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Classification

Basic questions:

• What it is?
• What it needs?
• What it produces?

Definition
Given a set of training data points, each of which is associated with a class label,
determine the class label of one or more previously unseen test instances.
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Classification

Phases of classification:

• Training phase - construction of models from the training instances.
• Testing phase - determining class labels of one or more training instances.

Output of classification:

• Label prediction - one fixed label is predicted.
• Numerical score - numerical evaluation of each label assignment to the
instance.
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Feature Selection

• Selection of the attributes subset for classification.

• Three types of models:
1. Filter models – crisp mathematical criterion is used to evaluate each subset of
attributes.

2. Wrapper models – the model is run on each candidate subset to evaluate its
efficiency.

3. Embedded models – The model information is used to prune irrelevant
attributes.
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Feature Selection - Filter models

Gini index:

• Measures the discriminative power of a particular attributes subset.
• Usually used to categorical data/discretized numerical data.

Feature value index:

G(vi) = 1−
k∑
j=1

p2j

• v1, v2, . . . , vr are r values of a particular attribute.
• pj is the fraction of points that contains attribute vi that belong to the class j
for k possible classes.

Feature index:

G =
1
n

r∑
i=1

niG(vi)

• n is the number of input points and ni is the number of point with the value
vi.
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Feature Selection - Filter models

Entropy:

• Measures the information gain from fixing a specific attribute value.

Feature value entropy:

E(vi) = −
k∑
j=1

pj log(pj)

• v1, v2, . . . , vr are r values of a particular attribute.
• pj is the fraction of points that contains attribute vi that belong to the class j
for k possible classes.

Feature entropy:

E =
1
n

r∑
i=1

niE(vi)

• n is the number of input points and ni is the number of point with the value
vi.
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Feature Selection - Filter models
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Feature Selection - Filter models

Fisher Score:

• Naturally designed for numeric attributes.
• Measures the the ratio of the average interclass separation to the average
intraclass separation.

F =

∑k
j=1 pj(µj − µ)2∑k

j=1 pjσ2j

• pj is the fraction of data points belonging to class j.
• µi, σj is the mean and standard deviation of data points belonging to class j
for a particular feature.

• µ is the global mean of the data points on the feature being evaluated.
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Feature Selection - Wrapper models

• Different classification models are more accurate with different sets of
features.

• Filter models are agnostic to the particular classification algorithm being
used.

• The characteristics of the specific classification algorithm is used to select
features.

• Linear classifier work more effectively with a set of features where the classes
are best modeled with linear separators.

• Distance based classifier works well with features in which distances reflect
class distributions.

• A specific classification algorithm is used as an input to the feature selection.
• Wrapper models then optimize the feature selection process to the
classification algorithm.

• The basic strategy in wrapper models is to iteratively refine a current set of
features F by successively adding features to it.
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Feature Selection - Wrapper models

• The algorithm starts with empty feature set F = ∅.
• The strategy may be summarized as follows:

• Create an augmented set of features F by adding one or more features to the
current feature set.

• Use a classification algorithm A to evaluate the accuracy of the current set of
features F.

• Use the accuracy to either accept or reject the augmentation of F.
• The augmentation of F can be performed in many different ways.

• Greedy strategy - the set of features in the previous iteration is augmented with
an additional feature with the greatest discriminative power with respect to a
filter criterion).

• Random sampling - features may be selected for addition via random sampling.
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Feature Selection - Wrapper models

• The accuracy of the classification algorithm A is used to determine the
acceptance/rejection of the features.

• The rejected features are removed from the set and another augmentation is
tested.

• This approach is continued until there is no improvement in the current
feature set for a defined minimum number of iterations.

• The final set of featured is sensitive to the choice of the algorithm A.
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Decision Trees

• Classification is modeled using hierarchical decisions on the features that
are arranged in tree-like structure.

• The decision at a particular node, called split criterion, is a relational
condition on one or more features and their values.

• The goal is to identify a split criterion that minimizes the mixing of classes in
each branch.

• Works on binary, numeric and categorical attributes.
• Each sub-space (region) is recursively split until terminal conditions are
reached.

• Univariate or Multivariate split is possible.
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Decision Trees

Weather Temp Walk?
Sunny Cold Yes
Sunny Warm Yes
Sunny Hot No
Cloudy Cold Yes
Cloudy Warm Yes
Cloudy Hot No
Rainy Cold No
Rainy Warm No
Rainy Hot No

Weather==Rainy

Walk=No

Yes

Temp==Hot

Walk=No

Yes

Walk=Yes

No

No
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Decision Trees

Split Criteria:

• The goal is to maximize separation of the different classes among the
children nodes.

• Binary attribute – only one type of split is possible.
• Categorical attribute with r values

• r-way split,
• binary split on 2r − 1 possibilities (all combinations except ∅),
• binary split on r possibilities (one-to-rest strategy).

• Numeric attribute
• A split is made between two values with < or <= relation.
• All values or selected values only may be tested.
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Decision Trees - Split Criteria

Definitions:

• S is a set of points in a branch of a tree.
• |S| is size of the set (number of points in a set).
• r-way split has r subsets S1, . . . , Sr of set S.
• k is the number of classes.
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Decision Trees - Split Criteria

Error rate:

• On a set:
Err (S) = 1− p

• where the p is a fraction of points that belongs to the dominant class from S.

• On r-way split:

Err (S⇒ S1, . . . , Sr) =
r∑
i=1

|Si|
|S|

(1− p)
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Decision Trees - Split Criteria

Gini index:

• On a set:

G (S) = 1−
k∑
j=1

p2j

• where the pj is a fraction of points that belongs to the class j from S.

• On r-way split:

G (S⇒ S1, . . . , Sr) =
r∑
i=1

|Si|
|S|
G (Si)
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Decision Trees - Split Criteria

Entropy:

• On a set:

E (S) = −
k∑
j=1

pj log2
(
pj
)

• where the pj is a fraction of points that belongs to the class j from S.

• On r-way split:

E (S⇒ S1, . . . , Sr) =
r∑
i=1

|Si|
|S|
E (Si)
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Decision Trees - Split Criteria - IRIS Example
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Decision Trees - Split Criteria - IRIS Example
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Decision Trees - Split Criteria - IRIS Example

• index = 0, Sepal Length < 5.45, Gini = 0.44
• index = 1, Sepal Width < 3.35, Gini = 0.54
• index = 2, Petal Length < 2.45, Gini = 0.33
• index = 3, Petal Width < 0.80, Gini = 0.33
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Decision Trees - Split Criteria - IRIS Example

gini = 0.0
samples = 2

value = [0, 2, 0]

gini = 0.0
samples = 1

value = [0, 0, 1]

gini = 0.0
samples = 47

value = [0, 47, 0]

gini = 0.0
samples = 1

value = [0, 0, 1]

gini = 0.0
samples = 3

value = [0, 0, 3]

X[2] <= 5.45
gini = 0.444
samples = 3

value = [0, 2, 1]

gini = 0.0
samples = 1

value = [0, 1, 0]

gini = 0.0
samples = 2

value = [0, 0, 2]

X[3] <= 1.65
gini = 0.041

samples = 48
value = [0, 47, 1]

X[3] <= 1.55
gini = 0.444
samples = 6

value = [0, 2, 4]

X[0] <= 5.95
gini = 0.444
samples = 3

value = [0, 1, 2]

gini = 0.0
samples = 43

value = [0, 0, 43]

X[2] <= 4.95
gini = 0.168

samples = 54
value = [0, 49, 5]

X[2] <= 4.85
gini = 0.043

samples = 46
value = [0, 1, 45]

gini = 0.0
samples = 50

value = [50, 0, 0]

X[3] <= 1.75
gini = 0.5

samples = 100
value = [0, 50, 50]

X[2] <= 2.45
gini = 0.667

samples = 150
value = [50, 50, 50]
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Decision Trees - Split Criteria - IRIS Example
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Decision Trees - Split Criteria - IRIS Example
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Decision Trees

Stopping criterion:

• Very difficult to stop during the tree growth.
• Single class in a leaf node is the final condition.
• Such tree has 100% precision on Training data.
• But, such tree is over-fitted (unable to generalize to unseen data).
• Over-fitting is done by lower nodes with less number of points.
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Decision Trees

Pruning:

• Shallow trees are more preferable is they produces the same error on
training data.

• Nodes/Trees are evaluated using a criterion that penalizes the more complex
tress without satisfactory improvement in precision.

• Usually a holdout set (e.g. 20% of training set) is used for pruning.
• A node is prunes is its removing improves the precision on the holdout.
• A leaf node are pruned iteratively until no node should be removed.
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Rule-based classification

• A generalization of the Decision Trees.
• A set of rules in a form:

IF Condition THEN Conclusion

• Condition or Antecedent is a combination of relational, set and logical
operators over features.

• Conclusion or Consequent is a class label.
• A rule cover the training instance is the condition match the instance.
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Rule-based classification

Rule types:

• Mutually exclusive rules
• Each rule covers disjoin set of instances.
• Each instance trigger at most one rule.

• Exhaustive rules
• The entire data space is covered by at least one rule.
• Simple exhaustive rule assign dominant class do anything (catch-all).

• Non mutually exclusive rules brings problems with rule evaluation.

29



Rule-based classification

Rule ordering:

• Ordered rules
• Rules are ordered by priority, such as quality measure.
• Rules may be ordered by class-based principle.
• Only the first triggered rule vote, its consequent is the result.
• The rare classes are usually ordered first.

• Unordered rules
• There is no priority on rules.
• The dominant class of the all triggered rules is selected.
• Simplifies the learning phase.
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Rule-based classification

Rule generation:

• The goal is to generate rules that covers the instances from the training data.
• Two major algorithm exists:

• Generation using Decision Trees.
• Sequential Covering Algorithm.
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Rule-based classification - Rule generation

Rule generation using Decision Trees:

• Trees are used for generation of the rules.
• Each leaf node represent one rule with its sequence of splits that lead to this
leaf from root.

• The pruning is not made on tree, but on rules.
• Each rule is processed separately and pruned to get the most precise rule on
the holdout set.

• The pruning process is more flexible because any part of the antecedent may
be pruned.

• Duplicate rules are removed.
• The rules after pruning are not mutually exclusive.
• The ordering of the rules is necessary.
• Rare classes and less complex rules or rules with less false positives are
prioritized.
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Rule-based classification - Rule generation

Sequential Covering Algorithm:

• An algorithm for creation of ordered set of rules.
• An 2-step iterative algorithm:

• Learn-one-rule – select particular class and determine the “best” rule from the
current training instances S with this class as a consequent. Add this rule to the
bottom of the ordered rule list.

• Prune training data – Remove training instances in S that are covered by the
rule generated in previous step. The detection is based on the antecedent only,
that consequent of the instances is ignored.
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Rule-based classification - Rule generation - Sequential Covering Algorithm

The ordering of the generated rules:

• Class-based ordering
• All rules for particular class are put together.
• Rare classes may be prioritizes.
• All rules for this particular class are generated continuously, until a termination
criterion is met.

• For k-class problem, k− 1 rule sets is generated and the final catch-all rule
covers the last class.

• Quality-based ordering
• The rule are selected according a measure, such as confidence or support.
• The catch-all rule corresponds to the dominant class among remaining
instances.

• The quality of very difficult to measure.
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Rule-based classification - Rule generation - Sequential Covering Algorithm

Learn-one-rule step:

• Iterative algorithm that grows a rule with best conjunct according the quality
measure.

• The simplest quality is the precision/accuracy.
• Each split choice (conjunct) is evaluated the same was as it is in trees.
• Several best options may be maintained to reduce the possibility of the
mistakes and suboptimal rules.

• The ideal quality measure must combine accuracy and coverage, e.g. Laplace
smoothing, like-hood ratio statistics, FOIL information gain.
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Rule-based classification - Rule generation

Rule pruning:

• An Minimum description length (MDL) principle is one option.
• A penalty based on MDL may be used in rule-growth phase.
• An holdout set is another good principle.
• A greedy algorithm may be used for conjunct evaluation.
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Naïve Bayes Classifier

• Based on the Bayes theorem for conditional probabilities.

P(D|E) = P(E|D)P(D)
P(E)

• This theorem is useful when it is hard to estimate P(D|E) but others
probabilities are easy to get from input data.

• When E is a single attribute, everything is simple.
• When E is complex, P(E|D) may be missing in the data or appear only few
times.
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Naïve Bayes Classifier

• Let C be a class variable.
• Let X is a d-dimensional instance X = (a1, . . . ,ad).
• Let the random d-dimensional variable is X = (x1, . . . , xd).
• The goal is to estimate P(C = c|X = (a1, . . . ,ad)) or
P(C = c|x1 = a1, . . . , xd = ad)) resp.

P(C = c|x1 = a1, . . . , xd = ad) =
P(x1 = a1, . . . , xd = ad|C = c)P(C = c)

P(x1 = a1, . . . , xd = ad)

• The denominator is independent of the class and may be removed.
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Naïve Bayes Classifier

• The estimation of P(x1 = a1, . . . , xd = ad|C = c) is crucial and difficult.
• The Naïve approach assumes that the features are independent!!!
• Then

P(x1 = a1, . . . , xd = ad|C = c) =
d∏
j=1

P(xj = aj|C = c)

P(xj = aj|C = c) =
q(aj, c) + α

r(c) + α ·mj

Where
• q(aj, c) is a fraction of records with class c and
• r(c) is a fraction of records with class c
• α is a small value
• mj is number of distinct values of j-th attribute.

39



Naïve Bayes Classifier

• Finally:

P(C = c|x1 = a1, . . . , xd = ad)) ≈ P(C = c)
d∏
j=1

P(xj = aj|C = c)

• or

P(C = c|x1 = a1, . . . , xd = ad)) ≈ P(C = c)
d∏
j=1

q(aj, c) + α

r(c) + α ·mj
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Naïve Bayes Classifier - Example

Name Age Salary Donor?
Nancy 21 37,000 N
Jim 27 41,000 N
Allen 43 61,000 Y
Jane 38 55,000 N
Steve 44 30,000 N
Peter 51 56,000 Y
Sayani 53 70,000 Y
Lata 56 74,000 Y
Mary 59 25,000 N
Victor 61 68,000 Y
Dale 63 51,000 Y

• Assume a rule: Age>50 AND Salary>50
• P(Donor = Yes) = 6/11

• P(Age > 50|Donor = Yes) = 5/6
• P(Salary > 50, 000|Donor = Yes) = 6/6

• P(Donor = No) = 5/11
• P(Age > 50|Donor = No) = 1/5
• P(Salary > 50, 000|Donor = No) = 1/5

• P(Donor = YES) = 6/11∗5/6∗1 = 6/11∗5/6 = 5/11
• P(Donor = NO) = 5/11 ∗ 1/5 ∗ 1/5 = 5/11 ∗ 1/25 =
1/55
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Naïve Bayes Classifier - Summary

• Numeric values
• Discretization is possible but it may affects the precision.
• Direct data-drives estimation of the probability distribution is more suitable.
• A proper distribution have to be selected, usually Gaussian is taken.
• A mean and variance is extracted from the data.

• The naïve assumption
• The independence is usually not true in real data.
• The more complex estimation of the probability are not precise when
dimension increases.

• The naïve approach is precise enough.
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Support Vector Machines

• Naturally defined binary classification of numeric data.
• Multi-class generalization possible using several different strategies.
• Categorical features may be binarized and used.
• The class labels are assumed to be from the set {−1, 1}.
• The separation hyperplanes are used as classification criterion as with all
linear models.

• The hyperplane is determined using a notion of margin.

43



Support Vector Machines - Linearly separable case

• A hyperplane that clearly separate
points that belongs to the two
classes.

• An infinite number of possible ways
of constructing a linear hyperplane
between classes exists.

• A maximum margin between
hyperplanes have to be set, e.g. the
minimum perpendicular distance to
data points have to be maximum.
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Figure 10.7: Hard and soft SVMs

Consider a hyperplane that cleanly separates two linearly separable classes. The margin
of the hyperplane is defined as the sum of its distances to the closest training points belong-
ing to each of the two classes on the opposite side of the hyperplane. A further assumption
is that the distance of the separating hyperplane to its closest training point of either class
is the same. With respect to the separating hyperplane, it is possible to construct parallel
hyperplanes that touch the training data of opposite classes on either side, and have no
data point between them. The training data points on these hyperplanes are referred to
as the support vectors, and the distance between the two hyperplanes is the margin. The
separating hyperplane, or decision boundary, is precisely in the middle of these two hyper-
planes in order to achieve the most accurate classification. The margins for hyperplane 1
and hyperplane 2 are illustrated in Fig. 10.7a by dashed lines. It is evident that the margin
for hyperplane 1 is larger than that for hyperplane 2. Therefore, the former hyperplane
provides better generalization power for unseen test instances in the “difficult” uncertain
region separating the two classes where classification errors are most likely. This is also con-
sistent with our earlier example-based observation about the more accurate classification
with hyperplane 1.

How do we determine the maximum margin hyperplane? The way to do this is to set up a
nonlinear programming optimization formulation that maximizes the margin by expressing
it as a function of the coefficients of the separating hyperplane. The optimal coefficients can
be determined by solving this optimization problem. Let the n data points in the training set
D be denoted by (X1, y1) . . . (Xn, yn), where Xi is a d-dimensional row vector corresponding
to the ith data point, and yi ∈ {−1,+1} is the binary class variable of the ith data point.
Then, the separating hyperplane is of the following form:

W ·X + b = 0. (10.35)

Here, W = (w1 . . . wd) is the d-dimensional row vector representing the normal direction
to the hyperplane, and b is a scalar, also known as the bias. The vector W regulates the
orientation of the hyperplane and the bias b regulates the distance of the hyperplane from
the origin. The (d + 1) coefficients corresponding to W and b need to be learned from the
training data to maximize the margin of separation between the two classes. Because it

Figure 1: Linearly separable case
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Support Vector Machines - Linearly separable case

• A hyperplane that cleanly separates two linearly separable classes exists.
• The margins of the hyperplanes is defined as he sum of its distances to the
closest training points belonging to each of the two classes.

• The distance between the margin and the closest training points in either
class is the same.

• A parallel hyperplanes may be constructed to the separating one that they
touch the training points from either class and has no data points between
them.

• The training points on these hyperplanes are referred to as the support
vectors.

• The distance between the support vectors is the margin.
• The separating plane is precisely in the middle of these two hyperplanes in
order to achieve the most accurate classification.

45



Support Vector Machines - Linearly separable case

Determination of the maximum margin hyperplane

• By setting up of the non-linear programming optimization formulation that
maximizes the margin by expressing it as a functions of the coefficients of
the hyperplane.

• The optimal coefficients can be determined by solving this optimization
problem.
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Support Vector Machines - Linearly separable case

Definition

• The n is the number of data points in the training set D
• The i-th data points is denoted as (Xi, yi), where Xi is a d-dimensional row
vector, and yi ∈ {−1,+1} is the binary class variable.

W · X + b = 0

• W = (w1, . . . ,wd) is the d-dimensional row vector representing the direction
of the normal of the hyperplane.

• b is a scalar, also know as bias.

Problem
Learning of the (d+ 1) coefficients corresponding to the W and b from the
training data that maximizes the margin. 47



Support Vector Machines - Linearly separable case

• The points from either class have to lie on the opposite sides of the
hyperplane.

W · Xi + b ≥ 0 ∀i : yi = +1
W · Xi + b ≤ 0 ∀i : yi = −1

• By introducing the margin parameter and its normalization and
transformation we may get

yi
(
W · Xi + b

)
≥ +1 ∀i (1)

• The goal is to maximize the distance between two parallel hyperplanes.
2∥∥W∥∥ =

2√∑d
i=1 w2i

• Instead of the maximization of the above term we may minimize the following∥∥W∥∥2
2
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Support Vector Machines - Linearly separable case

• Minimization of the
∥∥W∥∥2
2 is a complex quadratic programming problem

because the parameter is minimized subject to a set of linear constraints, see
eq. 1.

• Each data points leads to a constraint, therefore the SVM is computationally
complex.

• One of the possible method that is able to solve such problem is a
Lagrangian relaxations.

• It brings an set of non-negative multipliers λ = (λ1, . . . , λn) associated to
each constraint.

• The constraints are then relaxed and the objective function is augmented by
incorporating a Lagrangian penalty for constraints violation.

LP =
∥∥W∥∥2
2

−
n∑
i=1

λi
[
yi
(
W · Xi + b

)
− 1
]
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Support Vector Machines - Linearly separable case

• Conversion of the LP into strictly pure maximization problem by eliminating
the minimization part.

• The variables W and b are converted by gradient-based condition and set to
zero.

∇LP = ∇‖W‖2

2
−∇

n∑
i=1

λi
[
yi
(
W · Xi + b

)
− 1
]
= 0

W −
n∑
i=1

λiyiXi = 0

• The expression of W is then derived directly

W =
n∑
i=1

λiyiXi

• The similar approach with variable b then generate
n∑
i=1

λiyi = 0
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Support Vector Machines - Linearly separable case

• The final Lagrangian dual is as follows:

LD =
n∑
i=1

λi −
1
2

n∑
i=1

n∑
j=1

λiλjyiyjXi · Xj

• The class label for the test instance Z defined by the decision boundary may
be computed as

F
(
Z
)
= sign

{
W · Z + b

}
= sign

{( n∑
i=1

λiyiXi · Z
)

+ b
}

• The solving of the LD is done using gradient ascent according the parameter
vector λ.
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Support Vector Machines - Soft margin for Linearly Non-separable Data

• The margin is defined as soft with
penalization of the margin violation
constraints.

• The definition of the Lagrangian is
very similar to the Lagrangian for
the separable case, with induction
new constraints on the hyperplanes.

W · Xi + b ≥ +1− ξi ∀i : yi = +1
W · Xi + b ≤ −1+ ξi ∀i : yi = −1

∀i : ξi ≥ 0

• Objective function O is then defined
as

O =

∥∥W∥∥2
2

+ C
n∑
i=0

ξi
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Figure 10.7: Hard and soft SVMs

Consider a hyperplane that cleanly separates two linearly separable classes. The margin
of the hyperplane is defined as the sum of its distances to the closest training points belong-
ing to each of the two classes on the opposite side of the hyperplane. A further assumption
is that the distance of the separating hyperplane to its closest training point of either class
is the same. With respect to the separating hyperplane, it is possible to construct parallel
hyperplanes that touch the training data of opposite classes on either side, and have no
data point between them. The training data points on these hyperplanes are referred to
as the support vectors, and the distance between the two hyperplanes is the margin. The
separating hyperplane, or decision boundary, is precisely in the middle of these two hyper-
planes in order to achieve the most accurate classification. The margins for hyperplane 1
and hyperplane 2 are illustrated in Fig. 10.7a by dashed lines. It is evident that the margin
for hyperplane 1 is larger than that for hyperplane 2. Therefore, the former hyperplane
provides better generalization power for unseen test instances in the “difficult” uncertain
region separating the two classes where classification errors are most likely. This is also con-
sistent with our earlier example-based observation about the more accurate classification
with hyperplane 1.

How do we determine the maximum margin hyperplane? The way to do this is to set up a
nonlinear programming optimization formulation that maximizes the margin by expressing
it as a function of the coefficients of the separating hyperplane. The optimal coefficients can
be determined by solving this optimization problem. Let the n data points in the training set
D be denoted by (X1, y1) . . . (Xn, yn), where Xi is a d-dimensional row vector corresponding
to the ith data point, and yi ∈ {−1,+1} is the binary class variable of the ith data point.
Then, the separating hyperplane is of the following form:

W ·X + b = 0. (10.35)

Here, W = (w1 . . . wd) is the d-dimensional row vector representing the normal direction
to the hyperplane, and b is a scalar, also known as the bias. The vector W regulates the
orientation of the hyperplane and the bias b regulates the distance of the hyperplane from
the origin. The (d + 1) coefficients corresponding to W and b need to be learned from the
training data to maximize the margin of separation between the two classes. Because it

Figure 2: Soft margin for Non-separable Data

The C affects the allowed error during
training (smaller C larger error)
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Linear separation: Examples
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Support Vector Machines

Non-linear decision boundary

• In real cases, the decision boundary is not linear.
• The points may be transformed into higher dimensions to enable linear
decision boundary.
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Support Vector Machines - Non-linear decision boundary
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Support Vector Machines - Non-linear decision boundary
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Support Vector Machines - Non-linear decision boundary

−1 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8 1
x

y

55



Support Vector Machines - Non-linear decision boundary
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Support Vector Machines

The Kernel Trick

• It leverages the important observation that the SVM formulation can be fully
solved in the terms of dot products (or similarities) between pairs of data
points.

• The feature values itself are not important or needed.
• The key is to define the pairwise dot products (similarity function) directly in
the d′-dimensional transformed representation Φ(X) such as:

K
(
Xi, Xj

)
= Φ

(
Xi
)
· Φ
(
Xj
)

• Only the dot product is required, therefore there is no need to compute
transformed feature values Φ(X).
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Support Vector Machines - The Kernel Trick

• The final Lagrangian dual with the substitution is defined as follows:

LD =
n∑
i=1

λi −
1
2

n∑
i=1

n∑
j=1

λiλjyiyjK
(
Xi, Xj

)
• The class label for the test instance Z defined by the decision boundary may
be computed as follows:

F
(
Z
)
= sign

{
W · Z + b

}
= sign

{( n∑
i=1

λiyiK
(
Xi, Z

))
+ b
}
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Support Vector Machines - The Kernel Trick

• All computations are performed in the original space.
• The actual transformation Φ(·) does not to be known as long as the kernel
similarity function K(·) is known.

• The kernel function have to be chosen carefully.
• The kernel function have to satisfy Mercer’s theorem to be considered valid.
• This theorem ensures that the n× n kernel matrix (called Gramm matrix)
S =

[
K
(
Xi, Xj

)]
is symmetric, positive semidefinite.
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Support Vector Machines - The Kernel Trick

Function Form

Linear kernel K(Xi, Xj) = Xi · Xj + c

Polynomial kernel K(Xi, Xj) = (αXi · Xj + c)h

Gaussian Radial Basis Function (RBF) K(Xi, Xj) = exp
(
−‖Xi−Xj‖2

2σ2

)
Sigmoid kernel K(Xi, Xj) = tanh(κXi · Xj − δ)

Exponential kernel K(Xi, Xj) = exp
(
−‖Xi−Xj‖

2σ2

)
Laplacian kernel K(Xi, Xj) = exp

(
−‖Xi−Xj‖

σ

)
Rational Quadratic Kernel K(Xi, Xj) = 1− ‖Xi−Xj‖2

‖Xi−Xj‖2+c
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Support Vector Machines - Kernel examples
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Support Vector Machines - Kernel parameters examples, C=0.01
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Support Vector Machines - Kernel parameters examples, C=1
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Support Vector Machines - Kernel parameters examples, C=100
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Support Vector Machines - Kernel parameter search
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Other application of the Kernel
Methods



Other application of the Kernel Methods

• Kernel K-means

∥∥X − µ
∥∥2 = ∥∥∥∥∥X −

∑
Xi∈C Xi
|C|

∥∥∥∥∥
2

= X · X − 2
∑

Xi∈C X · Xi
|C|

+

∑
Xi,Xj∈C Xi · Xj

|C|2

• The µ is the centroid of cluster C.
• the cluster is assigned to the data points according the minimal kernel-based
distance.

• Kernel PCA
• Replacement of the dot products in the mean-centered data matrix.

• Kernel fisher Discriminant
• Kernel Linear Discriminant Analysis.
• ...
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Classification Assessment

• How do we quantify the accuracy of the given classification model?
• These methods has several applications: evaluation of the classification
effectiveness, comparing different models, selecting the best model for a
particular data set, parameter tunning and advanced meta-algorithms
(ensemble).

• The issues related to this task may be divided into two categories:
1. Methodological issues

• The proper division of the labeled dataset into training and testing part.
• This choice has direct impact on the evaluation process (overestimation or
underestimation).

• Several approaches are possible (holdout, bootstrap, cross-validation).
2. Quantification issues

• These methods are associated with the providing numerical measure for the
quality with respect ot the methodological issues.

• Several methods output direct measure.
• Other methods quantify the relative performance of classifiers.
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Classification Assessment

Methodological Issues

• These methods defines the partitioning of the ground-truth data for
classification evaluation.

• The using of the same data for training and testing is not possible due to
over-fitting and overestimation.

• In practice, the input data shoudl be divided into three parts:
• the model=building part of the labeled data
• validation part of the labeled data
• testing data.

• The validation part is used for parameter tunning or model solution.
• When the parameter tunning is done, the model is reconstructed on the
whole dataset.

• The knowledge from the testing dataset should not be used in parameter
tunning. 67



Classification Assessment - Methodological Issues

Holdout

• The labeled data is randomly divided into two disjoint sets (training and
testing).

• Typically 60% to 75% is used for training set.
• This partition may be repeated several times to get he final estimation.
• The over-presented samples in the training set are under-presented in the
testing sets.

• Due to not using of the whole data set for training the estimation are
pessimistic.

• By repeating the process over b different holdout samples the mean and the
variance of the error estimates may be determined.

• These information may be used for building the confidence intervals on the
error.

• In case of imbalanced data, an independent sampling (for each class
separately) have to be used to ensure the similarity between whole dataset
and the testing dataset.
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Classification Assessment - Methodological Issues

Cross-Validation

• The data is divided into m disjoint subsets of equal size n/m.
• A typical choice for m is around 10.
• One segment is used as a testing set the the remainingm− 1 as a training set.
• This process is repeated by selection each of the m subsets as a testing sets.
• The average accuracy over the m different test sets is reported.
• The size of the training set is (m− 1) ∗ n/m.
• When m is chosen large, the training set size is close to the whole dataset
and the reported prediction is very close to the whole data set.

• The estimate of the accuracy tends to be highly representative but
pessimistic.

• A special case is when m = n, this is called a leave-one-out cross-validation.
• Stratified cross-validation uses proportional representation of each class in
the different folds and usually provides less pessimistic results.
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Classification Assessment - Methodological Issues

Bootstrap

• The labeled data are sampled uniformly with replacement to create a
training set that may contain a duplicates.

• The labeled data of size n is sampled n times with replacement.
• The probability that a particular data point is not included in a sample is
given by (1− 1/n)

• The probability that the point is not included in n samples is then (1− 1/n)n.
• For large values of n the expression is approximately 1/e.
• The fraction of labeled points included included at least once in the dataset
is 1− 1/e = 0.632.

• The training model is constructed on the bootstrapped sample with
duplicates.

• The overall accuracy is computed using the whole dataset.
• The estimate is highly optimistic due to large overlap between training and
testing set.
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Classification Assessment

Quantification Issues

• When the output of the classifier is in the form of a class label the prediction
value is compared to the ground-truth.

• When the output of the classifier is in the form of a numerical score for each
labeling possibility the label with highest score imply greater likelihood to a
particular class.
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Classification Assessment - Quantification Issues

Output as Class Labels

• Accuracy - the fraction of test instances in which the predicted value
matched the ground-truth value.

• Cost-sensitive accuracy
• Not all cases are equally important in all scenarios while comparing the
accuracy, e.g. Imbalanced data, ill vs. healthy patients, etc.

• This is frequently quantified by imposting different costs c1, . . . , ck on the
misclassification on the different classes.

• Let n1, . . . ,nk be the number of test instances belonging to each class.
• Let a1, . . . ,ak be the accuracies (expressed as a fraction) on the subset of test
instances belonging to each class.

• The overall accuracy A can be computed as a weighted combination of the
accuracies over the individual labels:

A =

∑k
i=1 ciniai∑k
i=1 cini
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Classification Assessment - Quantification Issues

Output as Numerical Score

• For simplicity, we will consider the two class classification problem.
• The numerical score provides more flexibility in evaluating the overall
trade-off between labeling a varying number of data points as positives.

• The different setting of the threshold leads to different models.
• When the threshold is set too aggressive, the algorithm will miss the
true-positives and false negatives.

• When threshold is too relaxed the algorithm produces many false-positives
(false negatives).

• The correct threshold in not known a priori, but depends on the data.
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Classification Assessment - Quantification Issues - Output as Numerical Score

• For any given threshold t on the predicted positive-class score the declared
positive class set is denoted by S(t).

• The size of the S(t) changes with the changes of the t.
• The G represents the true set (ground-truth) of positive instances.
• The Precision is defined as the percentage of reported positives that truly
turn out to be positive

Precision(t) = 100 ∗ |S(t) ∩ G|
|S(t)|

• The value of Precision(t) is not necessarily monotonic in t because both
numerator and denominator may change with t differently.
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Classification Assessment - Quantification Issues - Output as Numerical Score

• The recall is correspondingly defined as the percentage of ground-truth
positives that have been reported as positive at threshold t.

Recall(t) = 100 ∗ |S(t) ∩ G|
|G|

• The natural trade-off between precision and recall exists, but it is not
necessarily monotonic.

• The F1-measure summarizes both precision and the recall.

F1(t) =
2 · Precision(t) · Recall(t)
Precision(t) + Recall(t)

• The F1-measure provides better quantification that precision or recall, but it
is still depends on the t.

• The entire trade-off between recall and precision may be investigated by the
plotting these values with respect to the threshold t. 75



Classification Assessment - Quantification Issues - Output as Numerical Score

ROC curve

• ROC curve is a different method for evaluating the trade-off which is more
intuitive.

• The true-positive rate is the same as the recall:

TPR(t) = Recall(t) = 100 ∗ |S(t) ∩ G|
|G|

• The false positive rate is the percentage of the falsely reported positives out
of the ground-truth negatives.

FPR(t) = 100 ∗ |S(t)− G|
|D− G|

• The ROC curve the define by plotting the FPR(t) on the x-axis and TPR(t) on
the y-axis for varying values of t.
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Classification Assessment - Quantification Issues - Output as Numerical Score

ROC curve cont.

• The ROC curve has always points (0, 0) and (100, 100).
• The random classifier is expected to exhibit performance along the diagonal.
• The lift above the diagonal provides the idea about accuracy of the approach.
• The area below the ROC curve provides a concrete quantitative evaluation of
the effectiveness of the particular method.
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