Amdahl’s and Gustafson’s laws

Jan Zapletal

VŠB - Technical University of Ostrava
jan.zapletal@vsb.cz

November 23, 2009
1 Contents

2 Introduction

3 Amdahl’s law

4 Gustafson’s law

5 Equivalence of laws

6 References
Performance analysis

How does the parallelization improve the performance of our program?

- execution time,
- speedup,
- efficiency,
- cost...
Performance analysis

How does the parallelization improve the performance of our program?

Metrics used to describe the performance:

- execution time,
- speedup,
- efficiency,
- cost...
Metrics

Execution time

- The time elapsed from when the first processor starts the execution to when the last processor completes it.
- On a parallel system consists of computation time, communication time and idle time.

Speedup

- Defined as

\[S = \frac{T_1}{T_p}, \]

where \(T_1 \) is the execution time for a sequential system and \(T_p \) for the parallel system.
Metrics

Execution time

- The time elapsed from when the first processor starts the execution to when the last processor completes it.
- On a parallel system consists of computation time, communication time and idle time.

Speedup

- Defined as

\[S = \frac{T_1}{T_p}, \]

where \(T_1 \) is the execution time for a sequential system and \(T_p \) for the parallel system.
Amdahl’s law

Gene Myron Amdahl (born November 16, 1922)

- worked for IBM,
- best known for formulating Amdahl’s law uncovering the *limits of parallel computing*.

Let T_1 denote the computation time on a sequential system. We can split the total time as follows

$$T_1 = t_s + t_p,$$

where

- t_s - computation time needed for the sequential part.
- t_p - computation time needed for the parallel part.

Clearly, if we parallelize the problem, only t_p can be reduced. Assuming *ideal* parallelization we get

$$T_p = t_s + \frac{t_p}{N},$$

where

- N - number of processors.
Amdahl’s law

Gene Myron Amdahl (born November 16, 1922)
- worked for IBM,
- best known for formulating Amdahl’s law uncovering the *limits of parallel computing*.

Let T_1 denote the computation time on a sequential system. We can split the total time as follows

$$T_1 = t_s + t_p,$$

where

- t_s - computation time needed for the sequential part.
- t_p - computation time needed for the parallel part.

Clearly, if we parallelize the problem, only t_p can be reduced. Assuming *ideal* parallelization we get

$$T_p = t_s + \frac{t_p}{N},$$

where

- N - number of processors.
Amdahl’s law

Gene Myron Amdahl (born November 16, 1922)
- worked for IBM,
- best known for formulating Amdahl’s law uncovering the limits of parallel computing.

Let T_1 denote the computation time on a sequential system. We can split the total time as follows

$$T_1 = t_s + t_p,$$

where
- t_s - computation time needed for the sequential part.
- t_p - computation time needed for the parallel part.

Clearly, if we parallelize the problem, only t_p can be reduced. Assuming ideal parallelization we get

$$T_p = t_s + \frac{t_p}{N},$$

where
- N - number of processors.
Amdahl’s law

Thus we get the speedup of

\[S = \frac{T_1}{T_p} = \frac{t_s + t_p}{t_s + \frac{t_p}{N}}. \]

Let \(f \) denote the sequential portion of the computation, i.e.

\[f = \frac{t_s}{t_s + t_p}. \]

Thus the speedup formula can be simplified into

\[S = \frac{1}{f + \frac{1-f}{N}} < \frac{1}{f}. \]

- Notice that Amdahl assumes the problem size does not change with the number of CPUs.
- Wants to solve a fixed-size problem as quickly as possible.
Amdahl’s law

Thus we get the speedup of

\[S = \frac{T_1}{T_p} = \frac{t_s + t_p}{t_s + \frac{t_p}{N}}. \]

Let \(f \) denote the sequential portion of the computation, i.e.

\[f = \frac{t_s}{t_s + t_p}. \]

Thus the speedup formula can be simplified into

\[S = \frac{1}{f + \frac{1-f}{N}} < \frac{1}{f}. \]

- Notice that Amdahl assumes the problem size does not change with the number of CPUs.
- Wants to solve a fixed-size problem as quickly as possible.
Amdahl’s law

Thus we get the speedup of

\[S = \frac{T_1}{T_p} = \frac{t_s + t_p}{t_s + \frac{t_p}{N}}. \]

Let \(f \) denote the sequential portion of the computation, i.e.

\[f = \frac{t_s}{t_s + t_p}. \]

Thus the speedup formula can be simplified into

\[S = \frac{1}{f + \frac{1-f}{N}} < \frac{1}{f}. \]

- Notice that Amdahl assumes the problem size does not change with the number of CPUs.
- Wants to solve a fixed-size problem as quickly as possible.
Amdahl’s law
Gustafson’s law

John L. Gustafson (born January 19, 1955)

- American computer scientist and businessman,
- found out that practical problems show much better speedup than Amdahl predicted.

Gustafson’s law

- The computation time is constant (instead of the problem size),
- increasing number of CPUs \(\Rightarrow \) solve bigger problem and get better results in the same time.

Let \(T_p \) denote the computation time on a parallel system. We can split the total time as follows

\[
T_p = t_s^* + t_p^*,
\]

where

- \(t_s^* \) - computation time needed for the sequential part.
- \(t_p^* \) - computation time needed for the parallel part.
Gustafson’s law

John L. Gustafson (born January 19, 1955)

- American computer scientist and businessman,
- found out that practical problems show much better speedup than Amdahl predicted.

Gustafson’s law

- The computation time is constant (instead of the problem size),
- increasing number of CPUs ⇒ solve bigger problem and get better results in the same time.

Let T_p denote the computation time on a parallel system. We can split the total time as follows

$$T_p = t_s^* + t_p^*,$$

where

- t_s^* - computation time needed for the sequential part.
- t_p^* - computation time needed for the parallel part.
Gustafson’s law

John L. Gustafson (born January 19, 1955)

- American computer scientist and businessman,
- found out that practical problems show much better speedup than Amdahl predicted.

Gustafson’s law

- The computation time is constant (instead of the problem size),
- increasing number of CPUs ⇒ solve bigger problem and get better results in the same time.

Let T_p denote the computation time on a parallel system. We can split the total time as follows

$$T_p = t_s^* + t_p^*,$$

where

- t_s^* - computation time needed for the sequential part.
- t_p^* - computation time needed for the parallel part.
Gustafson’s law

On a sequential system we would get

\[T_1 = t^* + N \cdot t^* \]

Thus the speedup will be

\[S = \frac{t^* + N \cdot t^*}{t^* + t^*} \]

Let \(f^* \) denote the sequential portion of the computation on the parallel system, i.e.

\[f^* = \frac{t_s^*}{t_s^* + t_p^*} \]

Then

\[S = f^* + N \cdot (1 - f^*) \]
Gustafson’s law

On a sequential system we would get

\[T_1 = t^*_s + N \cdot t^*_p. \]

Thus the speedup will be

\[S = \frac{t^*_s + N \cdot t^*_p}{t^*_s + t^*_p}. \]

Let \(f^* \) denote the sequential portion of the computation on the parallel system, i.e.

\[f^* = \frac{t^*_s}{t^*_s + t^*_p}. \]

Then

\[S = f^* + N \cdot (1 - f^*). \]
Gustafson’s law

On a sequential system we would get

\[T_1 = t^* + N \cdot t^p. \]

Thus the speedup will be

\[S = \frac{t^* + N \cdot t^p}{t^* + t^p}. \]

Let \(f^* \) denote the sequential portion of the computation on the parallel system, i.e.

\[f^* = \frac{t^s}{t^* + t^p}. \]

Then

\[S = f^* + N \cdot (1 - f^*). \]
Gustafson’s law
What the hell?!

- The bigger the problem, the smaller f - serial part remains usually the same,
- and $f \neq f^*$.

Amdahl’s says:

$$S = \frac{t_s + t_p}{t_s + \frac{t_p}{N}}.$$

Let now f^* denote the sequential portion spent in the parallel computation, i.e.

$$f^* = \frac{t_s}{t_s + \frac{t_p}{N}} \quad \text{and} \quad (1 - f^*) = \frac{\frac{t_p}{N}}{t_s + \frac{t_p}{N}}.$$

Hence

$$t_s = f^* \cdot \left(t_s + \frac{t_p}{N} \right) \quad \text{and} \quad t_p = N \cdot (1 - f^*) \cdot \left(t_s + \frac{t_p}{N} \right).$$
What the hell?!

- The bigger the problem, the smaller f - serial part remains usually the same,
- and $f \neq f^*.$

Amdahl’s says:

$$S = \frac{t_s + t_p}{t_s + \frac{t_p}{N}}.$$

Let now f^* denote the sequential portion spent in the parallel computation, i.e.

$$f^* = \frac{t_s}{t_s + \frac{t_p}{N}} \text{ and } (1 - f^*) = \frac{t_p}{t_s + \frac{t_p}{N}}.$$

Hence

$$t_s = f^* \cdot \left(t_s + \frac{t_p}{N} \right) \text{ and } t_p = N \cdot (1 - f^*) \cdot \left(t_s + \frac{t_p}{N} \right).$$
What the hell?!

- The bigger the problem, the smaller f - serial part remains usually the same,
- and $f \neq f^\ast$.

Amdahl’s says:

$$S = \frac{t_s + t_p}{t_s + \frac{t_p}{N}}.$$

Let now f^\ast denote the sequential portion spent in the parallel computation, i.e.

$$f^\ast = \frac{t_s}{t_s + \frac{t_p}{N}} \text{ and } (1 - f^\ast) = \frac{\frac{t_p}{N}}{t_s + \frac{t_p}{N}}.$$

Hence

$$t_s = f^\ast \cdot \left(t_s + \frac{t_p}{N} \right) \text{ and } t_p = N \cdot (1 - f^\ast) \cdot \left(t_s + \frac{t_p}{N} \right).$$
I see!

- After substituting t_s and t_p into the Amdahl’s formula one gets

$$S = \frac{t_s + t_p}{t_s + \frac{t_p}{N}} = f^* + N \cdot (1 - f^*),$$

what is exactly what Gustafson derived.

- The key is not to mix up the values f and f^* - this caused great confusion that lasted over years!
I see!

- After substituting t_s and t_p into the Amdahl’s formula one gets

$$S = \frac{t_s + t_p}{t_s + \frac{t_p}{N}} = f^* + N \cdot (1 - f^*),$$

what is exactly what Gustafson derived.

- The key is not to mix up the values f and f^* - this caused great confusion that lasted over years!
I see!

After substituting t_s and t_p into the Amdahl’s formula one gets

$$S = \frac{t_s + t_p}{t_s + \frac{t_p}{N}} = f^* + N \cdot (1 - f^*),$$

what is exactly what Gustafson derived.

The key is not to mix up the values f and f^* - this caused great confusion that lasted over years!
References

Thank you for your attention!
References

Amdahl’s law [online]. Available at: <http://en.wikipedia.org/wiki/Amdahl’s_law>.

Gustafson’s law [online]. Available at: <http://en.wikipedia.org/wiki/Gustafson’s_law>.

Thank you for your attention!