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ABSTRACT: Credit risk refers to the risk of losses due to unexpected credit events, as a default of a coun-
terparty. The modelling and controlling of credit risk is a very important topic within banks. Very popular and
frequently used tools for modelling credit risk are multi-factor Merton models. Practical implementation of
these models requires time-consuming Monte Carlo (MC) simulations, which significantly limits their usability
in daily credit risk calculation. In this paper we present acceleration techniques of Merton model Monte Carlo
simulations, concretely parallel GPU implementation and importance sampling (IS) employment. As the impor-
tance sampling distribution we choose the Gaussian mixture model and for calculating the IS shifted probability
distribution we use the cross-entropy (CE) method. The speed-up results are demonstrated using portfolio value
at risk (VaR) and expected shortfall (ES) calculation.

1 INTRODUCTION

In this paper we present a new approach to the impor-
tance sampling (IS) in the multi-factor Merton model.
In the standard IS approach the normal distribution is
used as a family of the IS distributions. This approach
results in a decent variance reduction but a certain
level of degeneracy of probability can be observed.
The observed degeneracy of probability is caused by a
relatively high difference between the IS distribution
chosen from the normal distribution family and the
optimal IS distribution and it also limits the achiev-
able variance reduction. As a correction to this prob-
lem we use the Gaussian mixture model for the IS
family of distributions. This new approach limits the
level of the observed degeneracy of probability as
well as increases the variance reduction.

The other significant part of this paper is the imple-
mentation of discussed models and IS procedures via
CUDA on the the GPU devices. The GPU implemen-
tation of the model enables very fast calculation of the
observed parameters (VaR or ES) with or without the
use of the IS.

First we present a short recapitulation of the multi-
factor Merton model and the terminology used, then
we state a detailed specification of the tested model.
For a deeper understanding of the Merton model see
(Lütkebohmert 2008).

1.1 Briefly about multi-factor Merton model

Let assume we have a portfolio of N risky loans (ex-
posures) indexed by n = 1, . . . ,N . We are interested
in the possible defaults, which can occur in the fixed
time interval [0, T ]. Let Dn denote the default indica-
tor of an exposure n, which can be represented as a
Bernoulli random variable taking the values

Dn =

{
1, if the exposure n is in the default
0, otherwise

. (1)

We assume that the probabilities PDn = P(Dn = 1)
are given as a portfolio parameter.

The portion of the exposure n which can be lost in
the time of default is called the exposure at default
denoted by EADn. For simplicity we assume EADn

is constant in the whole time interval [0, T ] and it is
given as the portfolio parameter.

The portion of EADn representing the real loss
in the case of default, is given by a random variable
loss given at default LGDn ∈ [0,1]. The distribution,
the expectation ELGDn and the standard deviation
V LGDn of LGDn are given as the portfolio parame-
ters. The portfolio loss LN is than defined as a random
variable

LN =
N∑
n=1

EADn ·LGDn ·Dn. (2)

Now we can define the value at risk (VaR) as p



quantile (or confidence level) of LN

V aRp(LN) = inf{x ∈ R : P(LN > x) ≤ 1− p}

= inf{x ∈ R : FLN
(x) ≥ p}, (3)

where FLN
(x) is the cumulative distribution func-

tion of LN . And the expected shortfall (ES) as
a conditional tail expectation with the condition
x ≥ V aRp(LN)

ESp(LN) =
1

1− p

ˆ ∞
V aRp(LN )

xP(LN = x)dx

=
1

1− p

ˆ 1

p

V aRu(LN)du. (4)

1.1.1 Exposure correlation factors
In the reasonable portfolio the single exposure’s de-
faults are correlated, let us outline, how the corre-
lation is handled in the Merton model. We assume
that every exposure has a unique owner (obligor). Let
Vn(t) denote n-th obligor’s assets, Sn(t) obligor n eq-
uity and Bn(t) obligor n bond, so

Vn(t) = Sn(t) +Bn(t),0 ≤ t ≤ T. (5)

In the Merton model a default can occur only at the
maturity T , which leads into two possibilities

1. Vn(T ) > Bn(T ) : obligor has sufficient asset to
fulfil debt, Dn = 0

2. Vn(T ) ≤ Bn(T ) : obligor cannot fulfil debt and
defaults, Dn = 1

Let rn denote the n-th obligor’s asset-value log-
return rn = log(Vn(T )/Vn(0)). The multi-factor Mer-
ton model assumptions to resolve correlations be-
tween exposure defaults are:

1. rn depends linearly on K standard nor-
mally distributed risk (systemic) factors X =
(X1, . . . ,XK)

2. rn depends linearly on the standard normally dis-
tributed idiosyncratic term εn, which is indepen-
dent of the systemic factors Xk

3. single idiosyncratic factors εn are uncorrelated

4. asset-value log-return random variable can be
represented as rn = βn · Yn +

√
1− β2

n · εn,

where Yn =
K∑
k=1

αn,kXk represents exposure

composite factor, βn represents exposure sensi-
tivity to systemic risk and weights αn,k repre-
sents dependence on single factors Xk

5. rn has standard normal distribution if condition
K∑
k=1

α2
n,k = 1 is satisfied

Variables αn,k and βn are assumed as a given portfolio
parameters.

When PDn is given and rn has the standard
normal distribution, one can calculate threshold
cn = Φ−1(1− PDn) so default indicator can be rep-
resented as

Dn = rn > cn. (6)

1.1.2 Monte Carlo simulation of multi-factor
Merton model

With previous knowledge and full portfolio specifica-
tion we can now approximate the portfolio V aR and
ES via the Monte Carlo simulations. Single exposure
defaults can be directly calculated from the systemic
and the idiosyncratic shocks X(i)

k and ε(i)
n drawn from

the standard normal distribution N(0,1), upper index
(i) indicate index of the Monte Carlo sample. With the
generated random LGD

(i)
n we can calculate the total

random scenario loss

L
(i)
N =

N∑
n=1

EADn ·LGD(i)
n ·D(i)

n . (7)

The Monte Carlo simulation consisting
of M trials approximate portfolio V aR as
V aRp(LN) = min

{
L

(i)
N : ψ(L

(i)
N ) ≤ (1− p) ·M

}
=

= L
[dM ·pe]
N , (8)

where ψ
(
L

(i)
N

)
=

M∑
j=1

(L
(j)
N >L

(i)
N ), L[j]

N is the j-th loss

in the ascendant sorted loss sequence L(i)
N , and ES as

ESp(LN) =
1

M − dM · pe
·

M∑
j=dM ·pe

L
[j]
N . (9)

1.2 Tested portfolio structure specification

The most important part of the multi-factor Merton
model is the structure of the portfolio (exposure de-
pendence on the risk factors). To obtain a portfolio
with a realistic behaviour we use a natural risk factor
construction considering the region-industry (sector)
and the direct (hierarchy) links between exposures.

Hierarchy links are represented by hierarchy sys-
temic factors (HSF), which can be interpreted as di-
rect links between the exposures (for example two
subsidiary companies with a common parent com-
pany), each of these systemic factors usually has im-
pact only on a small fraction of the portfolio ex-
posures. Sector links are represented by sector sys-
temic factors (SSF), which can be interpreted as in-
dustrial and regional factors, each of these systemic
factors usually impacts majority of the portfolio ex-
posures. Therefore every exposure’s asset-value log-
return random variable rn depends on two composite



factors Hn (hierarchy composite factor) and Sn (sec-
tor composite factor) according to following formula:

rn = gn ·Hn +
√

1− g2
n · εn, (10)

rn =
√

1− ω2
n · Sn + ωn · rn, (11)

where Hn is composite factor of hierarchy correlation
risk factors (HSF), gn ∈ (0,1) is group correlation co-
efficient with composite HSF, Sn is composite factor
of sector correlation risk factors (SSF), ωn ∈ (0,1) is
idiosyncratic weight towards composite SSF and εn is
exposure idiosyncratic factor.

Let KS denote the number of SSF and KH denote
the number of HSF. We assume that, there are corre-
sponding KS sector composite factors and KH hier-
archy composite factors. Links (correlation) between
single composite factors are represented differently
for HSF and SSF.

In the case of HSF we assume links between sys-
temic factors take form of a dependence tree struc-
ture. Let H(1), . . . ,H(KH) denote the unique compos-
ite factors of HSF corresponding to KH . Composite
factors are ordered according to a given tree structure
and their calculation is given recursively, where every
node H(k) has at most one parent H(l) and specified
correlation coefficient gHk , see formula (12).

H(k) =

{
gHk H(l) +

√
1− (gHk )2εHk , p(k) = l

εHk , p(k) = ∅ , (12)

where εHk denotes idiosyncratic term for HSF k and
p (k) is parent mapping function. Example of calcu-
lating HSF composite factors can be seen in Figure 1.

Figure 1: Example of group correlation tree

In the case of SSF we assume links between sys-
temic factors take form of the full correlation matrix.
Let S(1), . . . , S(KS) denote unique composite factors
of SSF. Single composite factors S(1), . . . , S(KS) are
defined by a given correlation matrix Σ and are calcu-
lated as S(1)

...
S(KS)

 =
√

Σ ·

 εS1...
εSKS

 , (13)

where εSk denote idiosyncratic term for SSF k.
All of the aforementioned parameters gn, ωn, gHk ,

HSF tree structure and correlation matrix Σ are given
as portfolio parameters and can be interpreted in

the standard form of αn,k and βn parameters, where
K∑
k=1

α2
n,k = 1 is satisfied.

For tested model the LGDs are considered from the
Beta distribution with mean and standard deviation
given by portfolio parameters.

For a better illustration in the further text we will
use normalized EADn :

N∑
k=1

EADk = 1, (14)

which express EADn as a portion of the total portfo-
lio exposure.

2 EMPLOYING IMPORTANCE SAMPLING

As mentioned before, we are interested in the VaR and
the ES of the observed portfolio loss random variable
LN . The Monte Carlo approximation of these values
is highly sensitive to the stated confidence level p,
which is usually very close to 1. In our study we use
the confidence levels of 0.99995,0.9995 and 0.995.
For example when the confidence level is 0.99995 the
MC simulation of 106 samples provides only 50 sam-
ples with the information about VaR/ES.

One of the straightforward ways to increase the
number of samples in the region of VaR/ES calcu-
lation is to change the distribution of the portfolio
loss random variable so called the importance sam-
pling (IS) method. The principle of the IS can be eas-
ily demonstrated on the ES calculation. The ES can
be represented as the conditional mean or mean of the
specific function

Hp(x) =

{
0, x < V aRp(LN)
x

1−p , x ≥ V aRp(LN)
(15)

ESp(LN) = Ef (Hp(LN)) =

=

ˆ

Ω

Hp(L
∗
N(y)) · f(y)dy, (16)

where y are values of the random vector Y of all
random variables contributing to LN (idiosyncratic
terms, LGDs), Ω is the set of the all possible values
of y, f(y) is the joint probability density function of
Y , L∗N(y) : L∗N(Y ) = LN is the function mapping y
to corresponding value of LN and Ef is mean under
the pdf f(y). If we use the IS with the new probability
distribution of LN given by pdf g(y) we can calculate
original ES as

Eg
(
Hp

(
L∗N(Y )

)
· f(Y )

g(Y )

)
=



=

ˆ

Ω

Hp (L∗N(y)) · f(y)

g(y)
· g(y)dy =

= Ef (Hp(LN)) = ESp(LN). (17)

The ratio of probability density functions
w(y) := f(y)

g(y)
is called the the likelihood ratio (LR).

From formula (17) we can see the natural requirement
on g(y) :Hp (L∗N(y)) · f(y)> 0⇒ g(y)> 0. Formula
(17) also provide the MC estimation of the ES when
using the IS

ESgp(LN) =
1

N

M∑
i=1

Hp

(
L∗N
(
Yi
))
·w(Yi) =

=

M∑
i=1

L∗N(Yi)
(
L∗N(Yi) ≥ V aRg

p(LN)
)
w(Yi)

M · (1− p)
, (18)

where Yi is i-th sample of Y ∼ g(y) and M is
the number of random samples. It remains to define
V aRg

p(LN) as

V aRg
p(LN) = min

{
L∗N(Yi) : ψ

(
Yi
)
≤ (1− p) ·M

}
,

(19)

where ψ
(
Yi
)

:=
M∑
j=1

(
LN(Yi) > L∗N(Yj)

)
·w(Yj).

2.1 Cross-Entropy method

We already know the principles of the IS and have the
IS estimators of VaR and ES, but a new IS pdf g(y) is
still unknown. The most straightforward method for
the estimation of g(y) is to minimize the variance of
the ES IS estimator:

g(y) = arg min
v(y)∈X

{
S2
v

(
H
(
L∗N
(
Y
)) f (Y )
v
(
Y
))} , (20)

where S2
v (X) denote variance according to pdf v (y)

and X is an arbitrary system of the pdfs fulfilling the
condition v(y) : Hp (L∗N(y)) · f(y) > 0⇒ v(y) > 0.
This approach is called variance minimization (VM)
method. Usually the VM method leads to very diffi-
cult problems, which have to be solved numerically.
Another approach to obtain the IS pdf g(y) is the
cross-entropy (CE) method. The CE method similarly
to the VM method solve a minimization problem, but
instead of minimizing the variance it minimize the
Kullback-Leibler (KL) divergence D(g∗, v) with the
optimal (zero variance) IS distribution

g∗ (y) =
|Hp (L∗N (y))| · f (y)

Ef (|Hp (LN)|)
: (21)

g(y) := arg min
v(y)∈X

{D(g∗(y), v(y))} =

= arg min
v(y)∈X

{ˆ
Ω

g∗(y) ln
g∗(y)

v(y)
dy

}
=

= arg max
v(y)∈X

{ˆ
Ω

|Hp(L
∗
N(y))|f(y) lnv(y)dy

}
. (22)

To obtain a solvable problem, we need to add some
constrain to the system of pdfs X . Usual choice is a
parametrized family of pdfs:

X := {v (x; θ)∀θ ∈ Θ} , (23)

where v (x; θ) is pdf taking vector of parameters θ
and Θ := {θ : Hp (L∗N(y)) · f(y) > 0⇒ v(y; θ) > 0}.
Obtained minimization problem is usually concave,
therefore we can replace the optimization problem
with the following equation

θ :

ˆ

Ω

|Hp(L
∗
N(y))|f(y)∇θ lnv(y; θ)dy = 0. (24)

To solve the problem (24) we use the Monte Carlo
simulation:

θ :
M∑
i=1

|Hp(L
∗
N(Yi))|∇θ lnv(Yi; θ) = 0, (25)

this is called the stochastic counterpart (SC) of the
problem (24). Note that (25) is usually a system of
non-linear equations, but for some pdfs results into an
explicit solution.

In this paper we focus mainly on the IS of id-
iosyncratic terms of the systemic factors (HSF and
SSF). Therefore to simplify the notation of the ran-
dom vector Y of all random variables contributing to
LN will be in further text understood as a vector of
KS +KH independent standard normal random vari-
ables. LGDs or other random variables will be still
part of Y , but the IS won’t affect them.

Now if we consider X as a system of KS + KH

independent normally distributed random variables
parametrized by mean and variance, we will get the
following solution of problem (25):

µ̃j =

M∑
i=1

|Hp(L
∗
N(Yi))|

(
Yi
)
j

M∑
i=1

|Hp(L∗N(Yi))|
, ∀j, (26)

σ̃j
2 =

M∑
i=1

|Hp(L
∗
N(Yi))|

((
Yi
)
j
− µ̃j

)2

M∑
i=1

|Hp(L∗N(Yi))|
, ∀j, (27)

where µ̃j, σ̃j
2 is the SC approximation of

mean,variance of j-th component of Y and
(
Yi
)
j

is
j-th component of i-th MC sample.



2.2 Gaussian mixture model

In the end of previous part we presented formulas for
calculating the “optimal” IS distribution in the family
of normal distributions. This approach is commonly
used for the IS in the multi-factor Merton model, see
for example (Glasserman & Li 2005). The choice of
the IS family of distributions as normal distributions
is not always optimal and can improved by more com-
plex IS family of distributions.

The IS family of distributions examined in this pa-
per is the family of the Gaussian mixture distribu-
tions, the same approach in different application can
be found in (Kurtz & Song 2013). The Gaussian mix-
ture random variable is defined as a weighted sum
of different normal random variables. The pdf of the
Gaussian mixture random variable can be expressed
as

g (x;p,µ,σ) =
n∑
i=1

pi · fN (x;µi, σi) , (28)

where fN (x;µi, σi) is the pdf of the normal distri-
bution with the mean µi and the variance σ2

i and

‖p‖1 =
n∑
i=1

pi = 1. New IS Gaussian mixture joint pdf

of Y will be

gY (x;p,µ,σ) =

KS+KH∏
j=1

g
(
xj;pj,µj,σj

)
, (29)

where p,µ,σ are matrices of KS +KH columns of
parameters pj,µj,σj . Therefore the system of pdfs
for the IS is

X :=
{
gY (x;p,µ,σ) :

∥∥pj∥∥1
= 1, σj,i > 0

}
. (30)

Because the support of the pdf of the normal distribu-
tion is R, the condition f(x) > 0⇒ gY (x;p,µ,σ) >
0 is fulfilled. Since the components of gY (x;p,µ,σ)
are independent, the problem (24) reduces into KS +
KH systems of non-linear equations. Therefore to-
gether with the condition

∥∥pj∥∥1
= 1 we will receive

∀j = 1, . . . ,KS +KH ,∀i = 1, . . . , n :

µj,i =

M∑
k=1

∣∣Hp

(
L∗N
(
Yk
))∣∣γk,j,i (Yk)j

M∑
k=1

∣∣Hp

(
L∗N
(
Yk
))∣∣γk,j,i ,

σ2
j,i =

M∑
k=1

∣∣Hp

(
L∗N
(
Yk
))∣∣γk,j,i ((Yk)j − µj,i)2

M∑
k=1

∣∣Hp

(
L∗N
(
Yk
))∣∣γk,j,i ,

pj,i =

M∑
k=1

∣∣Hp

(
L∗N
(
Yk
))∣∣γk,j,i

M∑
k=1

∣∣Hp

(
L∗N
(
Yk
))∣∣ , (31)

where

γk,j,i :=
pj,i · fN

((
Yk
)
j
;µj,i, σj,i

)
n∑
i=1

pj,i · fN
((
Yk
)
j
;µj,i, σj,i

) . (32)

We obtain KS + KH systems, each representing a
problem of approximation of the Gaussian mixture
from data sample. This sub-problems can be solved
for example by EM or K-means algorithm see (Bishop
2006, Redner & Walker 1984).

But the computation effort of the system (31)
will be significantly smaller if we have an informa-
tion from which component of g

(
xj;pj,µj,σj

)
was(

Yk
)
j

generated. Let zk,j denote Bernoulli vector of
identificators, such as

(zk,j)i =

{
1,

(
Yk
)
j
∼ fN (x;µj,i, σj,i)

0, otherwise
. (33)

One can show that if we know the values of zk,j , then
γk,j,i = (zk,j)i. Therefore the system (31) results in
explicit solution of the problem (24).

2.3 Objective function for component identification

In the previous part we constructed formulas for the
calculation of the IS Gaussian mixture distribution.
These formulas depend on the knowledge of the sam-
ple’s source component zk,j , but this is not easily ob-
tainable information. In this part we propose a numer-
ical approximation of zk,j based on model behaviour.

First let’s consider a set of KS +KH functions

ψj (y) :=

N∑
i=1

EADi ·Di (y) · βi · αi,j

max
i=1,...,N

{βi · αi,j} ·
N∑
i=1

EADi ·Di (y)

, (34)

where βi, αi,j,EADi are portfolio parameters of ex-
posure i and Di (y) is the default indicator of expo-
sure i under the vector of all idiosyncratic shocks y. In
the case of no defaulting exposure the function ψj (y)
yields 0. It can be easily shown that 0 ≤ ψj (y) ≤ 1.

To demonstrate a link between zk,j and ψj
(
Yk
)

let’s consider portfolio containing a component j with
huge impact on LN . In Figure 2 we show depen-
dence between component idiosyncratic shock Xj

and ψj (y) under the condition LN ≥ V aRp(LN).
From the study of the aforementioned figure we can
conclude, that:

• Xj distribution under the condition LN ≥
V aRp(LN) consist of multiple components,

• ψj (y) separate these components by it’s value,
in other words we can assume(
ψj
(
Yk
)
∈ (ai, ai+1)

)
⇒
(
(zk,j)i = 1

)
, (35)



where 0 = a1 ≤ . . .≤ an+1 = 1 (n denote number
of the Gaussian mixture components) are some
known values.
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Figure 2: Approximation of dependence between ψj (y) and Xj

Numerical justification of the assumption (35) can
be seen in Figure 3, where we can see the histogram
of the simulation of Xj distribution under the con-
dition LN ≥ V aRp(LN) and it’s approximation by
the 3 component Gaussian mixture in comparison
with approximation by the normal distribution. Ap-
proximation by the Gaussian mixture was obtained
by using the objective function ψj (y) and the pre-
calculated bounds a1 = 0, a2 = 0.2, a3 = 0.8, a4 = 1.
Other fact beside very good approximation obtained
from the proposed procedure is that the approxima-
tion obtained by the normal distribution differ signif-
icantly from the approximated distribution. Note that
Xj distribution under the condition LN ≥ V aRp(LN)
is an optimal distribution found by the CE method for
Hp(x) = (x ≥ V aRp(LN)).
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Figure 3: Approximation of Xj distribution under the condition
LN ≥ V aRp(LN ) by 3 component Gaussian mixture

Since we want to calculate both VaR and ES, the
CE problem formulation based on Hp(x) given by
(15) does not have to be optimal. The VaR approxi-
mation can suffer if the CE method favours samples
with very high value of loss and disfavours those close
to V aRp(LN) bound. Therefore we will use

Hp(x) = (x ≥ V aRp(LN)) , (36)

which give all samples with LN ≥ V aRp(LN) same
weight.

Till now we haven’t dealt with bounds ai calcu-
lation. Generally it can be a difficult problem, but

ψj (y) component recognition is not sensitive to small
changes of ai, therefore rough approximation is suf-
ficient. Such computationally feasible sufficient ap-
proximation can be obtained by minimizing (by e.q.
line-search methods) difference between MC sam-
ple of Xj distribution under the condition LN ≥
V aRp(LN) and the Gaussian mixture obtained using
ψj (y) component recognition.

2.4 Adaptive CE method for IS calculation

So far we have constructed formulas for calculating
the Gaussian mixture IS, stated the optimal form of
the function Hp(x) in (36) and constructed an instru-
ment for the Gaussian mixture j-th component identi-
fication using objective function ψj (y). But the single
calculation from M MC samples would result in the
poor approximation, if the M was not high enough.
The sufficient number of the MC samples for sta-
ble and precise approximation of the CE problem is
comparable with the number of MC samples for suf-
ficient approximation of VaR/ES. This would make
the whole IS principle useless, because it won’t bring
savings in the computational time/effort. Solution to
this inconvenience is iterative process, slowly shifting
the IS distribution to the CE method optimal one.

The formulas for the CE method SC (31) can be
modified by using the IS during the SC process:

µ̃j,i,t =

M∑
k=1

∣∣Hp

(
Yk
)∣∣w (Yk) (zk,j)i

(
Yk
)
j

M∑
k=1

∣∣Hp

(
Yk
)∣∣w (Yk) (zk,j)i

,

σ̃2
j,i,t =

M∑
k=1

∣∣Hp

(
Yk
)∣∣w (Yk) (zk,j)i

((
Yk
)
j
− µ̃j,i,t

)2

M∑
k=1

∣∣Hp

(
Yk
)∣∣w (Yk) (zk,j)i

,

p̃j,i,t =

M∑
k=1

∣∣Hp

(
Yk
)∣∣w (Yk) (zk,j)i

M∑
k=1

∣∣Hp

(
Yk
)∣∣w (Yk) , (37)

where t denotes iteration, (zk,j)i denote if the
i-th component of j-th systemic factor’s Gaus-
sian mixture was the source of the sample k,
Hp

(
Yk
)

:=
(
L∗N
(
Yk
)
≥ V aRp(LN)

)
and

w
(
Yk
)

=
f
(
Yk
)

gY
(
Yk;pt−1,µt−1,σt−1

) , (38)

where f
(
Yk
)

is the pdf of nominal distribution (joint
distribution of the independent normal distributions)
and gY

(
Yk;pt−1,µt−1,σt−1

)
is the pdf of IS Gaus-

sian mixture distribution given by parameters approx-
imated in the iteration t− 1.



In the definition of Hp

(
Yk
)

is still present the un-
known value of V aRp(LN), which can be replaced
by it’s approximation V aRgY

p (LN) from t-th iteration.
The last obstacle is that the Hp

(
Yk
)

will be for most
samples zero and the iteration process will crash at
the beginning. The solution to this is the replacement
of the confidence level p by a sequence of pi which is
at first few iteration significantly lower than p and at
the and of iterative process equals p.

All of the previous observations lead to algorithm
1. Obtained algorithm can be further enhanced for ex-
ample by the Screening method or by the adaptive
smoothing parameter sequence see (Kroese, Taimre,
& Botev 2013, Rubinstein & Kroese 2013, Rubinstein
& Kroese 2011).

Algorithm 1 Adaptive iterative calculation of the CE
problem
Inputs: p0,µ0,σ0, for every systemic factor j se-
quence of bounds a1 ≤ . . .≤ an+1, smoothing param-
eter α ∈ (0,1), sequence of p1, p2, . . . , pi, p, p, . . ., se-
quence of sample sizes Mt, set t = 1

1. Simulate Mt samples Y1, . . . , YMt from the
Gaussian mixture distribution given by param-
eters pt−1,µt−1,σt−1, calculate V aR

gY
pt (LN),

Hpt

(
Yk
)
,w
(
Yk
)
, zk,j ∀j.

2. Calculate p̃t−1, µ̃t−1, σ̃t−1 using formula (37).

3. Update parameters:
pt = α · p̃t−1 + (1− α) · pt−1,
µt = α · µ̃t−1 + (1− α) ·µt−1,
σt = α · σ̃t−1 + (1− α) ·σt−1

4. If some stopping condition is fulfilled (e.g.
pt,µt,σt ≈ pt−1,µt−1,σt−1) return the approx-
imation of optimal parameters pt,µt,σt, if not
set t = t+ 1 and go back to step 1.

Note: sequences pt and Mt should be calculated in-
side the iterative process with respect to current sam-
ple Y1, . . . , YMt (e.g. from the position of sample rep-
resenting V aRgY

pt (LN) in sorted sequence L∗N
(
Yk
)
)

3 IMPLEMENTATION AND GPU
PARALLELIZATION

The serial Matlab implementation is a straightfor-
ward interpretation of the multi-factor Merton model
with the Matlab built-in functions. The whole simu-
lation (all of the MC samples) can be calculated at
once without the use of loops. Most computation-
ally expensive parts of the simulation can be calcu-
lated by very well optimized Matlab matrix functions
and therefore this implementation can serve as a good
comparison tool of the performance efficiency for fur-
ther GPU implementations.

3.1 GPU parallelization

As was already mentioned the simulation of the multi-
factor Merton model consists of many MC samples,
that are mutually independent. This is suitable for a
massively parallel computation hardware such as the
GPU device.

3.1.1 Shortly about GPUs
Let us very shortly outline main parameters of GPUs,
which are crucial for model implementation:

• GPUs consist of many (in current devices in or-
der of thousands) computation cores, grouped
into streaming multiprocessors (SM), communi-
cation between single cores is strictly restricted
to groups belonging to one SM unit. Execution
of CUDA kernel (parallel GPU implementation)
must mirror this structure and we must spec-
ify block size (how many threads per SM will
run) and grid size (how many blocks will be ex-
ecuted).

• There are four basic types of memory on the
GPUs:

– global memory: main storage memory,
large, high latency (thread waits long time
before get the data), must be accessed in
pattern (i-th core access i-th element) to ob-
tain reasonable utilization of bandwidth

– shared memory: small, shared between
cores in one SM, low latency

– constant memory: small, can broadcast
content of array among all cores

– registers: cannot be directly accessed, sep-
arated for every core, very fast, buffer some
small local variables

For software implementation on GPU we use the
NVIDIA CUDA technology. For further informations
see (NVIDIA 2015).

3.1.2 GPU implementations overview
When implementing multi-factor Merton model we
decided to create multiple implementations, which
can benefit from different type of portfolios:

• “base” GPU implementation: straightforward in-
terpretation of the model, single threads perform
single MC samples in the same way as the serial
implementation,

• “sparse” GPU implementation: similar to “base”
implementation, but the matrix of αi,j coeffi-
cients is handled in sparse format (only col-
umn/row index and value of non-zero elements
is stored)



• “specialized” GPU implementation: is applica-
ble only on specialized type of portfolios which
use systemic factor grouping into SSF and HSF,
implementation fits the mathematical description
in subsection 1.2 (correlation matrix of SSF is
stored in constant memory).

Finally some remarks shared by all GPU implemen-
tations:

• usage of shared memory buffering - as all cores
need the same portfolio data, we can (by selected
cores) copy the data from global to shared mem-
ory (which is much faster than global),

• generating random numbers from normal or uni-
form distribution is done by cuRAND library,

• compiled with -use_fast_math tag, which de-
creases precision of math functions in favour of
speed

• Beta random number generator is not present in
the cuRAND library, therefore we implemented
own procedure based on rejection-sampling
method see (Dubi 2000, Kroese, Taimre, &
Botev 2013).

4 NUMERICAL RESULTS

In this section we test all of the aforementioned pro-
cedures and implementations. First we examine the
behaviour of the GPU implementations and then we
look at the variance reduction achievable by the pro-
posed Gaussian mixture IS.

4.1 GPU acceleration

As was mentioned before we implemented three dif-
ferent approaches to simulate the multi-factor Merton
model. Now we test their behaviour in comparison
with the Matlab serial implementation on three dif-
ferent scenarios.

1. increasing number of the systemic factors which
impacts majority of exposures (SSF), majority of
corresponding αi,j are non-zero

2. increasing number of systemic factors which im-
pacts a small fraction of exposures (HSF), ma-
jority of corresponding αi,j are zero

3. increasing number of exposures

All tests were performed on Intel Sandy Bridge
E5-2470 processor (294.4 Gflops, 38.4 GB/s) and
NVIDIA Kepler K20 accelerator (3520 Gflops, 208
GB/s), the serial Matlab implementation uses dou-
ble precision and the GPU implementations use sin-
gle precision. The theoretical performance benefit of
GPU implementations is 192×(single core + double

precision vs. all GPU cores + single precision) and
the theoretical memory bandwidth benefit of the GPU
implementations is 11×(double vs. single precision).

4.1.1 Increasing number of SSF
This test is designed to test implementation’s be-
haviour when the number of systemic factors in-
creases while matrix of αi,j coefficients becomes
more dense. We use the sequence of portfolios
with 1000 exposures, 100 HSF and the sequence of
(16,25,36,49,64,81,100) SSF. The density of matrix
of αi,j coefficients rises from 16% up to 51%. The
scaling results can be seen in Figure 4.

From results we can observe following

• “specialized” GPU implementation’s speed-up
drops from factor 515×(for 16 SSF) to factor
209×(for 100 SSF),

• “sparse” GPU implementation suffers the most,
the speed-up drops from factor 77×(for 16
SSF.) to factor 16×(for 100 SSF), this could be
expected because size of sparse interpretation
equals 3× number of non-zero elements.

• “base” GPU implementation speed-up drops
from factor 35×(for 16 SSF) to factor 19×(for
100 SSF).

The drop in performance of all the GPU implementa-
tions is caused by the increasing memory complexity,
which bounds the computation utilization.
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Figure 4: Implementations scaling based on rising number of
high impact systemic factors

4.1.2 Increasing number of HSF
The second test is designed as the counter example
to the first one. Now we test the sequence of port-
folios with 1000 exposures, 25 SSF and sequence of
(100,200,400,800,1600) HSF. The density of matrix
of αi,j coefficients decreases from 22% down to 1.7%.
The results can be seen in Figure 5.

From results we can observe following



• “specialized” GPU implementation speed-up
rise from factor 537×(for 100 HSF) to factor
1001×(for 1600 HSF),

• “sparse” GPU implementation benefits the most,
speed-up rise from factor 51×(for 100 HSF) to
factor 287×(for 1600 HSF), this could be again
expected because number of non-zero elements
of matrix of αi,j coefficients does not increase
much.

• “base” GPU implementation speed-up drops
from factor 32×(for 100 HSF) to factor 18×(for
1600 HSF).

The drop in performance of “base” GPU implementa-
tion is caused again by the increasing memory com-
plexity, because it does not take in account the spar-
sity of matrix of αi,j coefficients.
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Figure 5: Implementations scaling based on rising number of low
impact systemic factors

4.1.3 Increasing number of exposures
The last test serves as insight of the imple-
mentations behaviour when applied on the very
large portfolios. We test the sequence of port-
folios with 25 SSF, 100 HSF and sequence
of (1000,2000,4000,8000,16000,32000) exposures.
The results can be seen in Figure 6.

From results we can observe following

• “specialized” GPU implementation speed-up
rise from factor 537×(for 100 exposures) to fac-
tor 784×(for 3200 exposures),

• “sparse” GPU implementation speed-up is ap-
proximately 50× for all tested portfolios,

• “base” GPU implementation speed-up is approx-
imately 30× for all tested portfolios.

All of the GPU implementations exhibit good scaling
when the number of exposures rises, even more the
“specialized” GPU implementation benefits from the
large portfolios.
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Figure 6: Implementations scaling based on rising number of ex-
posures

4.2 IS variance reduction

In this part we examine the variance reduction achiev-
able by the IS. We compare the standard IS approach
using the family of normal distributions and the IS
with the Gaussian mixture family of distributions.

4.2.1 Portfolio parameters specification
For numerical tests we constructed four different port-
folios according to the structure mentioned in sec-
tion 1.2. Each of the constructed portfolios consists
of N = 104 exposures, KS = 25 SSF and KH = 600
HSF. Properties which are shared by all of the con-
structed portfolios are

• EADi = i2/
N∑
j=1

j2,

• PDi = 0.001 + 0.001 ·
(
1− i

N

)
,

• the distribution of LGDs is Beta distribution
with meanELGDn = 0.5 and standard deviation
V LGDn = 0.25 for all exposures,

• the structure of HSF correlation is defined by
the tree template shown in Figure 7. duplicated
60 times, correlation coefficients gHk = 0.9,∀k =
1, . . . ,KH .

• the SSF correlation matrix is defined by 5 re-
gion and 5 industry factors, each SSF represent
unique combination of the region and the indus-
try. Correlation between two SSF is 0.2 if they
share same region, 0.15 if they share same in-
dustry and 0.03 otherwise.

• exposures are assigned to a composite
SSF/HSF randomly by defined probabilities
pSk = P

(
Sn = S(k)

)
and pHk = P

(
Hn = H(k)

)
.

Figure 7: Template structure of HSF correlation tree



Single portfolios differs in exposure assignation to
SSF, HSF and coefficients gn, ωn.

Portfolio 1. pSk ∼ lnN (0,0.5) and normalized, pHk ∼
lnN (0,10) and normalized, gn = 0.9, ωn = 0.5.

Portfolio 2. pSk = 1
KS

, pHk = 1
KH

, gn = 0.9, ωn = 0.5

Portfolio 3. pSk ∼ lnN (0,0.5) and normalized, pHk ∼
lnN (0,10) and normalized, gn = 0.5, ωn = 0.9

Portfolio 4. pSk = 1
KS

, pHk = 1
KH

, gn = 0.5, ωn = 0.9

Portfolio 1. represents a portfolio with clustered ex-
posures (large groups of exposures with the same
HSF/SSF composite factor) with high dependence on
the systemic factors.

Portfolio 2. has the same level of exposure depen-
dence on the systemic factors as portfolio 1., but ex-
posures are equally distributed among the HSF/SSF
composite factors.

Portfolio 3. has exposures clustered as in portfolio
1., but the level of exposure dependence is as low as
in portfolio 2.

Portfolio 4. has exposures evenly distributed as
portfolio 2. and low level of exposure dependence as
in portfolio 3.

4.2.2 Variance reduction in comparison with the
standard approach

Beside different portfolios we also test different lev-
els of confidence level p ∈ {0.99995,0.9995,0.995} .
First lets examine VaR and ES of selected portfolios
and confidence levels, VaR/ES calculated by MC us-
ing 107 samples are listed in Table 1.

Table 1: Tested portfolios VaR and ES
confidence level p

Characteristic Portf. idx. 0.99995 0.9995 0.995

VaR

1 0.0371 0.0251 0.0129
2 0.0291 0.0203 0.0123
3 0.0057 0.0041 0.0027
4 0.0051 0.0038 0.0026

ES

1 0.0417 0.0304 0.0181
2 0.0332 0.024 0.016
3 0.0065 0.0048 0.0033
4 0.0058 0.0044 0.0032

Measured levels of VaR, ES shows that the lower
level of exposure dependence and even distribution of
exposures leads to the lower value of VaR,ES. This
can suggest, that the IS for portfolio 3. and 4. could be
less effective. The impact of confidence level is pre-
dictable, the IS effectiveness will be lower for lower
confidence levels. This is caused by reducing rarity
of samples providing information about VaR, ES and
therefore no large change of the distribution is needed.

Let’s proceed to the testing of the variance reduc-
tion. In Table 2 we can see the variance of all combi-
nations of tested confidence levels and portfolios for

the plain (crude) MC simulation, the IS using the nor-
mal distribution and the IS using the Gaussian mix-
ture. The variance is calculated as an empirical value
of 1000 simulations consisted of 106 samples.

For more illustrative view of achieved variance re-
duction see Figure 8. Figure shows a comparison of
the variance reduction between the standard and the
Gaussian mixture approach for all confidence levels
and portfolios combinations. Clearly the IS using the
Gaussian mixture achieve better variance reduction in
every test, this was evident because the normal dis-
tributions family is a subset of the Gaussian mixture
distributions family.

For exact comparison of the two IS approaches, see
Table 3. Table shows ratios of the variance reduction
between the IS using the normal distribution and the
IS using the Gaussian mixture.

Table 3: Variance reduction ratio Gaussian mix./normal dist.
confidence level p

Characteristic Portf. idx. 0.99995 0.9995 0.995

VaR

1 9.54 4.90 3.65
2 9.10 6.35 4.26
3 3.06 1.91 1.28
4 3.58 2.38 1.35

ES

1 8.37 3.16 2.30
2 7.59 6.34 4.20
3 3.35 1.88 1.28
4 4.11 2.54 1.52

The improvement of the IS by using the Gaussian
mixture is given by the presence of systemic factor
with very high impact on loss LN . These components
can be found mostly in the portfolio 1. and 2., there-
fore in these portfolios we obtain the best improve-
ments in the variance reduction. Sample of such com-
ponent was presented in Figure 3.

5 CONCLUSION

The objective of this paper was to speed-up the multi-
factor Merton model MC simulation. This was fully
accomplished by the GPU implementation and the IS
application.

We presented three different GPU implementa-
tions, each better for different purpose. Two of the
GPU implementations solve the general multi-factor
Merton model with speed-up against serial model
in range of 19× to 287× depending on structure of
portfolio, see section 4.1. Third GPU implementation
was specialized, taking input in form of structure de-
scribed in section 1.2. This implementation achieves
speed-up in range of 209× to 1001× depending on
the portfolio structure.

For the IS we proposed a new approach using the
Gaussian mixture distribution. Using this approach
we achieved a significant variance reduction improve-
ment for the certain portfolio structures, see section
4.2.2. In comparison to the standard IS approach
we got from 9.5× to 1.3× better results. The total



Table 2: Measured variance of Crude MC, IS normal dist. and IS 3 comp. Gaussian mixture (106 samples, 1000 simmulations)
Crude Monte Carlo IS normal distribution IS Gaussian mixture

confidence level p confidence level p confidence level p
Char. Portf. idx. 0.99995 0.9995 0.995 0.99995 0.9995 0.995 0.99995 0.9995 0.995

VaR

1 4.95e-07 6.21e-08 4.88e-09 6.40e-09 2.42e-09 6.96e-10 6.71e-10 4.93e-10 1.90e-10
2 3.41e-07 2.10e-08 2.95e-09 4.98e-09 1.01e-09 6.39e-10 5.47e-10 1.59e-10 1.50e-10
3 1.14e-08 7.63e-10 5.73e-11 8.62e-11 2.33e-11 6.14e-12 2.81e-11 1.21e-11 4.79e-12
4 7.34e-09 6.02e-10 4.64e-11 8.31e-11 2.23e-11 5.77e-12 2.31e-11 9.36e-12 4.25e-12

ES

1 8.64e-07 1.02e-07 1.05e-08 4.24e-09 1.17e-09 4.65e-10 5.06e-10 3.69e-10 2.02e-10
2 6.99e-07 6.03e-08 5.25e-09 2.78e-09 9.70e-10 3.37e-10 3.66e-10 1.53e-10 8.00e-11
3 2.81e-08 1.89e-09 1.42e-10 6.88e-11 1.90e-11 5.17e-12 2.05e-11 1.00e-11 4.01e-12
4 1.61e-08 1.37e-09 1.13e-10 7.12e-11 1.99e-11 4.52e-12 1.73e-11 7.84e-12 2.96e-12
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Figure 8: Variance reduction achieved by IS: Gaussian mixture and normal distribution

achieved variance reduction was up to 1911× for the
ES calculation and up to 737× for the VaR calcula-
tion.

The combination of the IS and the GPU imple-
mentation can bring a speed-up of the standard serial
MC simulation in orders of hundreds of thousands for
portfolios with high dependence on systemic factors.
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