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Regression



Regression

• In several cases the class label is numerical.

• The goal is to minimize the squared error of prediction.

• The predicted class label is also referred to as the response variable,
dependent variable or regressand.

• The feature variables are referred to as explanatory variables, input variables,
predictor variables, independent variables or regressors.

• The prediction process is referred to as regression modeling.
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Regression - Linear Regression

• Let D be an n× d data matrix.

• The feature vector Xi, i-th row of D, is the d-dimensional input vector.

• The corresponding response variable is yi.

• In linear regression, the dependence of each response variable yi on the Xi is
modeled as a linear relationship:

yi ≈ W · Xi ∀i ∈ {1, . . . ,n}

• W = (w1, . . . ,wd) is a d-dimensional vector of coefficients that needs to be
learned from the training data to minimize the unexplained error

E =
n∑
i=1

(
W · Xi − yi

)2
2



Regression - Linear Regression

• The bias b may be modeled:
• as a part of the W and artificial
dimension in training data that is
set to 1.

• removed due to mean-centered
the data matrix and response
variables.

• The data are
normalized/standardized to ensure
similar scaling and weighting for all
attributes.
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(a) Linear regression y = x (b) Nonlinear regression y = x2

Figure 11.1: Examples of linear and nonlinear regression

data matrix and the response variable. In such a case, it can be shown that the bias term
is not necessary (see Exercise 8). Furthermore, the standard deviations of all columns of
the data matrix, except for the artificial column, are assumed to have been scaled to 1.
In general, it is common to standardize the data in this way to ensure similar scaling and
weighting for all attributes. An example of a linear relationship for a 1-dimensional feature
variable is illustrated in Fig. 11.1a.

To minimize the squared-error of prediction on the training data, one must determine
W that minimizes the following objective function O:

O =
n∑

i=1

(W ·Xi − yi)2 = ||DW
T − y||2. (11.3)

Using2 matrix calculus, the gradient of O with respect to W can be shown to be the
d-dimensional vector 2DT (DW

T − y). Setting the gradient to 0 yields the following d-
dimensional vector of optimization conditions:

DTDW
T
= DT y. (11.4)

If the symmetric matrix DTD is invertible, then the solution for W can be derived from the
aforementioned condition asW

T
= (DTD)−1DT y. The numerical class value of a previously

unseen test instance T can then be predicted as the dot product between W and T .
It is noteworthy that the matrix (DTD)−1DT is also referred to as the Moore–Penrose

pseudoinverse D+ of the matrix D. Therefore, the solution to linear regression can also be
expressed as D+ y. The pseudoinverse is more generally defined even for the case where
DTD is not invertible:

D+ = limδ→0(DTD + δ2I)−1DT . (11.5)

2Excluding constant terms, the objective function O = (DW
T − y)T (DW

T − y) can be expanded to the

two additive terms WDTDW
T

and −(WDT y + yTDW
T
) = −2WDT y. The gradients of these terms are

2DTDW
T

and −2DT y, respectively. In the event that the Tikhonov regularization term λ||W ||2 is added

to the objective function, an additional term of 2λW
T

will appear in the gradient.

Figure 1: Linear regression
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Regression - Linear Regression

• The objective function O, squared error of prediction, the have to be
minimized by determination of W is defined as (where y = (y1, . . . , yn)):

O =
n∑
i=1

(
W · Xi − yi

)2
=

∥∥∥DWT − y
∥∥∥2

• The gradient of O with respect to W is a vector 2DT(DWT
) = DTy.

• Setting the gradient equal to o we get:

DTDWT
= DTy

• When DTD is invertible then WT = (DTD)−1DTy.
• otherwise we may use pseudo-inverse D+ = (DTD)−1DT and then WT = D+y.
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Regression - Linear Regression Regularization

• The objective function O minimizes the SSE:

O =
∥∥∥DWT − y

∥∥∥2
• Ridge regression reduce the size of the coefficient and minimizes chaotic
behavior.

O =
∥∥∥DWT − y + λ

∥∥W∥∥2∥∥∥2
• Lasso regression eliminates small weight (produces sparse model).

O =

∥∥∥∥∥DWT − y + λ
d∑
i=1

|wi|

∥∥∥∥∥
2

• Mixing model between Lasso and Ridge is called ElasticNet.
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Regression - Linear Regression
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Regression - Linear Regression
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Regression - Linear Regression
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Regression - Linear Regression
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Regression - Linear Regression
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Regression - Linear Regression
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Regression - Linear Regression
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Regression - Linear Regression
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Regression - Generalized Linear Models

• Intuitively, we expect that a constant change in a feature variable leads to
the constant change in the response variable.

• This is not true in many cases, e.g. the height of the person is not linearly
dependent on the age of a person.

• Moreover, such features will never be negative.
• The generalized linear models (GLM) solves this problems.
• Each responsible variable yi is modeled as an outcome of a probability
distribution with mean f (W · Xi).

• The function f (·) is referred to as the mean function and its inverse as link
function.

• The selection of the mean/link function and corresponding probability
distribution should maximize effectiveness and interpretability of the model.
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Regression - Generalized Linear Models

• Intuitively, we expect that a constant change in a feature variable leads to
the constant change in the response variable.

• This is not true in many cases, e.g. the height of the person is not linearly
dependent on the age of a person.

• Moreover, such features will never be negative.
• The generalized linear models (GLM) solves this problems.
• Each responsible variable yi is modeled as an outcome of a probability
distribution with mean f (W · Xi).

• The function f (·) is referred to as the mean function and its inverse as link
function.

• The selection of the mean/link function and corresponding probability
distribution should maximize effectiveness and interpretability of the model.

• the response variable is modeled using probability, the W is determined
using maximum likelihood approach.
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Regression - Nonlinear and polynomial regression

• Linear regression cannot capture
nonlinear relationships.

• Linear approach may be applied on
the derived features.

• The derivation means an
application of non-linear functions
on the each input points.

• The new set of points may have
different number of dimensions.
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(a) Linear regression y = x (b) Nonlinear regression y = x2

Figure 11.1: Examples of linear and nonlinear regression

data matrix and the response variable. In such a case, it can be shown that the bias term
is not necessary (see Exercise 8). Furthermore, the standard deviations of all columns of
the data matrix, except for the artificial column, are assumed to have been scaled to 1.
In general, it is common to standardize the data in this way to ensure similar scaling and
weighting for all attributes. An example of a linear relationship for a 1-dimensional feature
variable is illustrated in Fig. 11.1a.

To minimize the squared-error of prediction on the training data, one must determine
W that minimizes the following objective function O:

O =
n∑

i=1

(W ·Xi − yi)2 = ||DW
T − y||2. (11.3)

Using2 matrix calculus, the gradient of O with respect to W can be shown to be the
d-dimensional vector 2DT (DW

T − y). Setting the gradient to 0 yields the following d-
dimensional vector of optimization conditions:

DTDW
T
= DT y. (11.4)

If the symmetric matrix DTD is invertible, then the solution for W can be derived from the
aforementioned condition asW

T
= (DTD)−1DT y. The numerical class value of a previously

unseen test instance T can then be predicted as the dot product between W and T .
It is noteworthy that the matrix (DTD)−1DT is also referred to as the Moore–Penrose

pseudoinverse D+ of the matrix D. Therefore, the solution to linear regression can also be
expressed as D+ y. The pseudoinverse is more generally defined even for the case where
DTD is not invertible:

D+ = limδ→0(DTD + δ2I)−1DT . (11.5)

2Excluding constant terms, the objective function O = (DW
T − y)T (DW

T − y) can be expanded to the

two additive terms WDTDW
T

and −(WDT y + yTDW
T
) = −2WDT y. The gradients of these terms are

2DTDW
T

and −2DT y, respectively. In the event that the Tikhonov regularization term λ||W ||2 is added

to the objective function, an additional term of 2λW
T

will appear in the gradient.

Figure 2: Linear regression
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Regression - Nonlinear and polynomial regression

• The new set of m features denoted as h1(Xi) . . .hm(Xi) for the i-th data point.
• The h(·) represents nonlinear transformation from the d-dimensional input
feature space into 1-dimensional space.

• The size of the new dataset Dh is n×m.
• The linear relationship is then defined as :

y =
m∑
i=1

wihi(X)

• The polynomial regression expands the number of features by factor r

X = (x1, . . . , xd) ⇒ Xh = (x1, x21 , x31 , . . . , xr1, x2, . . . , xrd)

• The Kernel trick is allows by the reformulation of the regression problem with
dot-products.
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Regression - Regression Trees

• In reality, local linear regression may be quite effective even when the
relationships is nonlinear.

• This is used in Regression Trees.

• Each test instance is classified with its locally optimized linear regression by
determining its appropriate partition.

• The partition is determined using split criteria in the internal nodes, i.e. the
same as the Decision trees.

• The general strategy of tree construction is the same as for Decision Trees.

• The splits are univariate (single variable/axis parallel).

• The changes are done in splitting criterion determination and in the pruning.

• The number of points used for training need to be high to avoid over-fitting 18



Regression - Regression Trees - Splitting criterion

• Due to numeric nature of the class variable, error-based measure have to be
used instead of entropy or Gini index.

• The regression modeling is applied on each child resulting from potential
split.

• The aggregated squared error of prediction of all training points is computed.

• The split point with the minimum aggregated error is selected.

• The complete regression modeling is computationally very expensive.

• An average variance of the numeric class variable may be used instead.

• The linear regression models are constructed at the leaf nodes after the tree
is created.

• This results in larger trees but it its computational expensiveness is much
lower.
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Regression - Regression Trees

Pruning criterion

• A portion of the training data is not used during construction phase.

• This set is used for evaluation of the squared error of the prediction.

• Leaf nodes are iteratively removed if the accuracy not decreases.
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Regression - Regression Trees
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Regression - Regression Trees
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Regression - Regression Trees
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Regression - Regression Trees
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Regression- Assessing Model Effectiveness

• Mean Absolute Error (MAE) - is the average of the absolute difference
between the predicted and actual value. It is highly affected by outliers.

MAE =
1
n

n∑
i=1

|yi − g(Xi)|
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Regression- Assessing Model Effectiveness

• Mean Squared Error (MSE) - is the average of the squared difference between
the predicted and actual value. It is differentiable and may be used for
optimization.

MSE =
1
n

n∑
i=1

(
yi − g(Xi)

)2
• Root Mean Squared Error (RMSE) - is the square root of the average of the
squared difference of the predicted and actual value. The root mean is able
penalize large errors.

RMSE =

√√√√ 1
n

n∑
i=1

(
yi − g

(
Xi
))2
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Regression- Assessing Model Effectiveness

• The effectiveness of the linear regression models can be evaluated with a
measure known as R2-statistics or coefficient of determination.

• The standard Sum of Squared Error is defined for a model g(X) as:

SSE =
n∑
i=1

(
yi − g(Xi)

)2
• The Squared Error of the response variable about its mean is defined as:

SST =
n∑
i=1

yi − n∑
j=1

yj
n

2

=
n∑
i=1

(yi − y)2

27



Regression- Assessing Model Effectiveness

• The R2-statistics is then defined as:

R2 = 1− SSE
SST

• The value is always between 0 and 1 and higher are more desirable.
• For high dimension data, adjusted version is more accurate:

R2 = 1− (n− d)SSE
(n− 1)SST

• The R2-statistics is not applicable on the nonlinear models.
• The nonlinear regression may be evaluated using pure SSE.
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Regression- Assessing Model Effectiveness

• Mean Average Percentage Error (MAPE) - is the average percentage error
between the predicted and actual value.

MAPE =
100
n

n∑
i=1

∣∣∣∣yi − g(Xi)
yi

∣∣∣∣
• Symmetric Mean Average Percentage Error (SMAPE) - is the symmetric
average percentage error between the predicted and actual value.

SMAPE =
100
n

n∑
i=1

∣∣yi − g(Xi)
∣∣

|yi|+
∣∣g(Xi)∣∣
2
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Questions?
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