
Artificial Intelligence

Michal Vašinek

VŠB-Technical University of Ostrava
Faculty of Electrical Engineering and Computer Science,

Department of Computer Science

March 25, 2024

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 1 / 60



1 Introduction to Neural Networks
Basic concepts
Applications of neural networks in management

2 Components of Neural Networks
Linearly separable problems
Perceptron
Neural Networks with Hidden Layers
Learning with Backpropagation
Data Preparation
Evaluation of Neural Networks

3 Advanced Neural Networks for Time Series Predictions

4 References

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 2 / 60



Introduction to Neural Networks

Demonstrations

Supporting code: All demonstrations are available at Google Colab

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 3 / 60

https://colab.research.google.com/drive/1u9MF-pvZrjYedFiB_kOr6BthbKhXO8rW


Introduction to Neural Networks

What are Neural Networks?

Neural Network

A system of interconnected neurons that can be trained and used for
pattern recognition, prediction, classification, and other tasks.

Figure: OpenAI - DALL-E 2 generated picture. Query: artificial neural network.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 4 / 60



Introduction to Neural Networks Basic concepts

Basic concepts - Neuron

Neuron

Basic building block of neural networks, simplified model of a human brain
cell.

x1

x2

xn

∑
i wixi y

w1

w2

wn

Figure: McCulloch-Pitts artificial neuron model.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 5 / 60



Introduction to Neural Networks Basic concepts

Basic concepts - Architectures

Architectures

Neural networks can have different ways of organizing neurons into
functional hierarchies, including single-layer perceptrons and complex deep
neural networks.

x1

x2

x3

h1

h2

h3

h4

y1

y2

Figure: Fully connected neurons with one hidden layer and two neurons at the
output.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 6 / 60



Introduction to Neural Networks Basic concepts

Basic concepts - Learning

Learning

Neural networks learn from training data using learning algorithms
such as Backpropagation.

Neural network learning is based on adapting weights to reduce the
difference between expected and predicted output.

x1

x2

xn

∑
i wixi

w1

w2

wn

x1

x2

xn

∑
i w

′
i xi

w
′
1

w
′
2

w
′
n

adaptation

Figure: Learning is a process of neural network weight adaptation.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 7 / 60



Introduction to Neural Networks Basic concepts

Basic concepts - Activation function

Activation function

Each neuron uses an activation function to determine the output based on
weighted inputs and a threshold.

∑
i wixi y

Activation function

R {0, 1}

Figure: The activation function maps the input value space to the output value
space. In this case, it maps the set of real numbers R to the set {0, 1}.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 8 / 60



Introduction to Neural Networks Basic concepts

Neural Networks - Historical Perspective

1943: McCulloch-Pitts neuron model

1957: Frank Rosenblatt introduced perceptron

1980s: Backpropagation

1990s: SVMs (Support Vector Machines)

2000s: Deep Neural Networks - Jeffrey Hinton

2010s: Deep Learning (DL), winner in ImageNet competition.

2020s: Neural Networks everywhere, self-driving vehicles, large
language models(OpenAI - ChatGPT, Google - Bard), DL based
language translation(DeepL).

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 9 / 60



Introduction to Neural Networks Applications of neural networks in management

Applications in Management

Financial Forecasting: Neural networks can be used to predict stock
prices and market trends.

Customer Relationship Management: Analyzing customer data to
improve customer satisfaction and retention.

Supply Chain Optimization: Predicting demand and optimizing
inventory levels.

Employee Performance Analysis: Evaluating employee performance
and identifying areas for improvement.

Fraud Detection: Detecting fraudulent activities and transactions.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 10 / 60



Introduction to Neural Networks Applications of neural networks in management

Challenges and Considerations

Data Quality: Neural networks require high-quality and relevant data
for accurate predictions.

Interpretability: Neural networks can be complex and difficult to
interpret, making it challenging for managers to understand the
reasoning behind predictions.

Ethical Considerations: Addressing ethical concerns related to data
privacy, bias, and fairness in decision-making.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 11 / 60



Components of Neural Networks Linearly separable problems

Motivation

Binary classification

Suppose we have records representing two classes of objects and that we
have measured two values of x and y describing each object. Objective is
to find a line that best separates the two classes.

x

y

Class B
Class A

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 12 / 60



Components of Neural Networks Linearly separable problems

Motivation

Binary classification

If we can find a separating line, then we might be able to automatically
classify records by x and y values.

x

y

Class B
Class A

yet unseen object

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 13 / 60



Components of Neural Networks Linearly separable problems

Motivation

Binary classification

If the object is above the separating line then it is a class A object
otherwise it is a class B object.

x

y

Class B
Class A

classified as class A

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 14 / 60



Components of Neural Networks Linearly separable problems

Non-linearly Separable Dataset

Linearly separable - we are able to find the separating line.

Non-linearly separable - we are unable to find the separating line.

x

y

x

y

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 15 / 60



Components of Neural Networks Linearly separable problems

Non-linearly Separable Dataset

Misclassified records

If we try to separate objects from a non-linearly separable dataset with a
straight line, we get misclassified objects.

x

y

x

y

Class A
Class B
Missclassified

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 16 / 60



Components of Neural Networks Perceptron

Perceptron

Definition

A perceptron is the simplest form of a neural network unit, capable of
binary classification tasks.

1

x1

xn

∑
i wixi + b ŷ

b

w1

wn

Figure: Perceptron model.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 17 / 60



Components of Neural Networks Perceptron

Perceptron

Mathematical Expression: The output ŷ of a perceptron for an
input vector x = (x1, x2, . . . , xn) and weights w = (w1,w2, . . . ,wn) is
calculated using the following formula:

ŷ = Step

(
n∑

i=1

xi · wi + b

)

where b is the bias term, and Step(z) is the step function defined as:

Step(z) =

{
1, if z > 0

0, otherwise

Decision Boundary: The perceptron classifies inputs based on a
linear decision boundary in the input space.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 18 / 60



Components of Neural Networks Perceptron

Perceptron Forward Pass: Example

Example - default parameters

Let’s consider a perceptron with two input features x1 = 1.2 and
x2 = −0.7, weights w1 and w2, and bias b. Weights and bias: w1 = 0.6,
w2 = −0.8, b = −0.5.

Forward Pass Calculation: The weighted sum of inputs plus bias is
computed as follows:

z = x1 · w1 + x2 · w2 + b

Activation: Applying the step function, the output ŷ is determined:

ŷ = Step(z) =

{
1, if z > 0

0, otherwise

Example Calculation: For x1 = 1.2 and x2 = −0.7, compute
ŷ = Step(1.2 · 0.6 + (−0.7) · (−0.8)− 0.5 = Step(0.78) = 1.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 19 / 60



Components of Neural Networks Perceptron

Perceptron Training: Weight and Bias Update

Objective

Train the perceptron to correctly classify input patterns by adjusting its
weights (w) and bias (b).

Update Rule: The weights and bias are updated using the
perceptron learning algorithm. For a misclassified input (x, y) where y
is the target output (0 or 1) and ŷ is the predicted output, the update
rule is:

wi ← wi + α · (y − ŷ) · xi
b ← b + α · (y − ŷ)

where α is the learning rate and xi is the ith component of the input
vector x.

Effect: The update rule pushes the decision boundary closer to the
misclassified point, improving the perceptron’s classification accuracy.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 20 / 60



Components of Neural Networks Perceptron

Perceptron Weight Update: Example

Objective: Train a perceptron to classify inputs correctly. Let’s
consider a misclassified input x = (1.2,−0.7) with target output
y = 0.

Initial Weights and Bias: w1 = 0.6, w2 = −0.8, b = −0.5.
Prediction: Compute the weighted sum plus bias
z = 1.2× 0.6 + (−0.7)× (−0.8) + (−0.5) = 0.78.

Misclassification: Predicted output ŷ = Step(0.78) = 1 does not
match the target y = 0.

Weight Update: Update the weights using learning rate α = 0.1 and
the perceptron learning rule:

w1 ← 0.6 + 0.1 · (0− 1) · 1.2 = 0.48

w2 ← −0.8 + 0.1 · (0− 1) · (−0.7) = −0.73
b ← −0.5 + 0.1 · (0− 1) = −0.6

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 21 / 60



Components of Neural Networks Perceptron

Perceptron Weight Update: Example

Weight Update: Update the weights using learning rate α = 0.1 and
the perceptron learning rule:

w1 ← 0.6 + 0.1× (0− 1)× 1.2 = 0.48

w2 ← −0.8 + 0.1× (0− 1)× (−0.7) = −0.73
b ← −0.5 + 0.1× (0− 1) = −0.6

Next prediction:
z = 1.2× 0.48 + (−0.7)× (−0.73) + (−0.6) = 0.78 = 0.487.

Output of weighted sum before weights update was 0.78, after
adjustment of weights 0.487.

It is still a misclassification, but it is closer to the expected result.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 22 / 60



Components of Neural Networks Neural Networks with Hidden Layers

Dense Neural Networks (DNNs)

DNNs, also known as fully connected networks, consist of densely
interconnected layers of nodes.

Each node in one layer is connected to every node in the subsequent
layer.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 23 / 60



Components of Neural Networks Neural Networks with Hidden Layers

Dense Neural Networks (DNNs) - Applications,
Demonstration

DNNs are the foundation of deep learning and can model complex
patterns in data.

They are widely used in various applications, including image and
speech recognition, natural language processing, and game playing.

DNNs employ activation functions like ReLU (Rectified Linear Unit)
or sigmoid to introduce non-linearity, enabling them to learn intricate
relationships in the data.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 24 / 60



Components of Neural Networks Learning with Backpropagation

Activation Functions

Role

Activation functions introduce non-linearity into the neural network,
enabling it to learn complex patterns in the data.

Proper choice may improve learning speed.

Vanishing gradient problem - for very large values of x the output gets
very small and it can cause very slow weights update, potentially even stop
learning.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 25 / 60



Components of Neural Networks Learning with Backpropagation

Visualization of Sigmoid Function

Sigmoid

σ(x) = 1
1+e−x

Range: (0, 1)

Output: Squashes input to values between 0 and 1.

Used in older networks, problem with vanishing gradient.

x

σ(x)

-2 -1 1 2

0.2
0.4
0.6
0.8
1

σ(x) = 1
1+e−x

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 26 / 60



Components of Neural Networks Learning with Backpropagation

Visualization of Tanh Function

Tanh

tanh(x) = ex−e−x

ex+e−x

Range: (-1, 1)

Output: Squashes input to values between -1 and 1, centered around 0.

Prevalently used in recurrent neural networks.

x

tanh(x)

-2 -1 1 2

-1

-0.5

0.5

1 tanh(x) = ex−e−x

ex+e−x

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 27 / 60



Components of Neural Networks Learning with Backpropagation

Visualization of ReLU Function

ReLU (Rectified Linear Unit)

ReLU(x) = max(0, x)

Range: [0, ∞)

Output: Keeps positive values unchanged, sets negative values to 0.

Used to solve vanishing gradient problem.

Part of modern deep learning networks.

x

ReLU(x)

1 2

1

2
ReLU(x) = max(0, x)

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 28 / 60



Components of Neural Networks Learning with Backpropagation

Visualization of Leaky ReLU Function

Leaky ReLU

LeakyReLU(x) = max(αx , x), where α is a small positive constant.

Range: (−∞, ∞)

Output: Similar to ReLU but allows a small gradient for negative values.

Eliminates problem of dying ReLU.

x

LeakyReLU(x)

-2 -1 1 2

0.5

1

1.5 LeakyReLU(x) = max(0.1x , x)

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 29 / 60



Components of Neural Networks Learning with Backpropagation

Loss Functions

Role

Loss functions measure the difference between the predicted values
(output of the neural network) and the actual values (ground truth) in the
training data.

Mean Squared Error (MSE): MSE = 1
N

∑N
i=1(yi − ŷi )

2

Measures the average squared difference between predictions (ŷi ) and
actual values (yi ).

Binary Crossentropy: − 1
N

∑N
i=1[yi log(ŷi ) + (1− yi ) log(1− ŷi )]

Used for binary classification tasks, penalizes deviations from the true
class labels.

Categorical Crossentropy: − 1
N

∑N
i=1

∑C
j=1 yij log(ŷij)

Used for multi-class classification tasks, where C is the number of
classes.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 30 / 60



Components of Neural Networks Learning with Backpropagation

Backpropagation

Definition

Backpropagation is a supervised learning algorithm used for training
artificial neural networks. It is a method for efficiently computing gradients
of the loss function with respect to the weights of the network.

Steps:
1 Forward Pass: Compute the predicted output of the neural network

using the current weights.
2 Loss Computation: Calculate the loss between the predicted output

and the actual target values.
3 Backward Pass (Backpropagation): Compute the gradients of the

loss with respect to the network’s parameters (weights and biases) by
applying the chain rule.

4 Gradient Descent: Update the weights and biases of the network
using the computed gradients to minimize the loss.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 31 / 60



Components of Neural Networks Learning with Backpropagation

Backpropagation

Key Concepts:
Chain Rule: Backpropagation relies on the chain rule of calculus to
compute gradients efficiently in a neural network with multiple layers.
Learning Rate: Learning rate is a hyperparameter that determines the
size of the steps taken during gradient descent.
Iterations: Backpropagation involves multiple iterations (epochs) over
the entire training dataset to optimize the network’s parameters.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 32 / 60



Components of Neural Networks Learning with Backpropagation

Backpropagation: Mathematical Expression

Objective:

Minimize the loss function L by adjusting the weights and biases of the
neural network using gradient descent.

Derivation: Using the chain rule, the derivative of the loss with
respect to the weights in layer l is calculated as follows:

∂L

∂W
(l)
ij

=
∂L

∂z
(l+1)
i

·
∂z

(l+1)
i

∂W
(l)
ij

∂L

∂b
(l)
i

=
∂L

∂z
(l+1)
i

where z
(l+1)
i is the input to neuron i in layer l + 1.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 33 / 60



Components of Neural Networks Learning with Backpropagation

Backpropagation: Mathematical Expression

Weight Update: After computing gradients, the weights and biases
are updated using gradient descent:

W
(l)
ij = W

(l)
ij − α

∂L

∂W
(l)
ij

b
(l)
i = b

(l)
i − α

∂L

∂b
(l)
i

where α is the learning rate.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 34 / 60



Components of Neural Networks Learning with Backpropagation

Backpropagation: Derivative in Loss Function

Loss Function: L = 1
2(y − ŷ)2 (Mean Squared Error)

Output Layer:

Predicted Output: ŷ

Target Output: y

Derivative of Loss with Respect to Predicted Output:

∂L

∂ŷ
= ŷ − y

Backpropagating the Error:

Gradient at Output Layer: δ(output) = ∂L
∂ŷ

Using Chain Rule for Further Layers: Derivatives are calculated
backwards through the network using the chain rule.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 35 / 60



Components of Neural Networks Learning with Backpropagation

Backpropagation: Derivative Using Chain Rule

Hidden Layer Neuron: z =
∑

i (wi · xi ) + b
Activation Function: a = σ(z) (e.g., Sigmoid)
Derivative of Loss with Respect to Activation Output:

∂L

∂a
=

∂L

∂ŷ
· ∂ŷ
∂a

Derivative of Activation Function:

∂a

∂z
= a · (1− a)

(for Sigmoid function)
Derivative of Loss with Respect to Neuron Output:

∂L

∂z
=

∂L

∂a
· ∂a
∂z

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 36 / 60



Components of Neural Networks Learning with Backpropagation

Backpropagation: Derivative Using Chain Rule

Derivative of Loss with Respect to Weights and Bias:

∂L

∂wi
=

∂L

∂z
· xi

∂L

∂b
=

∂L

∂z

Note:

Derivatives are computed using the chain rule to propagate the error
backwards through the network.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 37 / 60



Components of Neural Networks Data Preparation

Data Preprocessing for Neural Networks

Data Cleaning: Handling missing values, outliers, and noise in the
dataset to ensure quality and consistency.

Feature Scaling: Scaling features to a similar range (e.g.,
normalization) to prevent certain features from dominating others
during training.

Feature Engineering: Creating new features from existing ones or
transforming features to better represent the underlying patterns in
the data.

Data Splitting: Splitting the dataset into training, validation, and
test sets for model training, tuning, and evaluation, respectively.

Label Encoding/One-Hot Encoding: Converting categorical
variables into numerical representations that can be processed by
neural networks.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 38 / 60



Components of Neural Networks Data Preparation

Normalizing Numerical Data

Mean Normalization: Subtracting the mean of the feature from
each data point, then dividing by the standard deviation. Centers the
data around zero.

Min-Max Scaling: Scaling features to a specific range, often [0, 1] or
[-1, 1], by subtracting the minimum value and dividing by the range.

Robust Scaling: Scaling features using statistics that are robust to
outliers, such as the interquartile range (IQR).

Log Transformation: Applying a logarithm to the data to stabilize
variance and make the data more symmetric.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 39 / 60



Components of Neural Networks Data Preparation

Encoding Categorical Data

Label Encoding: Assigning a unique numerical label to each
category. Useful for ordinal categorical data.
Example: Customers feedback

Excellent (3): Customers were delighted and very satisfied with their
experience.
Average (2): Customers had a neutral experience, nothing
extraordinary, nothing bad.
Poor (1): Customers were very dissatisfied and had a bad experience
with the company.

One-Hot Encoding: Creating binary columns for each category.
Each column indicates the presence or absence of the category.

Embedding Layers: For large categorical features, embedding layers
can be used in neural networks to learn dense vector representations
of categories.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 40 / 60



Components of Neural Networks Evaluation of Neural Networks

Underfitting

Definition

Occurs when a machine learning model is too simple to capture the
underlying patterns in the data. It performs poorly not only on the
training data but also on unseen (test) data.

Causes of Underfitting:
Too few features or too simplistic model architecture.
Insufficient training or too aggressive regularization.

Solutions: Consider increasing the model’s complexity by adding
more layers or neurons, introduce more relevant features, or extend
the training duration. Additionally, gathering more diverse and
representative data for training can improve the model’s ability to
learn the problem.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 41 / 60



Components of Neural Networks Evaluation of Neural Networks

Overfitting

Definition

Occurs when a machine learning model learns the training data too well,
including its noise and outliers. It performs well on the training data but
poorly on unseen data due to its excessive focus on training data specifics.

Causes of Overfitting:
Too complex model with too many features.
Limited training data or lack of proper regularization.

Solutions: Finding the right balance between model complexity and
dataset size. Techniques like cross-validation, regularization, and
feature selection help mitigate underfitting and overfitting problems.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 42 / 60



Advanced Neural Networks for Time Series Predictions

Simple Recurrent Neural Networks (RNN)

Definition:

A Simple RNN is a type of recurrent neural network that maintains a
hidden state to capture information about previous time steps. It can
process sequential data and is suitable for tasks involving temporal
dependencies.

Architecture:
Input Layer: Accepts input features at each time step.
Hidden Layer: Maintains a hidden state capturing information from
previous time steps.
Output Layer: Produces predictions or representations based on the
hidden state.

Recurrent Connection: The hidden state at time step t serves as an
input to the network at time step t + 1, creating a recurrent
connection.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 43 / 60



Advanced Neural Networks for Time Series Predictions

Block of Simple RNN

Figure: Recurrent Neural Network, By fdeloche - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=60109157

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 44 / 60



Advanced Neural Networks for Time Series Predictions

Computing Hidden State and Output in Simple RNN

Input Sequence: [x1, x2, x3, ..., xn]
Hidden State Computation:

Weights: Whx (Input to Hidden), Whh (Hidden to Hidden), bh (Bias)

Hidden State at Time Step t:
ht = tanh(Whx · xt +Whh · ht−1 + bh)

Output Computation:

Weights: Woh (Hidden to Output), bo (Bias)

Output at Time Step t: yt = σ(Woh · ht + bo)

Note:

tanh(x) is commonly used as the activation function for the hidden
state, and σ(x) (e.g., sigmoid) for the output.

Adjust the weights (Whx , Whh, Woh) and biases (bh, bo) during
training to learn from data.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 45 / 60



Advanced Neural Networks for Time Series Predictions

Computing Output in a Simple RNN

Input Sequence: [0.5, 0.3]
Hidden Layer:

Weights: Whx = 0.6, Whh = −0.4, bh = 0.1

Initial Hidden State: h0 = 0

Activation Function: tanh(x)

Calculation:

Time Step 1:
a1 = Whx · 0.5 +Whh · 0 + bh = 0.1
h1 = tanh(a1) = 0.0997

Time Step 2:
a2 = Whx · 0.3 +Whh · 0.0997 + bh = 0.0788
h2 = tanh(a2) = 0.0786

Output: The hidden state at the last time step (h2) can be used as the
output of the Simple RNN for the given input sequence.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 46 / 60



Advanced Neural Networks for Time Series Predictions

Simple RNN - applications, demonstration

Applications: Simple RNNs are used in natural language processing,
speech recognition, and various other sequence modeling tasks.

Limitations: Simple RNNs struggle with capturing long-term
dependencies due to the vanishing gradient problem.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 47 / 60



Advanced Neural Networks for Time Series Predictions

Gated Recurrent Unit (GRU)

Definition:

GRU is a type of recurrent neural network designed to capture long-term
dependencies in sequential data. GRU uses gating mechanisms to control
the flow of information, allowing it to selectively update its memory
content.

Components:
Update Gate: Determines how much of the past information to retain.
Reset Gate: Decides how much of the past information to forget.
Hidden State: Captures the current state of the network and is used
to compute the output.

Simpler Architecture: GRU has a simpler architecture compared to
LSTM, making it computationally more efficient and easier to train.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 48 / 60



Advanced Neural Networks for Time Series Predictions

Block of GRU

Figure: Gated Recurrent Unit, By fdeloche - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=60466441

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 49 / 60



Advanced Neural Networks for Time Series Predictions

Gated Recurrent Unit (GRU) - Applications,
Demonstration

Applications: Used in natural language processing, speech
recognition, and other sequential data tasks where capturing
long-term dependencies is crucial.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 50 / 60



Advanced Neural Networks for Time Series Predictions

Long Short-Term Memory (LSTM)

Definition:

LSTM is a type of recurrent neural network designed to capture long-term
dependencies in sequential data. It uses special units called memory cells
to store and retrieve information over extended time intervals.

Components:
Memory Cell: Core component of LSTM, capable of storing and
processing information over multiple time steps.
Forget Gate: Determines what information from the cell’s state
should be discarded.
Input Gate: Updates the cell’s state with new information.
Output Gate: Produces the output based on the updated cell’s state.

Long-Term Dependencies: Simple LSTM addresses the vanishing
gradient problem, enabling the network to capture and learn
long-term dependencies in the data.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 51 / 60



Advanced Neural Networks for Time Series Predictions

Block of LSTM

Figure: Long Short-Term Memory, By fdeloche - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=60466441

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 52 / 60



Advanced Neural Networks for Time Series Predictions

Long Short-Term Memory (LSTM)

Applications: Used in machine translation, speech recognition, and
tasks involving sequential data with extended contexts.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 53 / 60



Advanced Neural Networks for Time Series Predictions

Attention Mechanism

Definition:

Attention mechanism is a concept in neural networks that allows the
model to focus on specific parts of the input sequence when making
predictions or generating output. It assigns different weights to different
parts of the input, emphasizing the relevant information.

Components:
Query, Key, and Value Vectors: Attention mechanisms use query,
key, and value vectors to calculate the attention scores between input
elements.
Attention Scores: Attention scores quantify the importance of each
input element. Softmax function is often used to compute these scores.
Weighted Sum: Input elements are combined using their attention
scores to create a weighted sum, which becomes the input for the next
layer.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 54 / 60



Advanced Neural Networks for Time Series Predictions

Attention Mechanism

Figure: Source: https://blog.floydhub.com/attention-mechanism/

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 55 / 60



Advanced Neural Networks for Time Series Predictions

Attention Mechanism - Applications, Demonstration

Applications: Attention mechanisms are widely used in machine
translation, image captioning, and natural language processing tasks
where sequential or spatial relationships are important.

Transformers: Core part of general purpose transformers (GPT).

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 56 / 60



Advanced Neural Networks for Time Series Predictions

Temporal Convolutional Networks (TCNs)

TCNs are a class of neural networks designed for modeling sequential
data, where the order of the input elements matters.

TCNs utilize dilated convolutions, which have exponentially growing
receptive fields, enabling them to capture long-term dependencies in
the input sequences.

Figure: Source: WaveNet: A Generative Model for Raw Audio

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 57 / 60



Advanced Neural Networks for Time Series Predictions

Temporal Convolutional Networks (TCNs) - Applications,
Demonstration

By stacking multiple layers of dilated convolutions, TCNs can
effectively model complex temporal patterns while maintaining
parallelism and computational efficiency.

TCNs have been successfully applied in various tasks, including
language modeling, time series prediction, and natural language
processing, showcasing their versatility and effectiveness in capturing
sequential dependencies.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 58 / 60



References

Discovering AI

Deep Learning with Python, François Chollet.

Coursera - Deep Learning Specialization by Andrew Ng from Stanford
University.

Use Google Colab to write code that you can test without having to
install anything on your computer.

Ask ChatGPT for help.

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 59 / 60

https://www.coursera.org/specializations/deep-learning
https://colab.research.google.com/
https://chat.openai.com/


References

Thank you for your attention.

Questions and/or discussion?

Michal Vašinek (VŠB-Technical University of OstravaFaculty of Electrical Engineering and Computer Science, Department of Computer Science)Artificial Intelligence March 25, 2024 60 / 60


	Introduction to Neural Networks
	Basic concepts
	Applications of neural networks in management

	Components of Neural Networks
	Linearly separable problems
	Perceptron
	Neural Networks with Hidden Layers
	Learning with Backpropagation
	Data Preparation
	Evaluation of Neural Networks

	Advanced Neural Networks for Time Series Predictions
	References

