intervals (−∞, −1]
and [1, +∞);

• f is continuous in R, f is odd, ∀x ∈ (0, 1) : f ′′(x) < 0, ∀x ∈ (1, +∞) : f ′′(x) > 0,
and therefore f is strictly convex in the intervals [−1, 0] and [1, +∞) and strictly concave
in the intervals (−∞, −1] and [0, 1]; moreover, since f ′(0) ∈ R, f has the inflection point
at 0.

Finally, let us calculate that f(0) = 0, f(1) = π
2
, f ′(0) = 2, f ′

+(1) = −1, f ′
−(1) = 1. To finish

the task, it remains to draw the graph of the function f :
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I APPROXIMATION OF A FUNCTION
BY A POLYNOMIAL

21 TAYLOR’S POLYNOMIAL (APPROXIMATION
OF A FUNCTION IN A NEIGHBOURHOOD OF A POINT)

21.1 Taylor’s Polynomial

21.1.1 Let us try to approximate a function f on a neighbourhood of a point x0 by a polynomial
p. We already know (see Chapter F) that the best polynomial of the first degree approximating
a differentiable function f on a neighbourhood of a point x0 is

p(x) := f(x0) + f ′(x0)(x − x0)

(graph of p is the tangent of graph of the function f at x0). We also know that for the function

R(x) := f(x) − p(x)

(the so-called approximation error) it holds that

lim
x→x0

R(x)

x − x0

= 0.

It is certainly natural to expect that in the case of approximation of a function by a polynomial
of the degree greater than 1, it can sometimes happen that the approximation error is reduced.
Let us try to find a polynomial p (of the degree at most n) so that the approximation error R is
in the neighbourhood of x0 as small as possible; more precisely, for a k ∈ N as large as possible
we want

lim
x→x0

R(x)

(x − x0)
k

= 0. (1)

(If (1) holds, we say that the function R is infinitely small of order greater than k at the point
x0.) Note that (1) holds if

R(x0) = R′(x0) = R′′(x0) = . . . = R(k−1)(x0) = R(k)(x0) = 0.

PROOF.

lim
x→x0

R(x)

(x − x0)
k

l’H.
= lim

x→x0

R′(x)

k (x − x0)k−1

l’H.
= . . .

l’H.
= lim

x→x0

R(k−1)(x)

k (k − 1) · · · 2(x − x0)
=

= lim
x→x0

[
1

k!

R(k−1)(x) − R(k−1)(x0)

x − x0

]

=
1

k!
R(k)(x0) = 0.

�

Thus let us look for a polynomial p of the degree at most n so that for a k as large as possible
it holds:
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• R(x0) = f(x0) − p(x0) = 0,

• R′(x0) = f ′(x0) − p′(x0) = 0,

• R′′(x0) = f ′′(x0) − p′′(x0) = 0,

...

• R(k)(x0) = f (k)(x0) − p(k)(x0) = 0.

(Let us assume that the function f has “needed number of derivatives” at the point x0.)

1) Let n = 1 and let us look for a polynomial p in the form

p(x) = ax + b,

where a, b ∈ R. It is easily seen that the first two requirements

f(x0) = p(x0) = ax0 + b, f ′(x0) = p′(x0) = a

already uniquely determine the numbers a and b, so that

p(x) = f ′(x0)x + f(x0) − f ′(x0)x0 = f(x0) + f ′(x0)(x − x0).

(We are certainly not surprised by this result . . .)

2) Let n = 2 and let us look for a polynomial p in the form

p(x) = ax2 + bx + c,

where a, b, c ∈ R. In this case, the polynomial p is determined by these three conditions:

• f(x0) = p(x0) = ax2
0 + bx0 + c,

• f ′(x0) = p′(x0) = 2ax0 + b,

• f ′′(x0) = p′′(x0) = 2a.

Hence we get

p(x) = f(x0) + f ′(x0)(x − x0) +
f ′′(x0)

2
(x − x0)

2.

3) Let n ∈ N and let us look for a polynomial p in the form

p(x) = a0 + a1(x − x0) + a2(x − x0)
2 + . . . + an(x − x0)

n,

where a0, . . . , an ∈ R. Let us remark that every polynomial of the degree at most n can be
written in such way. It can be checked again that the conditions

• f(x0) = p(x0) = a0,

• f ′(x0) = p′(x0) = a1,

• f ′′(x0) = p′′(x0) = 2a2,
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...

• f (j)(x0) = p(j)(x0) = j! aj ,

...

• f (n)(x0) = p(n)(x0) = n! an

yield

p(x) = f(x0) + f ′(x0)(x − x0) + . . . +
f (n)(x0)

n!
(x − x0)

n =

=
n∑

k=0

f (k)(x0)

k!
(x − x0)

k =: Tn(x).

Tn is the so-called Taylor polynomial of the order n of the function f at the point x0. We al-
ready know that the function

Rn+1(x) := f(x) − Tn(x)

(the so-called remainder after nth term) is infinitely small of order greater than n at the point
x0, i.e.,

lim
x→x0

Rn+1(x)

(x − x0)
n = 0.

The following theorem shall give us more accurate information about the size of Rn+1(x).

21.1.2 Theorem (Taylor). Assume a function f has (finite) (n + 1)th derivative in a neigh-
bourhood U(x0, δ) and x ∈ P (x0, δ). Then there exists a ξ lying between points x and x0 such
that

Rn+1(x) =
f (n+1)(ξ)

(n + 1)!
(x − x0)

n+1.

By “ξ lies between points x and x0” we mean that either

• ξ ∈ (x0, x) if x > x0, or

• ξ ∈ (x, x0) if x < x0.

21.1.3 Remarks.

• The term f (n+1)(ξ)
(n+1)!

(x − x0)
n+1 is called the Lagrange form of the remainder.

• If we put h = x − x0, we can write

Tn(x0 + h) = f(x0) +
f ′(x0)

1
h + . . . +

f (n)(x0)

n!
hn.

• If x0 = 0, we obtain the so-called Maclaurin polynomial.

21.1.4 Examples. Find the Maclaurin polynomial of the function
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1) ex.

SOLUTION. For every x ∈ R, we have ex = (ex)′ = (ex)′′ = . . . , and therefore

Tn(x) = 1 +
x

1!
+

x2

2!
+ . . . +

xn

n!
=

n∑

k=0

xk

k!
.

�

2) sin x.

SOLUTION.

• sin 0 = 0,

• sin′ 0 = cos 0 = 1,

• sin′′ 0 = − sin 0 = 0,

• sin′′′ 0 = − cos 0 = −1,

• sin(4) 0 = sin 0 = 0,
...

and therefore

T2n+2(x) = x − x3

3!
+

x5

5!
− . . . + (−1)n x2n+1

(2n + 1)!
=

n∑

k=0

(−1)k x2k+1

(2k + 1)!
.

�

3) cos x.

SOLUTION.

• cos 0 = 1,

• cos′ 0 = − sin 0 = 0,

• cos′′ 0 = − cos 0 = −1,

• cos′′′ 0 = sin 0 = 0,

• cos(4) 0 = cos 0 = 1,
...

and therefore

T2n+1(x) = 1 − x2

2!
+

x4

4!
− . . . + (−1)n x2n

(2n)!
=

n∑

k=0

(−1)k x2k

(2k)!
.

�

21.1.5 Approximation of a function by the Taylor polynomial is useful in many applications.
Let us show – for illustration – at least one of them.
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21.2 Numerical Derivative

21.2.1 In applications we often work with a differentiable function given only by values at
certain points (for example, obtained by measurement).

For simplicity, let us assume that values of a function f are given at the points:

a = x0, x1, x2, . . . , xn = b ∈ [a, b],

where xk = x0 + kh and h = b−a
n

, i.e., we know f(xk) (n ∈ N, k ∈ {0, 1, . . . , n}).
We shall be concerned with the following problem: How to approximate the derivative

of the function f at the points xk, where k ∈ {1, . . . , n − 1}, so that the approximation error is
for h → 0 (i.e., for n → +∞) as small as possible?

The first idea could be a use of the definition of the derivative:

f ′(xk) = lim
h→0

f(xk + h) − f(xk)

h
≈ f(xk + h) − f(xk)

h
=

f(xk+1) − f(xk)

h
.

Note that if the Taylor polynomial of the first order of the function f at the point xk is used, i.e.,
if we employ the equality

f(xk + h) = f(xk) + f ′(xk)h + R2(xk + h),

we get the same result since

f ′(xk) ≈
f(xk + h) − f(xk)

h
=

f(xk+1) − f(xk)

h
. (2)

(The aim of this subsection is only to show one way how we can think about the given problem.
Therefore we shall not pay attention to a precise formulation of the assumptions under which
our ideas are possible and correct. On the other hand, the reader is capable of correction of this
inaccuracy.) How large is the error for h → 0? The answer is obvious (see Subsection 21.1):

R1(h) :=
f(xk + h) − f(xk)

h
− f ′(xk) =

R2(xk + h)

h
→ 0 for h → 0.

If we use the Taylor polynomial of the second order:

f(xk + h) = f(xk) + f ′(xk)h +
1

2
f ′′(xk)h

2 + R3(xk + h),

f(xk − h) = f(xk) − f ′(xk)h +
1

2
f ′′(xk)h

2 + R3(xk − h),

we obtain by subtracting these equations and neglecting the remainders after the second term
the following approximation:

f ′(xk) ≈
f(xk + h) − f(xk − h)

2h
=

f(xk+1) − f(xk−1)

2h
. (3)

Let us again estimate the extent of the error:

R2(h) :=
f(xk + h) − f(xk − h)

2h
− f ′(xk) =

R3(xk + h)

2h
− R3(xk − h)

2h
,

and thus even
R2(h)

h
=

R3(xk + h)

2h2
− R3(xk − h)

2h2
→ 0 for h → 0.
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21.2.2 Remark. We showed that the approximation (3) causes (for h → 0) an error of lower
order than the approximation (2).

Let us also mention another advantage of (3). If the function f is linear (i.e., f(x) =
ax + b), the approximation (2) is accurate, furthermore, the approximation (3) is accurate even
for functions at most quadratic (f(x) = ax2 + bx + c).

22 INTERPOLATION POLYNOMIALS (APPROXIMATION
OF A FUNCTION IN AN INTERVAL)

22.1 Let us start with the similar situation as in Subsection 21.2. Let a function f be given
by values at mutually distinct points

a = x0 < x1 < x2 < . . . < xn = b.

Now we shall deal with the task: How to approximate values of f also at another points
of [a, b]?

It can be shown that there is a unique (the so-called Lagrange) polynomial ϕ of the degree
at most n such that ϕ(xk) = f(xk) for every k ∈ {0, 1, . . . , n}.

22.2 Remark. The approximation of a function by the Lagrange polynomial carries many dis-
advantages. One of them is the fact that when n ∈ N is large, it happens that polynomial ϕ
attains in the intervals (xk, xk+1) also values “differing considerably” from the values f(xk)
and f(xk+1) (see Fig. 46). This drawback can be removed if we approximate the function f
in [a, b] by functions that are piecewise polynomial.
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22.3 We speak of a linear interpolation when we approximate the function f in every interval
[xk, xk+1] by a linear function given by points (xk, f(xk)) and (xk+1, f(xk+1)) (the so-called
Lagrange polynomial of the first order) . . . see Fig. 47.

22.4 Remark. We removed the above-described disadvantage of the Lagrange polynomials
though, but at the cost of obtaining a function which is (generally) not differentiable. More-
over, the differentiability fails exactly at the points xk.

22.5 Now let us describe an interpolation by cubic spline-functions . . . see Fig. 48.
It can be shown that there is a function ϕ such that

i) it is equal to a polynomial of at most third degree in every [xk, xk+1],

ii) ϕ, ϕ′, ϕ′′ are continuous in [a, b],

iii) ϕ(xk) = f(xk) for every k ∈ {0, 1, . . . , n}.

Conditions i), ii), iii) do not determine the function ϕ uniquely, however, if we add (for example)
the condition

iv) ϕ′′(a) = ϕ′′(b) = 0,

then there exists a unique function ϕ satisfying i) , ii) , iii) , iv) .

22.6 Remark. In all mentioned cases we required equality of the function values of f with its
approximation ϕ at the points x0, x1, . . . , xn; i.e., f(xk) = ϕ(xk) for every k ∈ {0, 1, . . . , n}.

However, if the values f(xk) are obtained, for instance, by measurement, i.e., they are
loaded in certain error, this requirement is too restrictive. It often suffices to require that the val-
ues of f and ϕ do not differ “too much”. The similar ideas lead to many other approximations,
however, we shall not be focused on them.
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J ANTIDERIVATIVE (INDEFINITE INTEGRAL)

23 ANTIDERIVATIVE

23.1 Definition. A function F : R 7→ R is said to be an antiderivative of a function f : R 7→ R

in an open interval I ⊂ R if

∀x ∈ D(F ) = I : F ′(x) = f(x).

23.2 Example. The function F (x) := sin x is the antiderivative of the function f(x) := cos x
in R.

23.3 Theorem (Existence of an Antiderivative). If a function f : R 7→ R is continuous on an
open interval I ⊂ R, then f has an antiderivative in I .

Continuity of a function is the sufficient, but not necessary condition for existence of an an-
tiderivative.

23.4 Theorem. Suppose F is an antiderivative of a function f in an open interval I ⊂ R. Then
the functions Gc : R 7→ R defined by

Gc(x) := F (x) + c (c ∈ R)

are exactly all antiderivatives of f in I .

PROOF. Note that we need to prove these two statements:

i) Gc is an antiderivative of f in I for any c ∈ R;

ii) if G is an antiderivative of f in I , then there is a c ∈ R such that G(x) = F (x) + c
for every x ∈ I .

The proof of the first statement is straightforward since for all x ∈ I we have (Gc(x))′ =
(F (x) + c)′ = F ′(x) + c′ = f(x) + 0 = f(x).

To prove the second statement, let us consider the function G − F . Our assumptions imply
that (G − F )′(x) = G′(x) − F ′(x) = f(x) − f(x) = 0 for all x ∈ I , and therefore G − F is
constant in I (see Theorem 16.1). Thus there is a c ∈ R such that (G−F )(x) = G(x)−F (x) =
c for every x ∈ I .

�

23.5 Convention. If a function F is an antiderivative of a function f , then we shall write

F (x) =

∫

f(x) dx

and speak of an indefinite integral of the function f .
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23.6 Remarks.

• This notation, used by historical reasons, is not fully correct. We have already ob-
served that the antiderivative F is uniquely determined, except for an additive constant,
by the function f . The question is how to understand the equalities

∫
cos x dx = sin x,

∫
cos x dx = sin x + 5, etc.

• Let us make a convention that
∫

f(x) dx stands for some antiderivative of f (we would
get any other by adding an arbitrary constant). Thus the equality

∫
f(x) dx = G(x) shall

be understood so that there is an antiderivative F of f satisfying F (x) = G(x) for every
x ∈ D(F ).

• In speaking of an antiderivative (or indefinite integral), we have always in mind some
open interval too. (See Definition 23.1.)

23.7 Theorem. On every open interval that is a subset of the domain of the corresponding
integrated function it holds that

•
∫

k dx = kx (k ∈ R),

•
∫

xn dx = xn+1

n+1
(n ∈ R \ {−1}),

•
∫

1
x

dx = log |x|,

•
∫

sin x dx = − cos x,

•
∫

cos x dx = sin x,

•
∫

1
cos2 x

dx = tan x,

•
∫

1
sin2 x

dx = − cot x,

•
∫

1
1+x2 dx = arctan x,

•
∫

1√
1−x2 dx = arccot x,

•
∫

ex dx = ex.

24 TECHNIQUES OF INTEGRATION (METHODS
OF CALCULATING ANTIDERIVATIVES)

24.1 Theorem (Linearity of Indefinite Integral). Assume α, β ∈ R and functions f and g are
continuous on an open interval I ⊂ R. Then

∫

(αf(x) + βg(x)) dx = α

∫

f(x) dx + β

∫

g(x) dx in I.
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PROOF. The existence of all mentioned integrals is ensured by the continuity of the func-
tions f and g and Theorem 23.3. Moreover, by Theorem 13.9,
(

α

∫

f(x) dx + β

∫

g(x) dx

)′
= α

(∫

f(x) dx

)′
+β

(∫

g(x) dx

)′
= αf(x)+βg(x) in I.

�

24.2 Examples.

1)
∫ √

x − 3
√

x5 + x2

6
√

x
dx =

∫ (

x
1
2
− 1

6 − x
5
3
− 1

6 + x2− 1
6

)

dx =

=

∫

x
1
3 dx−

∫

x
3
2 dx+

∫

x
11
6 dx =

x
4
3

4
3

−x
5
2

5
2

+
x

17
6

17
6

=
3

4

3
√

x4−2

5

√
x5+

6

17

6
√

x17 (in R+).

2)
∫

tan2 x dx =

∫
sin2 x

cos2 x
dx =

∫
1 − cos2 x

cos2 x
dx =

∫ (
1

cos2 x
− 1

)

dx =

=

∫
1

cos2 x
dx −

∫

1 dx = tan x − x

(

in every
(
−π

2
+ kπ, π

2
+ kπ

)
, where k ∈ Z

)

.

24.3 Theorem (Integration by Parts). Suppose functions u and v have continuous first deriva-
tives in an open interval I ⊂ R. Then

∫

u(x)v′(x) dx = u(x)v(x) −
∫

u′(x)v(x) dx in I.

PROOF. The existence of both integrals is ensured by Theorem 23.3. Moreover, by Theo-
rem 13.9, for all x ∈ I

(u(x)v(x))′ = u′(x)v(x) + u(x)v′(x),

and therefore, by Theorem 24.1,

u(x)v(x) =

∫

(u′(x)v(x) + u(x)v′(x)) dx =

∫

u′(x)v(x) dx +

∫

u(x)v′(x) dx.

�

24.4 Examples.

1) ∫

x sin x dx = −x cos x +

∫

cos x dx = −x cos x + sin x (in R).

u = x, v′ = sin x
u′ = 1, v = − cos x
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2) ∫

log x dx =

∫

1 · log x dx = x log x −
∫

x
1

x
dx = x log x − x (in R+).

u = log x, v′ = 1
u′ = 1

x
, v = x

3)
∫

ex sin x dx = ex sin x−
∫

ex cos x dx = ex sin x−
(

ex cos x −
∫

ex(− sin x) dx

)

=

u = sin x, v′ = ex

u′ = cos x, v = ex

u = cos x, v′ = ex

u′ = − sin x, v = ex

= ex sin x − ex cos x −
∫

ex sin x dx,

and thus ∫

ex sin x dx =
1

2
ex(sin x − cos x) (in R).

4) Let us derive a recurrent formula for calculation of the integral

In(x) =

∫
dx

(1 + x2)n
,

where n ∈ N.

• I1(x) =
∫

dx
1+x2 = arctan x,

• In(x) =
∫

1 · dx
(1+x2)n = x

(1+x2)n + 2n
∫

x2+1−1
(1+x2)n+1 = x

(1+x2)n + 2nIn(x)− 2nIn+1(x).

Hence it is easily seen that

In+1(x) =
x

2n(1 + x2)n
+

2n − 1

2n
In(x) (in R).

24.5 Theorem (First Substitution Rule). Let

• a function ϕ have a finite derivative in an interval (a, b) and ϕ(x) ∈ (α, β) for all
x ∈ (a, b),

• a function f be continuous on an interval (α, β).

Assume F is an arbitrary antiderivative of f in (α, β). Then
∫

f(ϕ(x)) ϕ′(x) dx = F (ϕ(x)) in (a, b).

PROOF. The statement follows directly from Theorem 13.11 since

(F (ϕ(x)))′ = F ′(ϕ(x))ϕ′(x) = f(ϕ(x))ϕ′(x) (in (a, b)).

�
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24.6 Remark. When we use the first substitution rule, we write it formally in this way:
∫

f(ϕ(x)) ϕ′(x) dx =

∫

f(t) dt = F (t) = F (ϕ(x)).

ϕ(x) = t
ϕ′(x) dx = dt

24.7 Examples.

1) ∫

cot x dx =

∫
cos x

sin x
dx =

∫
1

t
dt = log |t| = log | sin x|

sin x = t
cos x dx = dt

(in every (kπ, π + kπ), where k ∈ Z).

2) ∫
x√

x2 − 1
dx =

∫
2x

2
√

x2 − 1
dx =

∫
dt

2
√

t
=

√
t =

√
x2 − 1

x2 − 1 = t
2x dx = dt

(in (−∞, −1) and in (1, +∞)).

3) ∫
dx

3x + 2007
=

∫
1

3

dt

t
=

1

3
log |t| =

1

3
log |3x + 2007|

3x + 2007 = t
3 dx = dt
dx = 1

3
dt

(

in
(
−∞, −2007

3

)
and in

(
−2007

3
, +∞

))

.

24.8 Theorem (Second Substitution Rule). Let

• a function ϕ map an interval (α, β) onto an interval (a, b) and let ϕ have a continuous
and nonzero derivative in (α, β),

• a function f be continuous on (a, b).

Assume F is an arbitrary antiderivative of (f ◦ ϕ) ϕ′ in (α, β). Then
∫

f(x) dx = F (ϕ−1(x)) in (a, b).

PROOF. First, let us note that F (ϕ−1(x)) is well defined (our assumptions imply that
the function ϕ : (α, β)

onto7→ (a, b) is strictly monotonous, and thus injective; hence we see
that the inverse of ϕ exists and ϕ−1 : (a, b)

onto7→ (α, β)). By Theorems 13.11 and 13.14, we
get

(F (ϕ−1(x)))′ = F ′(ϕ−1(x))(ϕ−1(x))′ = f(ϕ(ϕ−1(x)))ϕ′(ϕ−1(x))
1

ϕ′(ϕ−1(x))
= f(x)

for every x ∈ (a, b).
�
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24.9 Remark. When we use the second substitution rule, we write it formally in this way:
∫

f(x) dx =

∫

f(ϕ(t)) ϕ′(t) dt = F (t) = F (ϕ−1(x)).

x = ϕ(t)
dx = ϕ′(t) dt

24.10 Examples. Let a ∈ R+.

1)
∫

dx√
a2 − x2

=

∫
a dt√

a2 − a2t2
=

∫
dt√

1 − t2
= arcsin t = arcsin

x

a
(in (−a, a)).

x = at
dx = a dt

2) ∫ √
a2 − x2 dx =

∫
√

a2 − a2 sin2 t · a cos t dt = a2

∫

| cos t| cos t dt =

x = a sin t
dx = a cos t dt
x ∈ (−a, a), t ∈ (−π/2, π/2)

t = arcsin x
a

= a2

∫

cos2 t dt = a2

∫
1 + cos(2t)

2
dt = a2

∫
1

2
dt + a2

∫
cos(2t)

2
dt =

=
a2

2
t + a2 sin(2t)

4
=

a2

2
t +

a2

2
sin t

√

1 − sin2 t =

=
a2

2
arcsin

x

a
+

a2

2
sin(arcsin

x

a
)

√

1 − sin2(arcsin
x

a
) =

=
a2

2
arcsin

x

a
+

a2

2

x

a

√

1 − x2

a2
=

a2

2
arcsin

x

a
+

x

2

√
a2 − x2 (in (−a, a)).

24.11 Exercise. Try to calculate the second example using the integration by parts.

25 INTEGRATION OF RATIONAL FUNCTIONS

25.1 Partial Fractions Decomposition of Rational Functions

25.1.1 Let us recall that every function q given by

q(x) := anx
n + an−1x

n−1 + . . . + a1x + a0,

where a0, a1, . . . , an ∈ R, an 6= 0 and n ∈ N, is called a polynomial of the degree n with real
coefficients. Such a polynomial can be also written in the form

q(x) = an(x − α1)
n1 · · · (x − αk)

nk (x2 + β1x + γ1)
m1 · · · (x2 + βlx + γl)

ml ,

where
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• αi are mutually distinct real numbers,

• βj, γj ∈ R,

• polynomials (x2 + βjx + γj) have mutually distinct non-real roots,

• ni, mj ∈ N ∪ {0}.

25.1.2 Theorem (Partial Fractions Decomposition of a Rational Function). Let p and q be
polynomials with real coefficients such that the degree of p is less than the degree of q. Let us
write q in the form

q(x) = an(x − α1)
n1 · · · (x − αk)

nk (x2 + β1x + γ1)
m1 · · · (x2 + βlx + γl)

ml .

Then there are real numbers aij, brs, crs such that

p(x)

q(x)
=

a11

x − α1

+
a12

(x − α1)2
+. . .+

a1n1

(x − α1)n1
+. . .+

ak1

x − αk

+
ak2

(x − αk)2
+. . .+

aknk

(x − αk)nk
+

+
b11x + c11

x2 + β1x + γ1

+
b12x + c12

(x2 + β1x + γ1)2
+ . . . +

b1m1x + c1m1

(x2 + β1x + γ1)m1
+ . . . +

+
bl1x + cl1

x2 + βlx + γl

+
bl2x + cl2

(x2 + βlx + γl)2
+ . . . +

blml
x + clml

(x2 + βlx + γl)ml
.

25.1.3 Examples.

• x+2
3x2+3x−18

= x+2
3(x−2)(x+3)

= a
x−2

+ b
x+3

,

• 3x2−2x+12
(x+4)2(x−1)3

= a
x+4

+ b
(x+4)2

+ c
x−1

+ d
(x−1)2

+ e
(x−1)3

,

• x3+2x−13
x2(x2+2x+3)

= a
x

+ b
x2 + cx+d

x2+2x+3
,

• x3+2x−13
x2(x2+2x+1)

= x3+2x−13
x2(x+1)2

= a
x

+ b
x2 + c

x+1
+ d

(x+1)2
,

• x
(x−1)(2x2+x+3)2

= a
x−1

+ bx+c
2x2+x+3

+ dx+e
(2x2+x+3)2

.

25.1.4 Definitions. Functions of the form p(x)
q(x)

, where p and q are polynomials, are said to be
rational functions. Functions of the form a

(x−α)n and bx+c
(x2+βx+γ)m are called partial fractions

(a, b, c, α, β, γ ∈ R; n, m ∈ N; x2 + βx + γ has no real root).

25.1.5 Example. Decompose the rational function x2+x+1
x4−1

into the partial fractions.

SOLUTION.

x2 + x + 1

x4 − 1
=

x2 + x + 1

(x + 1)(x − 1)(x2 + 1)
=

a

x + 1
+

b

x − 1
+

cx + d

x2 + 1
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for some a, b, c, d ∈ R. After multiplying this equation by the expression x4 − 1, we obtain

x2 + x + 1 = a(x − 1)(x2 + 1) + b(x + 1)(x2 + 1) + (cx + d)(x2 − 1).

By comparison of the coefficients of the powers of x we get the following system of linear
equations

x3: 0 = a + b + c,
x2: 1 = −a + b + d,
x1: 1 = a + b − c,
x0: 1 = −a + b − d.

By solving this system we (uniquely) obtain the desired numbers a, b, c, d. The result is

x2 + x + 1

x4 − 1
= − 1

4(x + 1)
+

3

4(x − 1)
− x

2(x2 + 1)
.

�

25.1.6 Observation. Solving the above-mentioned system of equations can be accelerated if we
insert into

x2 + x + 1 = a(x − 1)(x2 + 1) + b(x + 1)(x2 + 1) + (cx + d)(x2 − 1)

the real roots of the denominator x4 − 1:

x = 1 : 3 = 4b ⇒ b =
3

4
,

x = −1 : 1 = −4a ⇒ a = −1

4
.

25.1.7 Remark. If the degree of a polynomial p is not less than the degree of a non-constant
polynomial q in p(x)

q(x)
, we perform the polynomial division p(x) : q(x) with remainder, so that

we obtain
p(x)

q(x)
= u(x) +

v(x)

q(x)
,

where u and v are polynomials, and the degree of v is less than the degree of q.

25.1.8 Example. Decompose the rational function x4

x4−x3−x+1
.

SOLUTION. x4 : (x4−x3−x+1) = 1+ x3+x−1
x4−x3−x+1

, and therefore there are a, b, c, d ∈ R

−(x4 − x
3 − x + 1)

x
3 + x − 1

such that

1 +
x3 + x − 1

x4 − x3 − x + 1
= 1 +

x3 + x − 1

(x − 1)2(x2 + x + 1)
= 1 +

a

x − 1
+

b

(x − 1)2
+

cx + d

x2 + x + 1
.

Hence it follows

x3 + x − 1 = a(x − 1)(x2 + x + 1) + b(x2 + x + 1) + (cx + d)(x − 1)2.

By comparison of the coefficients of the powers of x we get the system
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x3: 1 = a + c,
x2: 0 = b − 2c + d,
x1: 1 = b + c − 2d,
x0: −1 = −a + b + d,

whose solution is a = 1, b = 1
3
, c = 0, d = −1

3
, and therefore

x4

x4 − x3 − x + 1
= 1 +

1

x − 1
+

1

3(x − 1)2 − 1

3(x2 + x + 1)
.

�

25.2 Integration of Partial Fractions

25.2.1 Integrals of the type ∫
a

(x − α)n
dx

can be calculated using the substitution x − α = t.

25.2.2 Examples.

1) ∫
dx

x − 6
=

∫
dt

t
= log |t| = log |x − 6| (in (−∞, 6) and in (6, ∞)).

x − 6 = t
dx = dt

2) ∫
dx

(x − 6)3
=

∫
dt

t3
= − 1

2t2
= − 1

2(x − 6)2 (in (−∞, 6) and in (6, ∞)).

25.2.3 In order to calculate integrals of the type
∫

bx + c

(x2 + βx + γ)m
dx,

we first use the decomposition into addition:
∫

bx + c

(x2 + βx + γ)m
dx =

b

2

∫
2x + β

(x2 + βx + γ)m
dx +

(

c − bβ

2

)∫
dx

(x2 + βx + γ)m
.

Then

• the first integral can be calculated using the substitution x2 + βx + γ = t (since then
(2x + β) dx = dt),

• by modifying the denominator in order to “complete the square” and using the appropri-
ate (linear) substitution, we transform the second integral into

∫
dt

(1+t2)m , for which we
derived (by the integration by parts) the recurrent formula.
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25.2.4 Example.
∫

6x − 1

x2 + 2x + 3
dx = 3

∫
2x + 2

x2 + 2x + 3
dx − 7

∫
dx

x2 + 2x + 3
=

x2 + 2x + 3 = t
(2x + 2) dx = dt

= 3

∫
dt

t
− 7

∫
dx

(x + 1)2 + 2
= 3 log |t| − 7

2

∫
dx

1 +
(

x+1√
2

)2 =

x+1√
2

= u

dx =
√

2 du

= 3 log(x2 + 2x + 3) − 7

2

√
2

∫
du

1 + u2
= 3 log(x2 + 2x + 3) − 7√

2
arctan u =

= 3 log(x2 + 2x + 3) − 7√
2

arctan

(
x + 1√

2

)

(in R).

25.2.5 Exercise. Calculate ∫
6x − 1

(x2 + 2x + 3)2
dx.

Let us disclose the solution: − 3
x2+2x+3

− 7
4

x+1
x2+2x+3

− 7
4
√

2
arctan

(
x+1√

2

)

.

25.2.6 Example. Compare the length of the following two calculations:

• ∫
x3

x4 + 1
dx =

∫
x3

(x2 +
√

2x + 1)(x2 −
√

2x + 1)
dx =

=

∫
ax + b

x2 +
√

2x + 1
+

cx + d

x2 −
√

2x + 1
dx =

∫
2x +

√
2

4(x2 +
√

2x + 1)
+

2x −
√

2

4(x2 −
√

2x + 1)
dx =

=
1

4
log(x2 +

√
2x + 1) +

1

4
log(x2 −

√
2x + 1) =

1

4
log(x4 + 1),

• ∫
x3

x4 + 1
dx =

1

4

∫
dt

t
=

1

4
log |t| =

1

4
log(x4 + 1).

x4 + 1 = t
4x3 dx = dt

25.2.7 Exercise. Calculate ∫
2x

3x4 + 4
dx.
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26 INTEGRATION OF SOME OTHER SPECIAL FUNCTIONS

26.1 Integrals of the Type
∫

sinnx cosmx dx

26.1.1 Let n, m ∈ N ∪ {0}. We distinguish two cases. First, suppose n or m is odd. Then we
use the first substitution rule; see the following example.

26.1.2 Example.
∫

sin3 x cos2 x dx =

∫

sin x (1 − cos2 x) cos2 x dx =

cos x = t
− sin x dx = dt

= −
∫

(1 − t2) t2 dt = −t3

3
+

t5

5
= −cos3 x

3
+

cos5 x

5
(in R).

26.1.3 If both n and m are even, we can employ the equalities

sin2 x =
1 − cos(2x)

2
, cos2 x =

1 + cos(2x)

2
;

see the following example.

26.1.4 Example.
∫

sin2 x cos2 x dx =

∫
1 − cos(2x)

2
· 1 + cos(2x)

2
dx =

1

4

∫

1 − cos2(2x) dx =

=
1

4

∫

1 dx − 1

4

∫
1 + cos(4x)

2
dx =

1

4
x − 1

8
x − 1

8

sin(4x)

4
=

x

8
− sin(4x)

32
(in R).

26.1 By R(u, v) we mean a fraction in whose numerator and denominator there are only finite
sums of expressions of the type k unvm, where k, u, v ∈ R; n,m ∈ N ∪ {0}. A mapping
(u, v) 7→ R(u, v) is called a rational function of two variables. Examples of such mappings:

R(u, v) =
3u2v0 + 2uv0 + 1u0v0

1u0v0
= 3u2 + 2u + 1,

R(u, v) =
1u3v2 + 3uv3 + 2u0v0

1 u0v0
= u3v2 + 3uv3 + 2,

R(u, v) =
2u0v2 + 1u0v0

1u2v0 + 1u0v3
=

2v2 + 1

u2 + v3
.
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26.2 Integrals of the Type
∫

R(sin x, cos x) dx

26.2.1 Using the substitution tan x
2

= t we can transform these integrals into those of rational
functions. To show this, let us express sin x and cos x by t. Since

sin2 x

2
+ cos2 x

2
= 1 ⇒ tan2 x

2
=

1

cos2 x
2

− 1 ⇒ cos2 x

2
=

1

1 + tan2 x
2

=
1

1 + t2
,

we get

sin x = 2 sin
x

2
cos

x

2
= 2 tan

x

2
cos2 x

2
=

2t

1 + t2
,

cos x = 2 cos2 x

2
− 1 = 2

1

1 + t2
− 1 =

1 − t2

1 + t2
,

1

2

1

cos2 x
2

dx = dt,

so that ∫

R(sin x, cos x) dx =

∫

R

(
2t

1 + t2
,
1 − t2

1 + t2

)
2

1 + t2
dt.

Note that the integrals of the type
∫

sinn x cosm x dx are also of the type
∫

R(sin x, cos x) dx
– it is sufficient to set R(u, v) := unvm. However, the method of calculation of these inte-
grals examined in Subsection 26.1 takes often less labour than application of the substitution
tan x

2
= t.

26.2.2 Example.
∫

1 − sin x

1 + cos x
dx =

∫
1 − 2t

1+t2

1 + 1−t2

1+t2

2

1 + t2
dt =

∫
t2 − 2t + 1

t2 + 1
dt =

∫

1 − 2t

t2 + 1
dt =

= t − log(t2 + 1) = tan
x

2
− log

(

tan2 x

2
+ 1
)

(in, for example, (−π, π)).

26.2.3 Example. Sometimes, though, a less laborious way of solving can be invented. Compare:

•
∫

sin3 x

cos2 x
dx =

∫ (
2t

1+t2

)3

(
1−t2

1+t2

)2

2

1 + t2
dt =

∫
16t3

(1 + t2)2(t − 1)2(t + 1)2
dt = . . . ,

•
∫

sin3 x

cos2 x
dx =

∫
(1 − cos2 x) sin x

cos2 x
dx = −

∫
1 − t2

t2
dt =

1

t
+ t =

1

cos x
+ cos x.

cos x = t
− sin x dx = dt
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26.3 Integrals of the Type
∫

R
(

x, s

√
ax+b

cx+d

)

dx

26.3.1 These integrals, where a, b, c, d ∈ R, s ∈ N \ {1}, ad 6= bc, can be calculated using

the substitution s

√
ax+b
cx+d

= t.

26.3.2 Exercise. Why do we assume ad 6= bc?

26.3.3 Example.
∫ √

2x + 3 + x√
2x + 3 − x

dx =

∫
t + t2−3

2

t − t2−3
2

t dt =

∫
t2 + 2t − 3

−t2 + 2t + 3
t dt =

√
2x + 3 = t

x = t2−3
2

dx = t dt

=

∫

−t − 4 +
8t + 12

−(t + 1)(t − 3)
dt = −t2

2
− 4t +

∫

− 9

t − 3
+

1

t + 1
dt =

= −t2

2
− 4t − 9 log |t − 3| + log |t + 1| =

= −2x + 3

2
− 4

√
2x + 3 − 9 log |

√
2x + 3 − 3| + log |

√
2x + 3 + 1|.

26.4 Integrals of the Type
∫

R(x,
√

ax2 + bx + c) dx

26.4.1 Let us focus only on the situation when a, b, c ∈ R, a 6= 0, and ax2 + bx + c has two
distinct (generally complex) roots α1, α2. If a > 0, we choose the so-called Euler substitution

√
ax2 + bx + c =

√
a x + t

which is suitable on every open interval that is a part of the domain of the integrated function.

26.4.2 Example.
∫

dx

x
√

x2 + 2x − 1
=

∫
1

t2+1
2(1−t)

(
t2+1

2(1−t)
+ t
)

4t − 2t2 + 2

4(1 − t)2
dt =

√
x2 + 2x − 1 =

√
1 x + t

x = t2+1
2(1−t)

dx = 4t−2t2+2
4(1−t)2

dt

=

∫
2

t2 + 1
dt = 2 arctan t = 2 arctan(

√
x2 + 2x − 1 − x)

(

in
(

−∞, −1 −
√

2
)

and in
(

−1 +
√

2, ∞
))

.
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26.4.3 If a < 0, it is reasonable to consider only the case when α1, α2 ∈ R (otherwise
ax2 + bx + c < 0 in R). If α1 < α2, then for every x ∈ (α1, α2) (and another one we
cannot be concerned with)

√
ax2 + bx + c =

√

a(x − α1)(x − α2) =
√

(−a)(x − α1)(α2 − x) =

√

(−a) (x − α1)

√
α2 − x

x − α1

,

and therefore we can rewrite the calculated integral as
∫

R

(

x,
√
−a (x − α1)

√
α2 − x

x − α1

)

dx.

We are already familiar with integrals of this type – we choose the substitution
√

α2 − x

x − α1

= t.

26.4.4 Exercise. Using the above-mentioned method, show that

∫
dx

2 +
√

3 − 2x − x2
= 2 arctan

√

x + 3

1 − x
+

2
√

1 − x√
x + 3 +

√
1 − x

(in (−3, 1)).
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K RIEMANN’S (DEFINITE) INTEGRAL

27 MOTIVATION AND INSPIRATION

27.1 Let a function f be non-negative and continuous in an interval [a, b]. Let us try to find
a solution of the problem:

How to calculate an area of the region {(x, y) ∈ R2 : x ∈ [a, b] ∧ 0 ≤ y ≤ f(x)}?

Fig. 49

We can use the following idea: let us divide the interval [a, b] into n subintervals of the same
length. In each of them we approximate the function f by a constant function whose value
equals to the value of f at, for example, left end point. Then we approximate the desired area
by the sum of areas of the relevant rectangles (see the figures below; the left one corresponds
to n = 4, and the right one to n = 16).

Fig. 50 Fig. 51

It can be guessed that if the number of subintervals n increases to infinity, then the sum
of areas of the rectangles tends to the area of the region. We shall denote this area by

∫ b

a
f(x) dx.
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28 DEFINITION OF A DEFINITE INTEGRAL

28.1 Now let us generalize the ideas from the preceding section also for some non-continuous
(and not necessarily non-negative) functions. Let a function f be bounded in an interval [a, b]
(a, b ∈ R; a < b), i.e., there are numbers m,M ∈ R such that

∀x ∈ [a, b] : m ≤ f(x) ≤ M.

For every partition D : a = x0 < x1 < . . . < xn−1 < xn = b of the interval [a, b], we define
a lower and upper sum corresponding to the partition D as

s(D) :=
n∑

k=1

(

inf
x∈[xk−1, xk]

f(x)

)

(xk − xk−1)

and

S(D) :=
n∑

k=1

(

sup
x∈[xk−1, xk]

f(x)

)

(xk − xk−1),

respectively.

28.2 Definitions. By a lower and upper Riemann’s integral of a function f from a to b we mean
the numbers ∫ b

a

f(x) dx := sup {s(D) : D is a partition of [a, b]}

and
∫ b

a

f(x) dx := inf {S(D) : D is a partition of [a, b]},

respectively. If
∫ b

a

f(x) dx =

∫ b

a

f(x) dx,

we call this number the Riemann integral of the function f from a to b and we denote it by
∫ b

a

f(x) dx.

28.3 Observation. Note that numbers
∫ b

a
f(x) dx and

∫ b

a
f(x) dx are defined for every function

f that is bounded in [a, b]. Moreover, the inequalities

m(b − a) =
n∑

k=1

m(xk − xk−1) ≤ s(D) ≤ S(D) ≤
n∑

k=1

M(xk − xk−1) = M(b − a)

imply that
∫ b

a

f(x) dx,

∫ b

a

f(x) dx ∈ R.

28.4 Examples.
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1) If a function f is defined by f(x) := 1 in [a, b], where a, b ∈ R, a < b, we get
∫ b

a

f(x) dx = sup
D

{
∑

k

1 · (xk − xk−1)

}

= sup
D

{b − a} = b − a.

Similarly,
∫ b

a

f(x) dx = inf
D

{
∑

k

1 · (xk − xk−1)

}

= inf
D

{b − a} = b − a,

and therefore ∫ b

a

f(x) dx = b − a.

2) If χ is the Dirichlet function, i.e.,

χ(x) :=

{
0, x ∈ Q,
1, x ∈ R \ Q,

then for all a, b ∈ R; a < b
∫ b

a

χ(x) dx = 0,

∫ b

a

χ(x) dx = b − a,

and thus ∫ b

a

χ(x) dx

fails to exist.

28.5 Remark. Let us consider a “sequence” of partitions of an interval [a, b]

D1, D2, . . . , Dm, . . . ,

where
Dm : a = xm,0 < xm,1 < . . . < xm,nm−1 < xm,nm

= b,

such that
||Dm|| := max

k∈{1,...,nm}
(xm,k − xm,k−1) → 0.

Then the following statements hold:

• if the function f is bounded in the interval [a, b], then

lim s(Dm) =

∫ b

a

f(x) dx, lim S(Dm) =

∫ b

a

f(x) dx;

• if
∫ b

a
f(x) dx exists, then

∫ b

a

f(x) dx = lim s(Dm) = lim S(Dm) = lim I(Dm),

where

I(Dm) :=
nm∑

k=1

f(ξm,k)(xm,k − xm,k−1)

for arbitrarily chosen points ξm,k ∈ [xm,k−1, xm,k].
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28.6 Theorem (Existence of the Riemann Integral). Let a function f be continuous or mon-
otonous in an interval [a, b]. Then

∫ b

a
f(x) dx exists.

28.7 Theorem (Properties of the Riemann Integral). Assume
∫ b

a
f(x) dx and

∫ b

a
g(x) dx exist.

Then

i)

∀α, β ∈ R :

∫ b

a

(αf(x) + βg(x)) dx = α

∫ b

a

f(x) dx + β

∫ b

a

g(x) dx,

ii)

∀c ∈ (a, b) :

∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx,

iii)
∣
∣
∣
∣

∫ b

a

f(x) dx

∣
∣
∣
∣
≤
∫ b

a

|f(x)| dx,

iv)

if f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

28.8 Remark. Statements i) - iv) of Theorem 28.7 also contain the fact that all integrals appear-
ing there exist!

28.9 Corollary. If a function f is continuous in an interval [a, b], then

m(b − a) =

∫ b

a

m dx ≤
∫ b

a

f(x) dx ≤
∫ b

a

M dx = M(b − a),

where
m := min

x∈[a, b]
f(x) and M := max

x∈[a, b]
f(x).

Since a continuous function f attains on [a, b] all values lying between numbers m and M (see
Corollaries 16.4 i)), there exists a ξ ∈ (a, b) such that

f(ξ) =
1

b − a

∫ b

a

f(x) dx.

(This proposition is sometimes called the mean value theorem of the integral calculus.)

28.10 Definitions. In what follows, the following extensions of the definition of the Riemann
integral shall be helpful:

•
∫ a

a
f(x) dx := 0 if f(a) is defined,

•
∫ a

b
f(x) dx := −

∫ b

a
f(x) dx if a < b and

∫ b

a
f(x) dx exists.
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29 INTEGRAL WITH VARIABLE UPPER BOUND

29.1 Theorem. Assume f is a continuous function in an interval [a, b] and

F (x) :=

∫ x

a

f(t) dt.

Then

i) F ′(x) = f(x) for every x ∈ (a, b),

ii) F ′
+(a) = f(a),

iii) F ′
−(b) = f(b).

PROOF. The task is to show
a) x0 ∈ [a, b) ⇒ F ′

+(x0) = f(x0),
b) x0 ∈ (a, b] ⇒ F ′

−(x0) = f(x0).
We prove only the statement a) since the proof of b) is absolutely analogous. It is left to the reader.
First, let us note that for x0 ∈ [a, b) and x0 < x < b

∣
∣
∣
∣

F (x) − F (x0)

x − x0

− f(x0)

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ x

a
f(t) dt −

∫ x0

a
f(t) dt

x − x0

− f(x0)

∣
∣
∣
∣
=

=
1

x − x0

∣
∣
∣
∣

∫ x

x0

f(t) dt − f(x0)(x − x0)

∣
∣
∣
∣
=

1

x − x0

∣
∣
∣
∣

∫ x

x0

f(t) dt −
∫ x

x0

f(x0) dt

∣
∣
∣
∣
=

=
1

x − x0

∣
∣
∣
∣

∫ x

x0

(f(t) − f(x0)) dt

∣
∣
∣
∣
≤ 1

x − x0

∫ x

x0

|f(t) − f(x0)| dt ≤

≤ 1

x − x0

∫ x

x0

max
s∈[x0, x]

|f(s) − f(x0)| dt =
1

x − x0

max
s∈[x0, x]

|f(s) − f(x0)|(x − x0) =

= max
s∈[x0, x]

|f(s) − f(x0)|.

Under the assumptions, the function f is continuous from the right at the point x0, so that

lim
x→x0+

max
s∈[x0, x]

|f(s) − f(x0)| = 0.

Hence

lim
x→x0+

∣
∣
∣
∣

F (x) − F (x0)

x − x0

− f(x0)

∣
∣
∣
∣
= 0,

i.e.,
F ′

+(x0) = f(x0).

�

29.2 Theorem. Assume f is a continuous function in an open interval I ⊂ R and c ∈ I is
an arbitrary point. Then the function F defined on I by

F (x) :=

∫ x

c

f(t) dt

is an antiderivative of f in I (i.e., F ′(x) = f(x) for every x ∈ I = DF ).
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30 METHODS OF CALCULATING DEFINITE INTEGRALS

30.1 Theorem. Let functions f and F be continuous in an interval [a, b], where −∞ < a <
b < +∞, and F ′(x) = f(x) for every x ∈ (a, b). Then

∫ b

a

f(x) dx = F (b) − F (a) =: [F (x)]ba.

PROOF. Redefine (or change) the function f on R\ [a, b] so that it is continuous in R (this
is certainly possible and the calculated integral remains unchanged). By Theorems 23.4 and
29.2, it follows that for every x ∈ [a, b] we have F (x) =

∫ x

a
f(t) dt + c. The rest of the proof

is now easy:

F (b) − F (a) =

(∫ b

a

f(t) dt + c

)

−
(∫ a

a

f(t) dt + c

)

=

∫ b

a

f(t) dt.

�

30.2 Examples.

1)
∫ 1

0

x2 dx =

[
x3

3

]1

0

=
1

3
− 0 =

1

3
.

2) ∫ π

0

sin x dx = [− cos x]π0 = − [cos x]π0 = −(−1 − 1) = 2.

3)
∫ π

2

0

sin(2 + x) dx =

∫ π
2

0

(sin 2 cos x + cos 2 sin x) dx =

= sin 2

∫ π
2

0

cos x dx + cos 2

∫ π
2

0

sin x dx =

= sin 2 [sin x]
π
2
0 + cos 2 [− cos x]

π
2
0 = sin 2 + cos 2.

4)
∫ 3

−2

|x2 − 1| dx =

∫ −1

−2

|x2 − 1| dx +

∫ 1

−1

|x2 − 1| dx +

∫ 3

1

|x2 − 1| dx =

=

∫ −1

−2

(x2 − 1) dx +

∫ 1

−1

(−x2 + 1) dx +

∫ 3

1

(x2 − 1) dx =

=

[
x3

3
− x

]−1

−2

+

[

−x3

3
+ x

]1

−1

+

[
x3

3
− x

]3

1

=
28

3
.
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30.3 Theorem (Integration by Parts). Suppose u and v have their first derivatives continuous
in an interval [a, b]. Then

∫ b

a

u(x)v′(x) dx = [u(x)v(x)]ba −
∫ b

a

u′(x)v(x) dx.

30.4 Examples.

1) ∫ π

0

x sin x dx = [−x cos x]π0 +

∫ π

0

cos x dx = π + [sin x]π0 = π.

u = x, v′ = sin x
u′ = 1, v = − cos x

2)
∫ e

1

log x dx =

∫ e

1

1 · log x dx = [x log x]e1 −
∫ e

1

x
1

x
dx = e − [x]e1 = 1.

u = log x, v′ = 1
u′ = 1

x
, v = x

30.5 Theorem (Substitution Rule). Let

• a function ϕ have its first derivative continuous in an interval [a, b],

• a function ϕ map an interval [a, b] into an interval J ⊂ R,

• a function f be continuous in an interval J .

Then ∫ b

a

f(ϕ(x)) ϕ′(x) dx =

∫ ϕ(b)

ϕ(a)

f(t) dt.

30.6 Remark. We use the proposition of this theorem for calculation of the integral on the left
side (analogy to the first substitution rule; see Theorem 24.5) as well as for calculation of the in-
tegral on the right side (see Theorem 24.8 concerning the second substitution rule). Calculation
mechanism is the same as when dealing with indefinite integrals, we only have to be aware
of changing the bounds. Moreover, it is necessary to verify that all assumptions of the sub-
stitution theorem hold since – in contrast to indefinite integrals – we have no chance to verify
the correctness of the result by differentiating. Finally, let us note that a substitution is cho-
sen (according to the type of the integrated function) the same as when calculating indefinite
integrals.

30.7 Examples.

1)
∫ π

2

0

sin4 x cos x dx =

∫ 1

0

t4 dt =

[
t5

5

]1

0

=
1

5

sin x = t
cos x dx = dt

(

ϕ(x) = sin x, [a, b] =
[

0,
π

2

]

, J = R, f(t) = t4
)

.
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2)
∫ 2

0

√
4 − x2 dx =

∫ π
2

0

√

4 (1 − sin2 t) 2 cos t dt =

x = 2 sin t
dx = 2 cos t dt

=

∫ π
2

0

4 cos2 t dt = 4

∫ π
2

0

1 + cos(2t)

2
dt = π

(

ϕ(t) = 2 sin t, [a, b] =
[

0,
π

2

]

, J = [−2, 2], f(x) =
√

4 − x2
)

.

Remark:
We could choose, for example, [a, b] =

[
−π, π

2
+ 2π

]
; the choice [a, b] =

[
0, π

2

]
is more

suitable, however, since
√

cos2 t = | cos t| = cos t for every t ∈
[
0, π

2

]
.

31 NUMERICAL CALCULATION OF THE RIEMANN INTEGRAL

31.1 Let us introduce two methods – rectangle and trapezoidal – that are used for approximation
of
∫ b

a
f(x) dx.

Let us divide the interval [a, b] into n subintervals of the same length h = b−a
n

, i.e., let us
choose a partition

D : a = x0 < x1 = x0 + h < . . . < xn = xn−1 + h = b

of the interval [a, b], and denote

y0 = f(x0), y1 = f(x1), . . . , yn = f(xn).

We speak of a rectangle and trapezoidal method when we use the approximations
∫ b

a

f(x) dx ≈ hy0 + hy1 + . . . + hyn−1 =
b − a

n
(y0 + . . . + yn−1) . . . see Fig. 52

and ∫ b

a

f(x) dx ≈ h
y0 + y1

2
+ h

y1 + y2

2
+ . . . + h

yn−1 + yn

2
=

=
b − a

2n
(y0 + 2y1 + 2y2 + . . . + 2yn−1 + yn) . . . see Fig. 53,

respectively.
Now we shall try to calculate an error estimate for the rectangle method on an assumption

that f has its first derivative bounded on [a, b]. We shall employ the mean value theorem
of the integral calculus (see Theorem 28.9):

∫ b

a

f(x) dx =
n∑

k=1

∫ xk

xk−1

f(x) dx =
n∑

k=1

f(ξk)(xk − xk−1) =
n∑

k=1

f(ξk)
b − a

n

96



Fig. 52 Fig. 53

for suitable ξk ∈ (xk−1, xk). Hence, by the Lagrange mean value theorem (see Theorem 14.2),
we get (for suitable dk ∈ (xk−1, ξk))

∣
∣
∣
∣
∣

∫ b

a

f(x) dx − b − a

n

n∑

k=1

f(xk−1)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

b − a

n

n∑

k=1

(f(ξk) − f(xk−1))

∣
∣
∣
∣
∣
=

=
b − a

n

∣
∣
∣
∣
∣

n∑

k=1

f ′(dk)(ξk − xk−1)

∣
∣
∣
∣
∣
≤ b − a

n

n∑

k=1

(

sup
x∈[a, b]

|f ′(x)|b − a

n

)

=

=

(
b − a

n

)2

sup
x∈[a, b]

|f ′(x)|n =
(b − a)2

n
sup

x∈[a, b]

|f ′(x)|.

It can be shown that if the second derivative of the function f is bounded on [a, b], then the error
is of lower order. For instance, in case of the trapezoidal method the error is estimated by
(b−a)3

12n2 sup
x∈[a, b]

|f ′′(x)|.

31.2 Example. Approximate the integral

I :=

∫ 3

2

dx

x − 1

using the trapezoidal method so that the error is at most equal to the number 1
1000

.

SOLUTION. Due to the relations
∣
∣
∣
∣

(
1

x − 1

)′′∣
∣
∣
∣
=

∣
∣
∣
∣

(

− 1

(x − 1)2

)′∣
∣
∣
∣
=

∣
∣
∣
∣
2

1

(x − 1)3

∣
∣
∣
∣
≤ 2

13
holding in [2, 3]

and the above estimate, we know that the number of subintervals n can be chosen so that
1

12n2
2 ≤ 1

1000
.

Hence

n ≥
√

500

3
≈ 12.9.

If we put n = 13, we obtain I ≈ 0.69352. (The exact value is I = [log |x − 1|]32 = log 2 =
0.69314 . . . .)

�
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32 APPLICATIONS OF A DEFINITE INTEGRAL

32.1 Area of a Plane Region

32.1.1 Let us return to the ideas from the beginning of Section 27 and form the problem:
Is it possible to assign a non-negative number P (f ; a, b) to every non-negative and contin-

uous function f on an interval [a, b] so that

i) ∀c ∈ R+ : [f(x) = c in [a, b] ⇒ P (f ; a, b) = c (b − a)],

ii) ∀ξ ∈ (a, b) : P (f ; a, b) = P (f ; a, ξ) + P (f ; ξ, b),

iii) if g is a continuous function and f ≤ g in [a, b], then P (f ; a, b) ≤ P (g; a, b) ?

32.1.2 Exercise. Prove (it is not too difficult) that

• the answer to the above question is yes,

• the number P (f ; a, b) is uniquely determined by i) , ii) and iii) , and

P (f ; a, b) =

∫ b

a

f(x) dx.

32.1.3 Definition. Assume f is a continuous and non-negative in [a, b], where −∞ < a < b <
+∞. By an area of the surface

{
(x, y) ∈ R2 : x ∈ [a, b] ∧ 0 ≤ y ≤ f(x)

}

we mean the number

P (f ; a, b) :=

∫ b

a

f(x) dx.

32.1.4 Examples.

1) Calculate the area O of the half-circle
{
(x, y) ∈ R2 : x2 + y2 ≤ 4 ∧ y ≥ 0

}
.

SOLUTION. O = P (f ;−2, 2), where f(x) :=
√

4 − x2, and therefore

O =

∫ 2

−2

√
4 − x2 dx = 2

∫ 2

0

√
4 − x2 dx = 2π.

�
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2) Calculate the area O of the surface

τ :=
{
(x, y) ∈ R2 : x2 ≤ y ≤ 2 − x2

}
.

SOLUTION. From Fig. 54 it is easily seen that

O = P (2 − x2;−1, 1) − P (x2;−1, 1) =

∫ 1

−1

(2 − x2) dx −
∫ 1

−1

x2 dx =

=

[

2x − x3

3

]1

−1

−
[
x3

3

]1

−1

=
8

3
.

�

32.1.5 Observations.

• If a function f is continuous and even on [−a, a], then
∫ a

−a

f(x) dx = 2

∫ a

0

f(x) dx.

• If a function f is continuous and odd on [−a, a], then
∫ a

−a

f(x) dx = 0.

• If a function f is continuous in R and periodic with a period T ∈ R+, then

∀α ∈ R :

∫ T

0

f(x) dx =

∫ α+T

α

f(x) dx.

32.1.6 Example.
∫ 4

2

sin(πx) dx =

∫ 1

−1

sin(πx) dx = 0

since the function f(x) := sin(πx) is continuous in R, periodic with the period 2, and odd.
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32.2 Length of a Plane Curve

32.2.1 In this subsection by a curve we mean a graph of a continuous function in a closed
bounded interval.

Assume f is a continuous function in an interval [a, b]. We shall be concerned with the ques-
tion: How to define and calculate the length of the curve

k :=
{
(x, y) ∈ R2 : x ∈ [a, b] ∧ y = f(x)

}
?

The problem shall be solved gradually:

• Let α = (α1, α2), β = (β1, β2) be points of the plane R2. By the length of the line seg-
ment with the end points α, β (let us denote such segment by [α; β]) we mean the non-
negative number

λ([α; β]) :=
√

(β1 − α1)2 + (β2 − α2)2.

• Let z0, z1, . . . , zn be mutually distinct points of the plane R2. By the length of the broken

line [z0; z1; . . . ; zn] :=
n⋃

k=1

[zk−1; zk] we mean the number

λ([z0; z1; . . . ; zn]) :=
n∑

k=1

λ([zk−1; zk]).

• Let us return to the function f that is continuous on [a, b]. For every partition

D : a = x0 < x1 < . . . < xn = b

of the interval [a, b], we consider points

z0 = (x0, f(x0)), z1 = (x1, f(x1)), . . . , zn = (xn, f(xn))

and define the number
LD := λ([z0; z1; . . . ; zn]).

32.2.2 Definition. Let f be a continuous function in an interval [a, b], where −∞ < a < b <
+∞. By the length of the curve

{
(x, y) ∈ R2 : x ∈ [a, b] ∧ y = f(x)

}

we mean the number

Λ(f ; a, b) := sup {LD : D is a partition of [a, b]} .

32.2.3 Observation. If a function f is continuous on an interval [a, b], then

0 < Λ(f ; a, b) ≤ +∞.

32.2.4 Examples.
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1) Let the function f be given by f(x) := 2x. Then LD :=
√

5 for all partitions D of the in-
terval [0, 1]. Therefore Λ(f ; 0, 1) =

√
5. (In fact, we calculated the length of the line

segment with the end points (0, 0) and (1, 2).)

2) Let the function f be given by

f(x) :=

{

x2 sin π
2x2 , x 6= 0,

0, x = 0.

Then f is continuous in R (and so also in [0, 1]) and it can be proved that

Λ(f ; 0, 1) = +∞.

32.2.5 Theorem. If a function f has its first derivative continuous in an interval [a, b], then

Λ(f ; a, b) =

∫ b

a

√

1 + (f ′(x))2 dx.

SKETCH OF THE PROOF. If D is a partition of the interval [a, b], then

LD =
∑

k

λ([zk−1; zk]) =
∑

k

√

(xk − xk−1)2 + (f(xk) − f(xk−1))2 =

=
∑

k

√

(xk − xk−1)2 + (f ′(ξk)(xk − xk−1))2 =
∑

k

(√

1 + (f ′(ξk))2 (xk − xk−1)
)

for suitable ξk ∈ (xk−1, xk) (see Theorem 14.2); the bright reader can already see the conse-
quence with the second statement of Remark 28.5.

�

32.2.6 Examples. Let us calculate the length of the curve

1) {

(x, y) ∈ R2 : x ∈
[

−
√

2

2
,

√
2

2

]

∧ y =
√

1 − x2

}

.

SOLUTION.

Λ

(

√
1 − x2;−

√
2

2
,

√
2

2

)

=

∫
√

2
2

−
√

2
2

√

1 +

( −2x

2
√

1 − x2

)2

dx =

∫
√

2
2

−
√

2
2

√

1

1 − x2
dx =

= [arcsin x]

√
2

2

−
√

2
2

=
π

4
+

π

4
=

π

2
.

(We actually calculated the length of the quarter-circle with radius 1.)
�
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2)
{
(x, y) ∈ R2 : x ∈ [−1, 1] ∧ y = cosh x

}
.

SOLUTION.

Λ(cosh;−1, 1) =

∫ 1

−1

√

1 + (cosh′ x)2 dx =

∫ 1

−1

√

1 + sinh2 x dx =

=

∫ 1

−1

cosh x dx = e − 1

e
.

�

32.3 Volume of a Rotational Solid

32.3.1 Definition. Assume f is a continuous and non-negative function on an interval [a, b]. Let
us consider a body Ω obtained by rotating a “curvilinear” trapezium

{
(x, y) ∈ R2 : x ∈ [a, b] ∧ 0 ≤ y ≤ f(x)

}

around the axis x. It can be shown that it is reasonable to calculate (define) the volume of
the rotational solid Ω by

V (f ; a, b) := π

∫ b

a

f 2(x) dx.

32.3.2 Example. Let us calculate the volume of the ball with radius r ∈ R+.

SOLUTION.

V
(√

r2 − x2;−r, r
)

= π

∫ r

−r

(
r2 − x2

)
dx = 2π

∫ r

0

(
r2 − x2

)
dx =

= 2π

(

r3 −
[
x3

3

]r

0

)

=
4

3
πr3.

�

32.4 Area of a Rotational Surface

32.4.1 Definition. Area of a rotational surface created by rotating a curve
{
(x, y) ∈ R2 : x ∈ [a, b] ∧ y = f(x)

}
,

where f is a non-negative function having its derivative continuous in [a, b], around the axis x
is given by

σ(f ; a, b) := 2π

∫ b

a

f(x)
√

1 + (f ′(x))2 dx.
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32.4.2 Example. Let us calculate the area of the rotational surface that is obtained by rotating
the curve

{
(x, y) ∈ R2 : x ∈ [0, 1] ∧ y = x3

}

around the axis x.

SOLUTION.

σ(x3; 0, 1) = 2π

∫ 1

0

x3
√

1 + (3x2)2 dx = 2π

∫ 1

0

x3
√

1 + 9x4 dx =

= 2π
1

36

∫ 10

1

√
t dt =

π

18

[

2
√

t3

3

]10

1

=
π

27

(

10
√

10 − 1
)

.

�

32.4.3 Remark. There are many other applications of the definite integral. For example, in phys-
ics it is possible to calculate static moments and centres of gravity of a curve, curvilinear trapez-
ium, rotational solids, etc., by using the definite integral.

33 IMPROPER INTEGRAL

33.1 Let us consider the following situation: we have a function f that is continuous and non-
negative on an interval [a, +∞) (a ∈ R) and we want to calculate (define) the area of the “un-
bounded surface”

{
(x, y) ∈ R2 : x ∈ [a, +∞) ∧ 0 ≤ y ≤ f(x)

}
.

It is certainly natural to express this area as the limit

lim
t→+∞

P (f ; a, t) = lim
t→+∞

∫ t

a

f(x) dx.

Similarly,

lim
t→b−

t∫

a

f(x) dx

expresses the area of the surface
{
(x, y) ∈ R2 : x ∈ [a, b) ∧ 0 ≤ y ≤ f(x)

}
,

where the function f is continuous, non-negative (and eventually unbounded too) on an interval
[a, b) (a, b ∈ R).

These ideas lead us to the following definitions.

33.2 Definitions. Let −∞ < a < b ≤ +∞ and suppose f is such a function that
∫ t

a
f(x) dx

exists for every t ∈ [a, b). If lim
t→b−

∫ t

a
f(x) dx exists (for b = +∞, we understand the limit as

lim
t→+∞

∫ t

a
f(x) dx), we define

∫ b

a

f(x) dx := lim
t→b−

∫ t

a

f(x) dx.

In case
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• lim
t→b−

∫ t

a
f(x) dx ∈ R, we say that the integral

∫ b

a
f(x) dx converges,

• lim
t→b−

∫ t

a
f(x) dx does not exist or lim

t→b−

∫ t

a
f(x) dx = ±∞, we speak about the divergent

integral.

Analogously we define
∫ b

a
f(x) dx and its convergence when −∞ ≤ a < b < +∞ and

∫ b

t
f(x) dx exists for every t ∈ (a, b].

33.3 Examples.

1)
∫ +∞

1

dx

1 + x2
= lim

t→+∞

∫ t

1

dx

1 + x2
= lim

t→+∞
[arctan x]t1 =

π

2
− π

4
=

π

4
.

2)
∫ 1

0

dx√
1 − x2

= lim
t→1−

∫ t

0

dx√
1 − x2

= lim
t→1−

[arcsin x]t0 =
π

2
.

3)
∫ e

1

dx

x log x
= lim

t→1+

∫ e

t

dx

x log x
= lim

t→1+
[log(log x)]et = 0 − (−∞) = +∞.

33.4 Definition. Let −∞ ≤ a < b ≤ +∞, f be a continuous function in an interval (a, b), and
c ∈ (a, b). Integral

∫ b

a
f(x) dx is said to be convergent if integrals

∫ c

a
f(x) dx and

∫ b

c
f(x) dx

converge. In such case we moreover define
∫ b

a

f(x) dx :=

∫ c

a

f(x) dx +

∫ b

c

f(x) dx.

It can be shown that this definition is independent of the choice of c ∈ (a, b).

33.5 Theorem. Assume f is a continuous function in an interval (a, b), where −∞ ≤ a < b ≤
+∞, and F is an antiderivative of f on (a, b). Then

∫ b

a
f(x) dx converges if and only if

lim
x→b−

F (x) =: F (b−), lim
x→a+

F (x) =: F (a+)

exist finite. Moreover, in such case
∫ b

a

f(x) dx = F (b−) − F (a+) =: [F (x)]ba.

(

F (+∞−) := lim
x→+∞

F (x), F (−∞+) := lim
x→−∞

F (x).

)

SKETCH OF THE PROOF.
∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx = lim
t→a+

∫ c

t

f(x) dx + lim
t→b−

∫ t

c

f(x) dx =

= lim
t→a+

[F (x)]ct + lim
t→b−

[F (x)]tc = F (c) − F (a+) + F (b−) − F (c) = F (b−) − F (a+).

�
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33.6 Example. Think over in detail that

∫ +∞

−∞

dx

x2 + x + 1
=

[
2√
3

arctan

(
2x + 1√

3

)]+∞

−∞
=

2√
3

(π

2
−
(

−π

2

))

=
2π√

3
.

33.7 Theorem (Comparison Criterion). Let

i) −∞ ≤ a < b ≤ +∞,

ii) functions f, g and h be continuous in (a, b),

iii) g(x) ≤ f(x) ≤ h(x) hold for every x ∈ (a, b),

iv) integrals
∫ b

a
g(x) dx and

∫ b

a
h(x) dx converge.

Then the integral
∫ b

a
f(x) dx converges too.

33.8 Corollary. If a function f is continuous in an interval (a, b) and if
∫ b

a
|f(x)| dx converges,

then
∫ b

a
f(x) dx also converges. Moreover, in such case

∣
∣
∣
∣

∫ b

a

f(x) dx

∣
∣
∣
∣
≤
∫ b

a

|f(x)| dx.

(Compare this statement with Theorem 28.7 iii).)

33.9 Example. Let us decide on the convergence of the integral
∫ +∞

π
2

cos x

x2
dx.

SOLUTION. Since

0 ≤
∣
∣
∣
cos x

x2

∣
∣
∣ ≤ 1

x2
for every x ∈

(π

2
, +∞

)

,

and ∫ +∞

π
2

1

x2
dx =

[

−1

x

]+∞

π
2

=
2

π
∈ R,

the examined integral converges.
�

33.10 Exercise. Let α ∈ R. Decide on the convergence of the integrals

1)
∫ 1

0
dx
xα ,

2)
∫ +∞
1

dx
xα ,

3)
∫ +∞
0

dx
xα .
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Index
absolute value, 11
antiderivative, 75
area

of a plane region, 98
of a rotational surface, 102

asymptote of a function
at +∞, 63
at −∞, 63
vertical, 63

Bolzano-Cauchy criterion, 27
bound of a set

lower, 8
upper, 7

curve, 100

derivative, 43
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differential, 44
domain of a function, 10
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arccotangent, 21
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argument of hyperbolic sine, 22
argument of hyperbolic tangent, 22
argument of hyperbolic cosine, 22
basic elementary, 17
bounded, 14

above, 14
below, 14

concave, 62
constant, 18
continuous, 37

from the left, 37
from the right, 37
on an interval, 38

continuously differentiable, 49
convex, 62
cosine, 20
cotangent, 20
cyclometric, 21
decreasing, 12
differentiable, 49
differentiable at a point, 44
Dirichlet, 11
elementary, 23
even, 13
exponential, 17
goniometric, 20
Heaviside, 10
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hyperbolic cosine, 22
hyperbolic cotangent, 22
hyperbolic sine, 22
hyperbolic tangent, 22
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identity, 10
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injective, 14
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power with a natural exponent, 18
power with a negative integer exponent, 18
power with a real exponent, 19
rational, 81
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sine, 20
strictly concave, 62
strictly convex, 62
strictly monotonic, 12
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tangent, 20
zero, 18

graph of a function, 11

infimum of a set, 8
inflection point, 63
integral

convergent, 104
divergent, 104
indefinite, 75
Riemann, 90

lower, 90
upper, 90

interpolation
by cubic spline-functions, 74
linear, 74

length
of a broken line, 100
of a curve, 100
of a line segment, 100

limit
of sequence, 25
of monotonic subsequence, 29
of subsequence, 28
of a function, 34

from the left, 34
from the right, 34

lower integer part of a number, 10

mathematical induction, 5
maximum

of a set, 8
of a function

local, 57
strict local, 57

of a function on a set, 60
method

of bisection, 57
rectangle, 96
trapezoidal, 96

minimum
of a set, 8
of a function

local, 57
strict local, 57

of a function on a set, 60

neighbourhood, 34
annular, 35

number
integer, 6
natural, 5
rational, 6
real, 6

order on R, 6

partition of an interval, 90
passing a limit in inequalities, 32
period of a function, 13
polynomial

Lagrange’s interpolation, 73
Maclaurin, 70
Taylor, 70

range of a function, 10
restriction of a function, 16

sequence, 25
Cauchy, 27
convergent, 25
divergent, 25

set
bounded, 8
bounded above, 8
bounded below, 8
unbounded, 9

stationary point, 59
subsequence, 27
substitution

Euler, 87
sum

lower, 90
upper, 90

supremum of a set, 8
supremum theorem, 9

tangent of a graph of a function, 42
theorem

Cauchy’s mean value, 52
comparison criterion, 105
continuity of a differentiable function, 44
continuity of basic elementary functions,

39
continuity of composition of functions, 38
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continuity of sum, difference, product and
quotient of functions, 38

Darboux’s property of a continuous func-
tion and its derivative, 56

derivative of an inverse function, 47
derivative of composition of functions, 46
derivative of sum, difference, product and

quotient of functions, 45
existence of a differential, 44
existence of an antiderivative, 75
existence of an inverse function, 15
existence of asymptotes at +∞ and −∞,

65
existence of the Riemann integral, 92
integration by parts, 77, 95
l’Hospital’s rule, 52
Lagrange’s mean value, 51
limit of composition of functions, 40
limit of sum, difference, product and quo-

tient of functions, 36
linearity of the indefinite integral, 76
mean value of the integral calculus, 92
necessary condition for existence of a lo-

cal extreme, 58
partial fractions decomposition of a ratio-

nal function, 81
properties of the Riemann integral, 92
Rolle, 51
substitution rule, 95
sufficient condition for existence of a local

extreme, 58
Taylor, 70
the first substitution rule, 78
the second substitution rule, 79
Weierstrass, 60

volume
of a rotational solid, 102
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