
Machine Learning
Artificial Neural Networks

Jan Platoš
November 22, 2023

Department of Computer Science
Faculty of Electrical Engineering and Computer Science
VŠB - Technical University of Ostrava

Artificial Neural Networks

Artificial Neural Networks

Human nervous system
• The system is composed of
cells, called neurons.

• The neurons are connected
to other neurons using
synapses.

• The strength of the
synapses is affected by
learning (external stimuli).

Artificial Neural Networks
• The system is composed of nodes, called
neurons.

• These neurons are units of computation
that:

• Receive the inputs from other neurons.
• Processes these inputs (computes).
• Set its output.

• The computation process is affected by the
input weights and activation function.

• The weights are analogous to the strength of
the synapse.

• The weights are affected by the learning
process.

1

Artificial Neural Networks

• The neural networks ability to learn is based on the architecture of the
network.

• Single-layer neural network.
• Multi-layer neural network.
• Recurrent neural networks.
• Kohonen Maps (Self Organized Maps).
• Convolution networks.
• Deep neural networks.
• ...
•

• The learning is done by presenting the test instances to the network and
correction of the output according to the expected output by weight
adjusting.

2

Single-layer Neural Network: The Perceptron

• The basic architecture of neural network.
• The structure has two layers.

• The input layer has one node for each input
attribute.

• The input node only transmit the input
value to the output node.

• The connection between input and output
nodes are weighted.

• The output layer consist of one output
neuron.

• The output neuron computes the output
value.

• The class labels are from the set of {−1,+1}.

328 CHAPTER 10. DATA CLASSIFICATION

Algorithm Perceptron(Training Data: D)
begin
Initialize weight vector W to random values;
repeat
Receive next training tuple (Xi, yi);
zi = W ·Xi + b;
W = W + η(yi − zi)Xi;

until convergence;
end

Figure 10.9: The perceptron algorithm

INPUT NODES

X 2

Xi
1

INPUT NODES

OUTPUT NODE
w1

Xi
3

Xi OUTPUT NODE

Zi

w2

w3

w4

Xi
4

Xi
5

w5

INPUT LAYER

Xi
2

Xi
1

HIDDEN LAYER

Xi
3

i

Zi

OUTPUT LAYER

Xi
4

Xi
5Xi

reyalitluM)b(nortpecreP)a(

Figure 10.10: Single and multilayer neural networks

A question arises as to how the learning rate η may be chosen. A high value of η will
result in fast learning rates, but may sometimes result in suboptimal solutions. Smaller
values of η will result in a convergence to higher-quality solutions, but the convergence will
be slow. In practice, the value of η is initially chosen to be large and gradually reduced, as
the weights become closer to their optimal values. The idea is that large steps are likely
to be helpful early on, but may result in oscillation between suboptimal solutions at later
stages. For example, the value of η is sometimes selected to be proportional to the inverse
of the number of cycles through the training data (or epochs) so far.

10.7.2 Multilayer Neural Networks

The perceptron model is the most basic form of a neural network, containing only a single
input layer and an output layer. Because the input layers only transmit the attribute values
without actually applying any mathematical function on the inputs, the function learned
by the perceptron model is only a simple linear model based on a single output node. In
practice, more complex models may need to be learned with multilayer neural networks.

Multilayer neural networks have a hidden layer, in addition to the input and output
layers. The nodes in the hidden layer can, in principle, be connected with different types
of topologies. For example, the hidden layer can itself consist of multiple layers, and nodes
in one layer might feed into nodes of the next layer. This is referred to as the multilayer
feed-forward network. The nodes in one layer are also assumed to be fully connected to the

Figure 1: The Perceptron

3

Single-layer Neural Network

• The weighted inputs are transformed into
output value.

• The value in drawn from the set {−1,+1}.
• The value may be interpreted as the
perceptron prediction of the class variable.

• The weights W = {w1, . . . ,wd} are modified
when the predicted output does not match
expected value.

328 CHAPTER 10. DATA CLASSIFICATION

Algorithm Perceptron(Training Data: D)
begin
Initialize weight vector W to random values;
repeat
Receive next training tuple (Xi, yi);
zi = W ·Xi + b;
W = W + η(yi − zi)Xi;

until convergence;
end

Figure 10.9: The perceptron algorithm

INPUT NODES

X 2

Xi
1

INPUT NODES

OUTPUT NODE
w1

Xi
3

Xi OUTPUT NODE

Zi

w2

w3

w4

Xi
4

Xi
5

w5

INPUT LAYER

Xi
2

Xi
1

HIDDEN LAYER

Xi
3

i

Zi

OUTPUT LAYER

Xi
4

Xi
5Xi

reyalitluM)b(nortpecreP)a(

Figure 10.10: Single and multilayer neural networks

A question arises as to how the learning rate η may be chosen. A high value of η will
result in fast learning rates, but may sometimes result in suboptimal solutions. Smaller
values of η will result in a convergence to higher-quality solutions, but the convergence will
be slow. In practice, the value of η is initially chosen to be large and gradually reduced, as
the weights become closer to their optimal values. The idea is that large steps are likely
to be helpful early on, but may result in oscillation between suboptimal solutions at later
stages. For example, the value of η is sometimes selected to be proportional to the inverse
of the number of cycles through the training data (or epochs) so far.

10.7.2 Multilayer Neural Networks

The perceptron model is the most basic form of a neural network, containing only a single
input layer and an output layer. Because the input layers only transmit the attribute values
without actually applying any mathematical function on the inputs, the function learned
by the perceptron model is only a simple linear model based on a single output node. In
practice, more complex models may need to be learned with multilayer neural networks.

Multilayer neural networks have a hidden layer, in addition to the input and output
layers. The nodes in the hidden layer can, in principle, be connected with different types
of topologies. For example, the hidden layer can itself consist of multiple layers, and nodes
in one layer might feed into nodes of the next layer. This is referred to as the multilayer
feed-forward network. The nodes in one layer are also assumed to be fully connected to the

Figure 2: The Perceptron

4

Single-layer Neural Network

• The function learned by the perceptron is referred as activation function.
• The function is usually signed linear function (e.g. weighted sum).
• The W = {w1, . . . ,wd} are the weights for the connections of d different
inputs to the output neuron.

• The d is also the dimensionality of the data.
• The b is the bias associated with the activation function.
• The output zi ∈ {−1,+1} is for the data record Xi = (x1i , . . . , x

d
i) computed as

follows:

zi = sign


d∑
j=1

wjx
j
i + b

 = sign
{
W · Xi + b

}
5

Single-layer Neural Network

zi = sign


d∑
j=1

wjx
j
i + b

 = sign
{
W · Xi + b

}

• The difference between the prediction of the class value zi and the real class
value yi is (yi − zi) ∈ {−2, 0, 2}.

• The result is 0 when the prediction and reality is the same.
• The weight vector W and bias b need to be updated, based on the error
(yi − zi).

• The learning process is iterative.
• The weight update rule for i-th input point Xi in t-th iteration is as follows:

Wt+1
= Wt

+ η(yi − zi)Xi
6

Single-layer Neural Network

Wt+1
= Wt

+ η(yi − zi)Xi

• The η is the learning rate that regulate the learning speed of the network.
• Each cycle per input points in the learning phase is referred as an epoch.
• The incremental term (yi − zi)Xi is the approximation of the negative of the
gradient of the least=squares prediction error

(yi − zi)2 =
(
yi − sign

(
W · Xi − b

))2
• The update is performed on a tuple-by-tuple basis not a global over whole
dataset.

• The perceptron may be considered a modified version of a gradient descent
method that minimizes the squared error of prediction.

7

Single-layer Neural Network

Wt+1
= Wt

+ η(yi − zi)Xi

• The size of the η affect the speed of the convergence and the quality of the
solution.

• The higher value of η means faster convergence, but suboptimal solution may
be found.

• Lower values of η results in higher-quality solutions with slow convergence.
• In practice, η is decreased systematically with increasing number of epochs
performed.

• Higher values at the beginning allows bigger jumps in weight space and
lower values later allows precise setting of the weights.

8

Multi-layer Neural Network

• The perceptron, with single computational
neuron produces only a linear model.

• Multi-layer perceptron adds a hidden layer
beside the input and output layer.

• The hidden layer itself may consist of
different type of topologies (e.g. several
layers).

• The output of nodes in one layer feed the
inputs of the nodes in the next layer - this
behavior is called feed-forward network.

• The nodes in one layer are fully connected
to the neurons in the previous layer.

328 CHAPTER 10. DATA CLASSIFICATION

Algorithm Perceptron(Training Data: D)
begin
Initialize weight vector W to random values;
repeat
Receive next training tuple (Xi, yi);
zi = W ·Xi + b;
W = W + η(yi − zi)Xi;

until convergence;
end

Figure 10.9: The perceptron algorithm

INPUT NODES

X 2

Xi
1

INPUT NODES

OUTPUT NODE
w1

Xi
3

Xi OUTPUT NODE

Zi

w2

w3

w4

Xi
4

Xi
5

w5

INPUT LAYER

Xi
2

Xi
1

HIDDEN LAYER

Xi
3

i

Zi

OUTPUT LAYER

Xi
4

Xi
5Xi

reyalitluM)b(nortpecreP)a(

Figure 10.10: Single and multilayer neural networks

A question arises as to how the learning rate η may be chosen. A high value of η will
result in fast learning rates, but may sometimes result in suboptimal solutions. Smaller
values of η will result in a convergence to higher-quality solutions, but the convergence will
be slow. In practice, the value of η is initially chosen to be large and gradually reduced, as
the weights become closer to their optimal values. The idea is that large steps are likely
to be helpful early on, but may result in oscillation between suboptimal solutions at later
stages. For example, the value of η is sometimes selected to be proportional to the inverse
of the number of cycles through the training data (or epochs) so far.

10.7.2 Multilayer Neural Networks

The perceptron model is the most basic form of a neural network, containing only a single
input layer and an output layer. Because the input layers only transmit the attribute values
without actually applying any mathematical function on the inputs, the function learned
by the perceptron model is only a simple linear model based on a single output node. In
practice, more complex models may need to be learned with multilayer neural networks.

Multilayer neural networks have a hidden layer, in addition to the input and output
layers. The nodes in the hidden layer can, in principle, be connected with different types
of topologies. For example, the hidden layer can itself consist of multiple layers, and nodes
in one layer might feed into nodes of the next layer. This is referred to as the multilayer
feed-forward network. The nodes in one layer are also assumed to be fully connected to the

Figure 3: Multi-layer neural network

9

Multi-layer Neural Network

• The topology of the multi-layer feed-forward network is determined
automatically.

• The perceptron may be considered as a single-layer feed-forward neural
network.

• The number of layers and the number of nodes in each layer have to be
determined manually.

• Standard multi-layer network uses only one hidden layer, i.e. this is
considered as a two-layer feed forward neural network.

• The activation function is not limited to linear signed weighted sum, other
functions such as logistic, sigmoid or hyperbolic tangents are allowed.

10

Multi-layer Neural Network

Sigmoid/Logistic func-
tion

σ(x) = 1
1+e−x

TanH tanh(x) =
(
ex−e−x)
(ex+e−x)

ReLU (Rectified linear
unit)

f (x) =
{
0 forx ≤ 0
x forx ≥ 0

Sinc f (x) =
{
1 forx = 0
sin(x)
x forx 6= 0

Gaussian f (x) = ex2

Softmax σ(z)j = ezj∑K
k=1 e

zk
11

Multi-layer Neural Network - Learning algorithm

• The learning phase is more complicated than the one in perceptron.

• The biggest problem is the get the error in the hidden layer, because the
direct class label is not defined on this level.

• Some kind of feedback is required from the nodes in the forward layer to the
nodes in earlier layers about the expected outputs and corresponding errors.

• This principle is realized in the back-propagation algorithm.

12

Multi-layer Neural Network - Learning algorithm

Back-propagation algorithm

• Forward phase:
• The input is fed into input neurons.
• The computed values are propagated using current weights to next layers.
• The final predicted output is compared with the class label and the error is
determined.

• Backward phase:
• The main goal is to learn weights in the backward direction by providing the
error estimation from later layers to the earlier layers.

• The estimation in the hidden layer is computed as a function of the error
estimate and weight is the layers ahead.

• The error is estimated again using the gradient method.
• The process is complicated by the using of non-linear functions in the inner
nodes.

13

Artificial Neural Networks - Multi-layer Neural Network - Back-propagation alg.

• Lets have an example multi-layer neural network with single output neuron.
• In each iteration do take the i-th input vector.
• Pass it through the networks using the forward pass.
• Compare the i-th output oi to the expected value yi.
• Compute the error and update the weight using the learning rate η.
• The goal is to optimize the weights wi to minimize the error function of the
differences between yi and oi.

14

Artificial Neural Networks - Multi-layer Neural Network - Back-propagation alg.

• The error function E over whole dataset of size n may be defined as follows:

E =
1
2

n∑
i=0

(yi − oi)2

• The weights of the neurons must be adapted according to the error produced
by the neuron weight.

wi+1 = −η
∂E
∂wi

+ µwi

15

Artificial Neural Networks - Multi-layer Neural Network - Back-propagation alg.

• The partial derivation may be computed using so called chain rule.

∂E
∂wi

=
∂E
∂y

· ∂y
∂z

· ∂z
∂wi

• where

y = 1
1+ e−λz z =

m∑
i=0

wixi

• therefore
∂z
∂wi

= xi
∂y
∂z

= y · (1− y)λ

16

Artificial Neural Networks - Multi-layer Neural Network - Back-propagation alg.

• The first partial derivation
computation differs for neuron from
output and hidden layer.

• The solution for the output layer
and i-th output is as follows:

∂E
∂y

= (yi − oi)

y

n

wi

i1

z

w1 wn

17

Artificial Neural Networks - Multi-layer Neural Network - Back-propagation alg.

• The solution for the hidden layer
and i-th output is as follows:

∂E
∂y

=
m∑
j=0

∂E
∂zj

· ∂z
j

∂y
=

m∑
j=0

∂E
∂zj

· wj

wj

y

yk

wi

yiy1

Z

w1 wn

zmziz1

wmw1

y1 yi ym

18

Artificial Neural Networks - Multi-layer Neural Network

• It has ability not only to capture decision boundaries of arbitrary shapes, but
also non-contiguous class distribution with different decision boundaries in
different regions.

• With increasing number of nodes and layers, virtually any function may be
approximated.

• The neural networks are universal function approximate.

19

Artificial Neural Networks - Multi-layer Neural Network

• This generality brings several challenges that have to be dealt with:
• The design of the topology presents many trade=off challenges for the analyst.
• Higher number of nodes and layers provides greater generality but also the risk
of over-fitting.

• There is very little guidance provided from the data.
• The neural network has poor interpretability associated with the classification
process.

• The learning process is very slow and sensitive to the noise.
• Larger networks has very slow learning process.

20

Multi-layer Neural Network - Learning algorithm

Other learning algorithms:

• Gradient descent
• Stochastic Gradient Descent

• Momentum
• Averaging
• AdaGrad
• RMSProp
• Adam

• Newton’s method
• Conjugate gradient
• Quasi-Newton method
• Levenberg-Marquardt algorithm

21

Multi-layer Neural Network

• The multi-layer neural network is more powerful than kernel SVM in its
ability to capture arbitrary functions.

• It has ability not only to capture decision boundaries of arbitrary shapes, but
also non-contiguous class distribution with different decision boundaries in
different regions.

• With increasing number of nodes and layers, virtually any function may be
approximated.

• The neural networks are universal function approximators.

22

Multi-layer Neural Network

• This generality brings several challenges that have to be dealt with:
• The design of the topology presents many trade=off challenges for the analyst.
• Higher number of nodes and layers provides greater generality but also the risk
of over-fitting.

• There is very little guidance provided from the data.
• The neural network has poor interpretability associated with the classification
process.

• The learning process is very slow and sensitive to the noise.
• Larger networks has very slow learning process.

23

Convolutional Neural Network

• A version of MLP that is inspired by the visual perception of animals.

• Instead of fully connected layers it deals with the image processing with
different structure.

• The layers of a CNN have neurons arranged in 3 dimensions: width, height
and depth.

• The neurons inside a layer are only connected to a small region of the layer
before it, called a receptive field (filters).

• CNNs exploit spatially local correlation by enforcing a local connectivity
pattern between neurons of adjacent layers.

24

Convolutional Neural Network

• Stacking many layers leads to non-linear ”filters” that become increasingly
”global”.

• This allows the network to first create good representations of small parts of
the input, then assemble representations of larger areas from them.

• Each filter is replicated across the entire visual field with the same
parametrization (weight vector and bias) and form a feature map.

• Features are detected regardless of their position in the visual field.

25

Convolution Neural Network Model

A convolution is defined as the integral of the product of the two functions
after one is reversed and shifted. It is a mathmematical way how to

analyze behavior of the functions and the relation between the functions.

In image processing, kernel or convolution matrix or mask is a small
matrix. In general the convolution in image processing is defined as:

g(x, y) = ω ∗ f (x, y) =
a∑

s=−a

b∑
t=−b

ω(s, t)f (x − s, y − t)

where g(x, y) is filtered image, f (x, y) is original image, ω if the filter kernel.

26

Convolution Neural Network Model

A convolution is defined as the integral of the product of the two functions
after one is reversed and shifted. It is a mathmematical way how to

analyze behavior of the functions and the relation between the functions.

In image processing, kernel or convolution matrix or mask is a small
matrix. In general the convolution in image processing is defined as:

g(x, y) = ω ∗ f (x, y) =
a∑

s=−a

b∑
t=−b

ω(s, t)f (x − s, y − t)

where g(x, y) is filtered image, f (x, y) is original image, ω if the filter kernel.

26

Convolution Neural Network

A kernel (also called a filter) is a smaller-sized matrix in comparison to the
dimensions of the input image, that consists of real valued entries.

27

Convolutional Neural Network - Sample Convolution Kernels

Sobel vertical Sobel horizontal
Identity edge detection edge detection Edge detection0 0 0
0 1 0
0 0 0


+1 0 −1
+2 0 −2
+1 0 −1


+1 +2 +1
0 0 0
−1 −2 −1


−1 −1 −1
−1 8 −1
−1 −1 −1


Sharpen Uniform blur Gaussian blur 3x3 0 −1 0

−1 5 −1
0 −1 0

 1
9

1 1 1
1 1 1
1 1 1

 1
16

1 2 1
2 4 2
1 2 1



28

Convolutional Neural Network

Example of the CNN architecture

29

Convolutional Neural Network - Basic properties

Size of the kernel defines the dimensions of the kernels.

Number of input channels reflects the number of channels of the image
(grayscale, RGB, etc.)

Number of output channels defines the number of kernels applied on the
image, and, therefore, the output of the layer.

Stride is the size of the step that kernel is moved on the image.

Padding is system the kernel is moder on the image.

30

Convolutional Neural Network - Padding

One tricky issue when applying convolutional is losing pixels on the edges
of our image. A straightforward solution to this problem is to add extra
pixels around the boundary of our input image, which increases the

effective size of the image.

31

Convolutional Neural Network - Pooling

Pooling is a way how to decrease the amount of information transfered
from one layer to another. The standard way ho to do it is Average Pooling

and Maximum Pooling.

32

Recurrent Neural Network (RNN)

• A class of artificial neural network where connections between units form a
directed cycle.

• This structure allows the dynamic temporal behavior or memory.

• Such network are able do deal with sequences of inputs as sequences not
isolated inputs.

• Training is performed by gradient descent or global optimization techniques.

33

Recurrent Neural Network (RNN) - Basic types

• Fully recurrent network - basic architecture with recurrent connection in
each level and time-varying activation function.

• Recursive neural network - the network that applies the same weights
recursively over a graph-like structure. Designed for representation of the
structures like logical terms.

• Hopfield network with proper learning method it is a robust
content-addressable memory. Its variations it is the bidirectional associative
memory.

• Echo state network - a special RNN that has sparsely connected random
hidden layer. Only the weights of the output neuron may be changed during
training.

34

Recurrent Neural Networks

A

ht

xt

= A

h0

x0

A

h1

x1

A

h2

x2

A

ht

xt…

35

Recurrent Neural Networks

A

ht

xt

=

A

h0

x0

A

h1

x1

A

h2

x2

A

ht

xt…

35

Recurrent Neural Networks

A

ht

xt

= A

h0

x0

A

h1

x1

A

h2

x2

A

ht

xt…

35

Recurrent Neural Networks

A

ht

xt

= A

h0

x0

A

h1

x1

A

h2

x2

A

ht

xt…

35

Recurrent Neural Networks

A

ht

xt

= A

h0

x0

A

h1

x1

A

h2

x2

A

ht

xt…

35

Recurrent Neural Networks

A

ht

xt

= A

h0

x0

A

h1

x1

A

h2

x2

A

ht

xt…

35

Recurrent Neural Networks

• The hidden state A is designed as ht and its formula is as follows:

ht = f (ht−1, xt)

• ht−1 is the previous state and xt is the current input.

• The RNN neuron uses a non-linear activation functions.

• The Sigmoid, hyperbolic tangent, or ReLu is used.

36

Recurrent Neural Networks

• When an tanh activation is used then the formula is:

ht = tanh(Whht−1 +Wxxt)

• Wh is the weight of the recurrent neuron and Wx is the weight of the
input neuron.

yt = Wyht

• wy is the output weight and yt it the current output.

37

Recurrent Neural Networks - Training phase

1. A single time step of the input is provided to the network.
2. The current state using set of current input and the previous state is
computed.

3. One can go as many time steps according to the problem and join the
information from all the previous states.

4. Once all the time steps are completed the final current state is used to
calculate the output.

5. The output is then compared to the actual output i.e the target output
and the error is generated.

6. The error is then back-propagated to the network to update the
weights and hence the network (RNN) is trained.

38

Recurrent Neural Networks

• Advantages of the RNNs:
• An RNN remembers each and every information through time.

• Model size does not increasing with the input length.

• Computation of current step can use information from many steps back.

• Weights are shared across time steps.

• Recurrent neural network are even used with convolutional layers to extend the
effective pixel neighborhood.

• Disadvantages of the RNNs:
• Training an RNN is a very difficult task.

• It cannot process very long sequences using tanh or ReLU as an activation
function.

• Gradient vanishing and exploding problems. 39

Long Short Term-Memory (LSTM)

xt-1

ct-1,ht-1

ot-1

xt

ot

ct+1,ht+1

xt+1

ot+1

LSTM unit

σ σ tanh σ

tanh

ct-1

ht-1

xt

ht

ct

Ft It
Ot

ht

.

By fdeloche - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=60149410

40

https://commons.wikimedia.org/w/index.php?curid=60149410

Long Short Term-Memory (LSTM)

xt-1

ct-1,ht-1

ot-1

xt

ot

ct+1,ht+1

xt+1

ot+1

LSTM unit

σ σ tanh σ

tanh

ct-1

ht-1

xt

ht

ct

Ft It
Ot

ht

.

• Contains a set of recurrent
connected subnets - memory
blocks.

• Capable to learn long term
dependencies practically.

• Gates are non-linear neural net
layer (sigmoid) and regulate the
amount of information that is let
through.

• Each block contains one or more
self-connected memory cells and
three multiplicative units -
represents write=input, read=output
and reset=forget operations.

41

Gate Recurrent Unit (GRU)

xt-1

ht-1

ot-1

xt

ot

ht+1

xt+1

ot+1

GRU unit

σ
tanh

ht-1

xt

ht
Rt

ht

σ

1-
Zt

.

By fdeloche - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=60466441

42

https://commons.wikimedia.org/w/index.php?curid=60466441

Gate Recurrent Unit (GRU)

xt-1

ht-1

ot-1

xt

ot

ht+1

xt+1

ot+1

GRU unit

σ
tanh

ht-1

xt

ht
Rt

ht

σ

1-
Zt

.

• Similar to LSTM.
• Merges cell state and hidden state
into one state.

• Combines the forget and input gate
into an update gate.

• Therefore, has less parameter and
less complex structure.

43

Types of Forecasting

A. Karpathy, http://karpathy.github.io/2015/05/21/rnn-effectiveness/

44

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Types of models

• Vanilla RNN
• A single RNN layer and one dense layer are stacked.
• Single layer may have as many neurons as needed.

• Stacked RNN
• A multiple RNN layers and one dense layer are stacked.
• Allows more complex model to be build.

• Bidirectional RNN
• A time series is processed from both direction.

• CNN RNN
• Convolution network detect patterns in a series.
• These patterns are processed by the RNN layer.

• ConvRNN
• Convolution is a direct input to the RNN neurons.

45

Questions?

	Artificial Neural Networks
	Single-layer Neural Network
	Multi-layer Neural Network
	Convolutional Neural Network
	Recurrent Neural Network

	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

