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ABSTRACT: The paper provides an overview of the stochastic finite element method (FEM) for the inves-
tigation of the flow in heterogeneous porous materials with a microstructure being a Gaussian random field.
Quantities characterizing the flow are random variables and the aim is to estimate their probability distribution.
The integral mean of the velocity over the domain is one of these quantities, which is numerically analyzed for a
described model problem. The estimation of those quantities is realized using the standard Monte Carlo method
and the multilevel Monte Carlo method. The paper also concerns the use of the mixed finite element method for
the solution of the the Darcy flow and efficient assembling and solving of the arising linear systems.

1 INTRODUCTION

Many natural materials, like geomaterials and bioma-
terials, possess a high level of heterogeneity which
has to be properly treated for understanding and re-
liable modelling of processes in these materials. As
a special case, we shall consider groundwater flow,
which is important in many applications, as e.g. filtra-
tion and waste isolation. The groundwater flow can be
further completed by transport of chemicals and pol-
lutants or connected with deformation of the porous
matrix.

The groundwater flow can be described by the
boundary value problem

−div(k∇p) = 0 in Ω
p = p̂ on ΓD

(−k∇p) · n = 0 on ΓN ,
(1)

where p is the pore (water) pressure, k is permeability,
u=−k∇p is the Darcy’s velocity, p̂ is a given Dirich-
let type boundary condition on ΓD ⊂ ∂Ω and no flow
is assumed as the Neumann type boundary condition
on ΓD ⊂ ∂Ω, n is the unit outer normal to ∂Ω.

We shall consider a two field form of the above
boundary value problem with two basic variables p :
Ω→ R1 and u : Ω→ Rn

k−1u+∇p = g
div(u) = f

}
in Ω

p = p̂ on ΓD
u · n = un = 0 on ΓN .

(2)

We will assume that k = k(x,ω) is a random vari-
able, x ∈ Ω and ω ∈ S. Here S is a sample space
equipped by a suitable probability model with given
parameters. Then the model outputs as p, u and an-
other quantities J(p, u), e.g. the averages

〈∇p〉 =
1

|Ω|

ˆ

Ω

∇p (3)

and

〈u〉 =
1

|Ω|

ˆ

Ω

−k∇pu (4)

will be also random variables and we will be inter-
ested in their characteristics as the mean (expectation)
E and variance V.

2 STOCHASTIC MICROSTRUCTURE

The permeability k = k(x,ω) can be considered as a
random field in the domain Ω or in selected points
within Ω. Especially, we shall assume that

ln(k(x, ·)) = c1φ, φ ∈ N(µ,σ2), (5)

where N(µ,σ2) denote the normal distribution with
the mean µ and variance σ2. This lognormal character
of permeability is supported by experimental tests on
rock as well as experimentally found logarithmic re-
lation between permeability and porosity, see (Nelson



et al. 1994, Freeze 1975). Thus φ in (5) could be in-
terpreted as the porosity which gives to (5) a physical
meaning.

IfX ∈Rn is a random field, such thatXi ∈N(0,1),
then the random field k connected with selected points
x(i) ∈ Ω, i = 1, . . . , n, can be generated as

ln(k) = c1(σX + µ), (6)

i.e. k = ec1µec1σX . For numerical experiments we
shall use c1 = 1, µ = 0, i.e.

k = eσX . (7)

In this case the components of k have lognor-
mal distribution with the mean eσ

2/2 and variance(
eσ

2 − 1
)
eσ

2 .
The random field X can be further smoothed by

correlation, which provides the correlated random
field Xc. The correlation is frequently described as an
exponential expression involving a correlation length
λ, e.g.

c(x, y) = c(Xc(x),Xc(y))

= σ2exp (−‖x− y‖/λ) . (8)

Different methods can be used to generate the cor-
related random field. The Choleski factorization of
the correlation matrixC is probably the most straight-
forward one and will be used within the experiments
in this paper. Further methods as a technique based
on the discrete Fourier transform can be found in the
literature, see e.g. (Lord, Powell, & Shardlow 2014,
Powell 2014).

Given the set of selected points x(i) ∈ Ω, i =
1, . . . , n, we can define the correlation matrix C by

C = E((X −E(X))(X −E(X))T ) =

= E(XXT )−E(X)E(XT ) (9)

In the case of E(X) = 0, it provides

C = E(XXT ), Cij = c(x(i), x(j)). (10)

Theorem 1. (Generation of the correlated random
field). Let C = LLT be the Choleski factorization of
C, X be an uncorrelated random field, Xi ∈ N(0,1).
Then Xc = LX is the correlated random field with
correlation matrix C. We can write Xc ∈ N(0,C).

Proof. IfXi are uncorrelated and have zero mean and
unit variance for any i, then E(XiXj) = δij and there-
fore E(XXT ) = I . The correlation matrix is SPD
and therefore the Choleski factorization exists. For
Xc = LX , where L is the Choleski factor, it holds

E(Xc(Xc)T ) = E(LXXTLT )

= LE(XXT )LT

= LLT = C (11)

Note that the identity E(LXXTLT ) = LE(XXT )LT

follows from the linearity of the expectation operator
E.

2.1 Model problem

As a model problem, we shall consider the ground-
water flow given by equation (1) on the unit square
Ω = 〈0, 1〉 × 〈0, 1〉 with the specific boundary con-
ditions - the pressure difference in x1 direction, see
Figure 1.

-

6x2

p̂ = 1

no flow

Ω = 〈0,1〉2

no flow
ûn = 0

p̂ = 0

x1

Figure 1: Test problem with pressure difference in x1 direction

We shall be interested in different quantities as e.g.

• u(0.5, 0.5),

• keff =
´ 1

0
u(1, x2)dx2,

• 〈u〉 = 1
|Ω|

´
Ω
u = −1

|Ω|

´
Ω
k∇p(i).

For the realization of this calculations the mixed FEM
method can be used, see section 4. If the permeability
k will be a random field in Ω, then these quantities
will be also random variables and we shall compute
their characteristics like the expectation and variance.

2.2 Visualization of the generated fields

For numerical experiments with the model prob-
lem, we use different values σ ∈ {1, 2, 4} and λ ∈
{0.3, 0.1}.

The following figures show the visualization of the
generated random field k for six combinations of pa-
rameters σ and λ value. All of the Gaussian random
fields were created from the same random vector X ,
where Xi ∼ N (0,1), so we can observe the effect of
the parameters σ and λ changes on the material mi-
crostructure.

The Figures 2, 3, 4, 5, 6, 7 show that the changes of
the parameter σ affects only the logarithmic scale of
the values, which is caused by the linear relation be-
tween logk and σ2. The influence of the parameter λ
can be observed in a smoother material with growing
λ.



Figure 2: Random field for parameters: σ = 1, λ = 0.1

Figure 3: Random field for parameters: σ = 2, λ = 0.1

Figure 4: Random field for parameters: σ = 4, λ = 0.1

Figure 5: Random field for parameters: σ = 1, λ = 0.3

Figure 6: Random field for parameters: σ = 2, λ = 0.3

Figure 7: Random field for parameters: σ = 4, λ = 0.3

3 MONTE CARLO METHODS

Consider the Darcy flow model problem. We are in-
terested in the estimation of the quantities

u(0.5,0.5), keff and 〈u〉 . (12)

In the case of the Monte Carlo (MC) simulations, we
consider this quantities as random variables.

3.1 Standard Monte Carlo method

Using the standard MC method, the expectation E(φ)
of a random variable φ is estimated as a sample aver-
age

1

N

N∑
n=1

φ(n), (13)

where φ(n) for n ∈ {1, . . . ,N} are random samples of
φ. The estimated probability distribution of the ran-
dom variables is also described by the sample stan-
dard deviation, the estimated probability density func-
tion (pdf) and cumulative distribution function (cdf).

The variance of the MC estimator is calculated as

VMC =
1

N
s2, (14)

where s is the sample standard deviation.



The experiments were performed with the follow-
ing parameters: grid size: 200 × 200, σ ∈ {1,2,4},
λ ∈ {0.1,0.3}, number of experiments: 2 · 104.

The following tables show the estimated sample av-
erage and sample standard deviation for the random
variables ux1(0.5, 0.5), ux2(0.5, 0.5), 〈u〉x1 and 〈u〉x2 .
The values after the ± symbol correspond to the 95%
confidence interval for the estimated value. For the
random variable keff the same estimation as for 〈u〉x1
was obtained. The graphs in Figure 8 show the pdf
and cdf estimation for the random variable 〈u〉x1 .

Table 1: Sample average of ux1(0.5, 0.5)
λ = 0.3 λ = 0.1

σ = 1 1.135± 0.0132 1.0409± 0.0096
σ = 2 1.7244± 0.055 1.1649± 0.0251
σ = 4 11.9402± 1.8383 1.9334± 0.1447

Table 2: Sample standard deviation of ux1
(0.5, 0.5)

λ = 0.3 λ = 0.1

σ = 1 0.9504± 0.0093 0.6902± 0.0068
σ = 2 3.9656± 0.0389 1.8104± 0.0177
σ = 4 132.6336± 1.2999 10.4422± 0.1023

Table 3: Sample average of ux2
(0.5, 0.5)

λ = 0.3 λ = 0.1

σ = 1 0.0008± 0.0062 −0.0006± 0.0058
σ = 2 −0.0276± 0.03 0.002± 0.0169
σ = 4 0.512± 1.1175 0.0173± 0.0968

Table 4: Sample standard deviation of ux2
(0.5, 0.5)

λ = 0.3 λ = 0.1

σ = 1 0.4492± 0.0044 0.4201± 0.0041
σ = 2 2.1625± 0.0212 1.2215± 0.012
σ = 4 80.627± 0.7902 6.9851± 0.0685

Table 5: Sample average of 〈u〉x1

λ = 0.3 λ = 0.1

σ = 1 1.1228± 0.0083 1.018± 0.0032
σ = 2 1.6821± 0.0324 1.0983± 0.0079
σ = 4 10.0822± 0.9339 1.7447± 0.0409

Table 6: Sample standard deviation of 〈u〉x1

λ = 0.3 λ = 0.1

σ = 1 0.6024± 0.0059 0.2335± 0.0023
σ = 2 2.34± 0.0229 0.5695± 0.0056
σ = 4 67.3806± 0.6604 2.9495± 0.0289

Table 7: Sample average of 〈u〉x2

λ = 0.3 λ = 0.1

σ = 1 0.0005± 0.0015 0.0001± 0.001
σ = 2 −0.003± 0.0062 −0.0002± 0.0022
σ = 4 −0.02± 0.1623 −0.0023± 0.0109

Table 8: Sample standard deviation of 〈u〉x2

λ = 0.3 λ = 0.1

σ = 1 0.1098± 0.0011 0.069± 0.0007
σ = 2 0.4499± 0.0044 0.1596± 0.0016
σ = 4 11.7075± 0.1147 0.7865± 0.0077

3.2 Multilevel Monte Carlo method

For the mean value E(φL) of a random variable
φ = φL we can write

E(φL) = E(φ0) +
L∑
l=1

E(φl − φl−1). (15)

This leads to the multilevel Monte Carlo (MLMC) es-
timator

E(φL)≈ 1

N0

N0∑
n=1

φ
(n)
0 +

L∑
l=1

1

Nl

Nl∑
n=1

(
φ

(n)
l − φ

(n)
l−1

)
,(16)

see (Cliffe, Giles, Scheichl, & Teckentrup 2011,
Barth, Schwab, & Zollinger 2011). For different le-
vels l ∈ {1, . . . ,L} the values φ(n)

l − φ
(n)
l−1 are inde-

pendent. However the values φ(n)
l and φ(n)

l−1 for specific
n ∈ {1, . . . ,N} are correlated.

The variance of the MLMC estimator can be calcu-
lated as

VMLMC =
L∑
l=0

1

Nl

s2
l , (17)

where sl is the sample standard deviation on the level
l.

This approach was applied to the model problem
with the grid size d× d. We were interested in the ran-
dom variable φ = φL = 〈u〉(d)

x1
, i.e. the integral mean

of the velocity over the 〈0,1〉 × 〈0,1〉 domain calcu-
lated for the grid size d× d. Samples of the random
variable φL−1 = 〈u〉(d/2)

x1
are calculated as the integral

mean of the velocity for the grid d
2
× d

2
, etc.

There are different ways of calculating the coarse
grid approximation φl−1 of φl in order to achieve
strong correlation between this two random variables
(high correlation between φl−1 and φl leads to low
variance on the MLMC level l). In this paper we de-
scribe two possible procedures for the coarse grid ap-
proximation.

Procedure 1: Coarse grid approximation preserving
the Gaussian random field distribution
The samples φ(n)

l and φ(n)
l−1 should be correlated, there-

fore it is necessary to determine the way of φ(n)
l−1 cal-

culation. The value of φ(n)
l corresponds to a specific

sample k(d) of the Gaussian random field, which was



Figure 8: Estimated pdf and cdf of 〈u〉x1
for λ = 0.1 (left) and λ = 0.1 (right)

obtained for a random vectorX , whereXi ∼N (0,1),
i ∈ {1, . . . , d2}. To obtain the value φ(n)

l−1 we first cre-
ate a coarse material k(d/2) from a vector Y of length
1
4
d2, which is calculated from the vectorX values. For

example

Y1 =
1

2
(X1 +X2 +Xd+1 +Xd+2) (18)

(weighted arithmetic mean), etc. This approach en-
sures that the values Yi follow the N (0,1) distribu-
tion, therefore the obtained material k(d/2) is also a
Gaussian random field. The value of φ(n)

l−1 is then cal-
culated on the coarse grid and remains correlated with
the value of φ(n)

l .
The MLMC method was tested on the model prob-

lem with grid size 200×200, therefore is was possible
to use three coarser grids of dimensions 100 × 100,
50×50 and 25×25. The numbers of samplesNl to be
performed on specific levels were calculated from a
preliminary simulation run. In this run the same num-
ber of samples was performed on each level and then
the values of computation time Tl and sample stan-
dard deviation sl were estimated for each level. The
values ofNl were then calculated according to (Cliffe,

Giles, Scheichl, & Teckentrup 2011) as N ·
√

s2l
Tl
,

where N is a constant common to all the levels.
The table 9 presents the results of the MLMC

method that can be compared with the MC method

results (table 5).

Table 9: MLMC method results for 〈u〉x1

λ = 0.3 λ = 0.1

σ = 1 1.1302± 0.0039 1.0189± 0.0007
σ = 2 1.6744± 0.0189 1.1003± 0.0021
σ = 4 9.6647± 0.5259 1.745± 0.0152

The MLMC results were calculated with different
number of samples (i.e. different computation time)
than the MC results, therefore we propose the follow-
ing indicator for comparison of the efficiency. The ef-
ficiency of the MLMC estimator in comparison to the
MC estimator will be calculated as

VMC

VMLMC

· TMC

TMLMC

, (19)

where TMC is the total time of the MC simulation and
TMLMC time of the MLMC simulation, see the table
10.

Table 10: MLMC/MC efficiency calculated via (19)
λ = 0.3 λ = 0.1

σ = 1 1.9382 7.7148
σ = 2 1.1841 5.7974
σ = 4 1 3.0011

The value 1 for σ = 4 and λ = 0.3 in table 10 is
caused by the fact that in this case it was evaluated



in the preliminary run, that only one level should be
used, i.e. it is the standard MC method. In the remain-
ing cases all of the 4 levels were used.

The table 11 shows the values of s2
l on each of the

levels l ∈ {1, . . . ,4} calculated in the preliminary run
(level l = 1 corresponds to the coarsest grid, while
the remaining values present the difference between
the fine and coarse grid on the given level). We used
these values to calculate the numbers of samples to be
executed on each of the MLMC levels.

Table 11: Variance on each MLMC level
σ λ l = 4 l = 3 l = 2 l = 1

1 0.3 4.4·10−2 4.1·10−2 3.6·10−2 0.35
0.1 1.4·10−3 1.2·10−3 1·10−3 5.4·10−2

2 0.3 1.4 0.84 1 4.5
0.1 1.1·10−2 1·10−2 1.1·10−2 0.29

4 0.3 1·105 5.1·103 9.3·103 2.3·104

0.1 0.63 0.76 0.91 4.5

The following table shows the ratio of the numbers
of samples, that were used on different levels.

Table 12: Ratios of Nl/N4 values for the six combinations of
parameters
σ λ N4 N3 N2 N1

1 0.3 1 2.23 4.70 33.86
0.1 1 2.12 4.53 75.15

2 0.3 1 1.73 4.35 20.97
0.1 1 2.19 5.04 60.55

4 0.3 1 - - -
0.1 1 2.51 6.21 32.24

Procedure 2: Coarse grid approximation as
arithmetic mean of correlated random field
In this case we use a similar approach as in the proce-
dure 1, but the key difference is that the smoothing is
applied to the correlated values,

Y c
1 =

1

4

(
Xc

1 +Xc
2 +Xc

d+1 +Xc
d+2

)
(20)

(arithmetic mean). A disadvantage is that this coarse
grid approximation is not the same random field, so in
the lower MLMC levels we always need to construct a
new covariance matrix and its Choleski factorization.
The new covariance matrix is created by averaging of
elements of the fine grid covariance matrix according
to the fine grid to coarse grid elements mapping, this
construction comes from the linearity of the covari-
ance. This disadvantage is compensated by very high
correlation between fine grid and coarse grid approx-
imation.

In the figure 9 we show an example of coarse grid
approximations for both procedures.

The table 13 presents the results obtained for 〈u〉x1
(including 95% confidence interval). The calculated
efficiency compared to the MC estimator via formula
(19) can be seen in the table 14.

Table 13: MLMC method results for 〈u〉x1

λ = 0.3 λ = 0.1

σ = 1 1.1298± 0.0011 1.0189± 0.0004
σ = 2 1.6945± 0.0044 1.1001± 0.0012
σ = 4 10.3715± 0.2517 1.7434± 0.0087

Table 14: MLMC efficiency calculated via (19)
λ = 0.3 λ = 0.1

σ = 1 101.2564 90.7969
σ = 2 87.3758 72.5988
σ = 4 23.1090 38.6652

The table 15 shows the values of s2
l on each of the

levels l ∈ {1, . . . ,4} calculated in the preliminary run.

Table 15: Variance on each MLMC level
σ λ l = 4 l = 3 l = 2 l = 1

1 0.3 4.4·10−8 1.3·10−6 6.2·10−6 0.36
0.1 1.1·10−7 1.9·10−6 9.6·10−6 5.4·10−2

2 0.3 7.5·10−6 2.0·10−4 1.0·10−3 5.5
0.1 5.1·10−6 9.9·10−5 4.1·10−4 3.1·10−1

4 0.3 1.4·10−1 1.7 6.2·101 1.1·104

0.1 2.1·10−3 2.0·10−2 1.2·10−1 7.2

The following table shows the ratio of the numbers
of samples, that were used on different levels. In all
the six cases at least three levels were used.

Table 16: Ratios of Nl/N4 values for the six combinations of
parameters
σ λ N4 N3 N2 N1

1 0.3 1 12.20 60.45 31410.66
0.1 1 9.66 49.56 9127.92

2 0.3 1 11.56 47.65 10186.95
0.1 1 9.66 47.36 2942.09

4 0.3 1 11.32 41.83 2550.90
0.1 1 8.04 38.23 906.28

Fine grid k(150)

Coarse grids k(75) (left procedure 1; right procedure 2)
Figure 9: Comparison of coarse grid approximations



4 MIXED FEM DISCRETIZATION AND
SOLUTION

The groundwater flow (1) can be implemented by
the mixed finite element method, e.g. in the way de-
scribed in (Cliffe, Graham, Scheichl, & Stals 2000,
Blaheta, Hasal, Domesová, & Béreš 2014). The first
advantage of the mixed formulation is in more accu-
rate approximation of both pressures and velocities.
The random permeability field sampling then requires
repeated assembling and solving of the mixed FEM
system, which has the following saddle point struc-
ture

Mu +BTp = G
Bu = F

(21)

Note that only the velocity mass matrix M depends
on realization ω ∈ S,

Mij = Mij(ω) =

ˆ
Ω

k(ω)−1ΦjΦi dΩ, (22)

where Φj,Φi are basis functions in the lowest order
Raviart-Thomas space. The repeated assembling of
the matrix

A =

[
M BT

B 0

]
(23)

is therefore restricted to the pivot block. A fast assem-
bling of both M and B is implemented in the RT1
code, see (Blaheta, Hasal, Domesová, & Béreš 2014).

As a solution of the system, the discretized pressure
p and velocity u is obtained. The following graphs at
figures 10, 11 and 12 show the visualization of the so-
lution for an example given by the Gaussian random
field 3.

Figure 10: Discretized pressure p

Figure 11: Discretized velocity u (first coordinate)

Figure 12: Discretized velocity u (second coordinate)

When repeatedly solving the system (21) by a di-
rect method, the benefit of B not dependent on sam-
pling is not exploited. The use of an iterative solu-
tion method, such as MINRES or GMRES, with block
preconditioner, provides the chance to save some ef-
fort as only the block corresponding to M is chang-
ing. It is the case the following preconditioners

P1 =

[
M̃ +BTW−1B ζBT

0 W

]
, (24)

with M̃ being a suitable approximation to M and W
being a block independent on sampling, e.g. W = 1

r
I ,

where r is a (large) regularization parameter, ζ ∈
{0,1,2}. Special cases are M̃ being a mass matrix for
the mean value of the permeability k, M̃ = trace (M)

trace (I)
I

and W = BBT , when BTW−1B becomes a projec-
tion.

Other possibilities are preconditioners for the trans-
formed system with the matrix

A− =

[
M BT

−B 0

]
(25)

as the HSS preconditioner

P2 =

[
M + αI 0

0 αI

][
αI BT

−B αI

]
(26)

or relaxed HSS preconditioner

P3 =

[
M 0
0 αI

][
αI BT

−B 0

]
(27)

with a suitable parameter α.



5 CONCLUSIONS

The article presents the first results of the authors in
the field of the stochastic partial differential equations
(PDEs) or stochastic FEM methods. The simple and
multilevel Monte Carlo methods are used as tools for
stochastic simulations.

We study the mixed FEM calculation of the Darcy
flow problem with stochastic material coefficients.
We focused on the characterizations of the velocity,
especially on the integral average of velocity over the
domain and the velocity in the middle of the the do-
main.

The MC approach was used for the estimation of
the expected value, variance and distribution of the
studied random variables.

The MLMC method was used for the more effi-
cient estimation of the expected value of the random
variable 〈u〉x1 . We presented two approaches to the
coarse grid approximation, the first one is straightfor-
ward and preserves the Gaussian random distribution
on the coarse grid, but was inefficient due to low cor-
relation between the fine and coarse grid approxima-
tion. The second one suffers from the more difficult
sample generation on the coarse grids. Nevertheless
the second approach was more efficient than the first
one, according to tables 10 and 14. Depending on the
problem parameters λ and σ we achieved variance re-
duction from about 23× to 101×.

The work is in progress, we plan to use a differ-
ent approach to the Gaussian random field genera-
tion based on the Karhunen-Loève (K-L) decompo-
sition. This will allow us to solve the problem on
larger grids and as well it provides a different way
of using the MLMC method (MLMC levels will cor-
respond to the levels of the K-L decomposition). The
K-L decomposition also provides a different approach
to the stochastic PDEs solving by e.g. the collocation
method or the stochastic Galerkin method.
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