VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
|| || UNIVERSITY [ ENGINEERING AND COMPUTER | OF COMPUTER
OF OSTRAVA | SCIENCE SCIENCE

Machine Learning

Regression

Jan Platos
November 22, 2023
Department of Computer Science

Faculty of Electrical Engineering and Computer Science
V3B - Technical University of Ostrava



Regression



Regression

- In several cases the class label is numerical.
- The goal is to minimize the squared error of prediction.

- The predicted class label is also referred to as the response variable,
dependent variable or regressand.

- The feature variables are referred to as explanatory variables, input variables,
predictor variables, independent variables or regressors.

- The prediction process is referred to as regression modeling.



Regression - Linear Regression

- Let D be an n x d data matrix.
- The feature vector X;, i-th row of D, is the d-dimensional input vector.
- The corresponding response variable is y;.

- In linear regression, the dependence of each response variable y; on the X; is
modeled as a linear relationship:

y,zwz VI€{1,,H}

- W= (w,...,wy) is a d-dimensional vector of coefficients that needs to be

learned from the training data to minimize the unexplained error
n

E= > (W% )’
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Regression - Linear Regression

- The bias b may be modeled:
- as a part of the W and artificial
dimension in training data that is :
setto 1.
- removed due to mean-centered
the data matrix and response
variables.

RESPONSE VARIABLE

- The data are

normalized/standardized to ensure B S S S S S S R
similar scaling and weighting for all
attributes. Figure 1: Linear regression



Regression - Linear Regression

- The objective function O, squared error of prediction, the have to be
minimized by determination of W is defined as (where y = (y1,...,V¥n)):

n
0= (W-X-y) = oW -y
=1
- The gradient of O with respect to W is a vector 2DT(DW') = D'¥.
- Setting the gradient equal to o we get:
D'DW' = D'y

- When D'D is invertible then Wy = (D"D)~'D'y.
- otherwise we may use pseudo-inverse D* = (D'D)~'D' and then W7 = D*y.



Regression - Linear Regression Regularization

- The objective function O minimizes the SSE:
. 2
0= 0w 7]
- Ridge regression reduce the size of the coefficient and minimizes chaotic
behavior.
T _ — 2112
0= oW~y + W
- Lasso regression eliminates small weight (produces sparse model).
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- Mixing model between Lasso and Ridge is called ElasticNet.



Regression - Linear Regression
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Regression - Linear Regression
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Regression - Linear Regression
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Regression - Linear Regression
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Regression - Linear Regression

- Ridge regressor
~—— Multi-layer NN
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Regression - Linear Regression

- Ridge regressor
~—— Multi-layer NN
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Regression - Linear Regression

- Ridge regressor
~—— Multi-layer NN
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Regression - Linear Regression
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Regression - Generalized Linear Models

- Intuitively, we expect that a constant change in a feature variable leads to
the constant change in the response variable.

- This is not true in many cases, e.g. the height of the person is not linearly
dependent on the age of a person.

- Moreover, such features will never be negative.

- The generalized linear models (GLM) solves this problems.

- Each responsible variable y; is modeled as an outcome of a probability
distribution with mean f(W - X;).

- The function f(-) is referred to as the mean function and its inverse as link
function.

- The selection of the mean/link function and corresponding probability
distribution should maximize effectiveness and interpretability of the model.

14



Regression - Generalized Linear Models

- Intuitively, we expect that a constant change in a feature variable leads to
the constant change in the response variable.

- This is not true in many cases, e.g. the height of the person is not linearly
dependent on the age of a person.

- Moreover, such features will never be negative.

- The generalized linear models (GLM) solves this problems.

- Each responsible variable y; is modeled as an outcome of a probability
distribution with mean f(W - X;).

- The function f(-) is referred to as the mean function and its inverse as link
function.

- The selection of the mean/link function and corresponding probability
distribution should maximize effectiveness and interpretability of the model.

- the response variable is modeled using probability, the W is determined

15
using maximum likelihood approach.



Regression - Nonlinear and polynomial regression

- Linear regression cannot capture
nonlinear relationships.

- Linear approach may be applied on
the derived features.

- The derivation means an
application of non-linear functions
on the each input points.

- The new set of points may have
different number of dimensions.
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Figure 2: Linear regression



Regression - Nonlinear and polynomial regression

- The new set of m features denoted as hy(X;) ... hn(X;) for the i-th data point.

- The h(-) represents nonlinear transformation from the d-dimensional input
feature space into 1-dimensional space.

- The size of the new dataset D, is n x m.

- The linear relationship is then defined as :

m
y=>Y_ whi(X)
i=1
- The polynomial regression expands the number of features by factor r

X = (X1, Xg) = XM = (0,8, %3, ..., X, X2, .., XD)

- The Kernel trick is allows by the reformulation of the regression problem with
dot-products.



Regression - Regression Trees

- In reality, local linear regression may be quite effective even when the
relationships is nonlinear.

- This is used in Regression Trees.

- Each test instance is classified with its locally optimized linear regression by
determining its appropriate partition.

- The partition is determined using split criteria in the internal nodes, i.e. the
same as the Decision trees.

- The general strategy of tree construction is the same as for Decision Trees.
- The splits are univariate (single variable/axis parallel).
- The changes are done in splitting criterion determination and in the pruning.

- The number of points used for training need to be high to avoid over-fitting 18



Regression - Regression Trees - Splitting criterion

- Due to numeric nature of the class variable, error-based measure have to be
used instead of entropy or Gini index.

- The regression modeling is applied on each child resulting from potential
split.

- The aggregated squared error of prediction of all training points is computed.
- The split point with the minimum aggregated error is selected.

- The complete regression modeling is computationally very expensive.

- An average variance of the numeric class variable may be used instead.

- The linear regression models are constructed at the leaf nodes after the tree
is created.

- This results in larger trees but it its computational expensiveness is much 19



Regression - Regression Trees

Pruning criterion

- A portion of the training data is not used during construction phase.
- This set is used for evaluation of the squared error of the prediction.

- Leaf nodes are iteratively removed if the accuracy not decreases.

20



Regression - Regression Trees
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Regression - Regression Trees
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Regression - Regression Trees
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Regression - Regression Trees
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Regression- Assessing Model Effectiveness

- Mean Absolute Error (MAE) - is the average of the absolute difference
between the predicted and actual value. It is highly affected by outliers.

n

1 _
MAE = =" lyi = g(X)|

=1
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Regression- Assessing Model Effectiveness

- Mean Squared Error (MSE) - is the average of the squared difference between
the predicted and actual value. It is differentiable and may be used for
optimization.

1 < N
MSE = — 2 (i —9(%)
=

- Root Mean Squared Error (RMSE) - is the square root of the average of the
squared difference of the predicted and actual value. The root mean is able
penalize large errors.

n

RMSE = J :) S i-g (X))

=1
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Regression- Assessing Model Effectiveness

- The effectiveness of the linear regression models can be evaluated with a
measure known as R2-statistics or coefficient of determination.

- The standard Sum of Squared Error is defined for a model g(X) as:

n

SSE=" (vi — 9(X))’

=1

- The Squared Error of the response variable about its mean is defined as:

i=1 j=1 i=1

2
SST:Z (y,z)g) :Z(yl‘—y)z
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Regression- Assessing Model Effectiveness

- The R?-statistics is then defined as:
SSE
RE=1-—"x
- The value is always between 0 and 1 and higher are more desirable.
- For high dimension data, adjusted version is more accurate:

(n — d)SSE

RR=1- 17—
(n —1)SST

- The R?-statistics is not applicable on the nonlinear models.
- The nonlinear regression may be evaluated using pure SSE.

28



Regression- Assessing Model Effectiveness

- Mean Average Percentage Error (MAPE) - is the average percentage error
between the predicted and actual value.

100
MAPE = — 3"
n =

yi — g(Xi) ‘
Vi
- Symmetric Mean Average Percentage Error (SMAPE) - is the symmetric

average percentage error between the predicted and actual value.

100 <~ |vi — 9(%)]
SMAPE = — == 4
n Z lvil+]g(X;)|
2
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