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Dimension Reduction



Dimension Reduction

• Highly dimension data brings problems with clustering/classification.
• Many features are noisy or noise itself.
• Many features correlates with another features.
• Feature selection:

• Select features according a measure and removes is from the dataset.
• Measure is based on a mathematical principle (Variance, Entropy, etc.)

• Dimension Reduction:
• Search for optimal mapping between original dimension into defined amount
of dimensions.

• Each new dimension is a linear/non-linear combination of original features.
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Principal Component Analysis (PCA)

• The goal of PCA is to rotate the data into an axis-system where the greatest
amount of variance is captured in a small number of dimensions.2.4. DATA REDUCTION AND TRANSFORMATION 41
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Figure 2.2: Highly correlated data represented in a small number of dimensions in an axis
system that is rotated appropriately

2. Supervised feature selection: This type of feature selection is relevant to the problem of
data classification. In this case, only the features that can predict the class attribute
effectively are the most relevant. Such feature selection methods are often closely
integrated with analytical methods for classification. A detailed discussion is deferred
to Chap. 10 on data classification.

Feature selection is an important part of the data mining process because it defines the
quality of the input data.

2.4.3 Dimensionality Reduction with Axis Rotation

In real data sets, a significant number of correlations exist among different attributes. In
some cases, hard constraints or rules between attributes may uniquely define some attributes
in terms of others. For example, the date of birth of an individual (represented quantita-
tively) is perfectly correlated with his or her age. In most cases, the correlations may not be
quite as perfect, but significant dependencies may still exist among the different features.
Unfortunately, real data sets contain many such redundancies that escape the attention of
the analyst during the initial phase of data creation. These correlations and constraints
correspond to implicit redundancies because they imply that knowledge of some subsets
of the dimensions can be used to predict the values of the other dimensions. For example,
consider the 3-dimensional data set illustrated in Fig. 2.2. In this case, if the axis is rotated
to the orientation illustrated in the figure, the correlations and redundancies in the newly
transformed feature values are removed. As a result of this redundancy removal, the entire
data can be (approximately) represented along a 1-dimensional line. Thus, the intrinsic
dimensionality of this 3-dimensional data set is 1. The other two axes correspond to the
low-variance dimensions. If the data is represented as coordinates in the new axis system
illustrated in Fig. 2.2, then the coordinate values along these low-variance dimensions will
not vary much. Therefore, after the axis system has been rotated, these dimensions can be
removed without much information loss.

A natural question arises as to how the correlation-removing axis system such as that in
Fig. 2.2 may be determined in an automated way. Two natural methods to achieve this goal
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Principal Component Analysis (PCA)

• The PCA for the input matrix D is computed as:

C =
DTD
n

− µTµ

• C is a covariance matrix of D, n is the number of points of the D, µ is the
mean vector.

C = P∆PT

• P contains orthonormal eigenvectors and ∆ contain eigenvalues.

D′ = DP

• D′ is transformed matrix in the terms of new axis P.
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Singular Value Decomposition (SVD)

• Generalization of the PCA.
D = UΣVT

• where U contains left singular vectors, Σ contains singular values and VT

contains right singular vectors.
• The presented decomposition is proven to be optimal.
• Reducing the Σ to k coefficients leads to best approximation of the matrix D

D ≈ UkΣkVTk
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Singular Value Decomposition
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Figure 2.4: Complementary basis properties of matrix factorization in SVD

d-dimensional column vector and Dv be the projection of the data set D on v. Consider the
problem of determining the unit vector v such that the sum of squared Euclidean distances
(Dv)T (Dv) of the projected data points from the origin is maximized. Setting the gradient
of the Lagrangian relaxation vTDTDv − λ(||v||2 − 1) to 0 is equivalent to the eigenvector
condition DTDv − λv = 0. Because the right singular vectors are eigenvectors of DTD, it
follows that the eigenvectors (right singular vectors) with the k largest eigenvalues (squared
singular values) provide a basis that maximizes the preserved energy in the transformed and
reduced data matrix D′

k = DPk = QkΣk. Because the energy, which is the sum of squared
Euclidean distances from the origin, is invariant to axis rotation, the energy in D′

k is the
same as that in D′

kP
T
k = QkΣkP

T
k . Therefore, k-rank SVD is a maximum energy-preserving

factorization. This result is known as the Eckart–Young theorem.
The total preserved energy of the projection Dv of the data set D along unit right-

singular vector v with singular value σ is given by (Dv)T (Dv), which can be simplified as
follows:

(Dv)T (Dv) = vT (DTDv) = vT (σ2v) = σ2

Because the energy is defined as a linearly separable sum along orthonormal directions, the
preserved energy in the data projection along the top-k singular vectors is equal to the
sum of the squares of the top-k singular values. Note that the total energy in the data set
D is always equal to the sum of the squares of all the nonzero singular values. It can be
shown that maximizing the preserved energy is the same as minimizing the squared error3

(or lost energy) of the k-rank approximation. This is because the sum of the energy in the
preserved subspace and the lost energy in the complementary (discarded) subspace is always
a constant, which is equal to the energy in the original data set D.

When viewed purely in terms of eigenvector analysis, SVD provides two different perspec-
tives for understanding the transformed and reduced data. The transformed data matrix can
either be viewed as the projection DPk of the data matrix D on the top k basis eigenvectors
Pk of the d × d scatter matrix DTD, or it can directly be viewed as the scaled eigenvec-
tors QkΣk = DPk of the n × n dot-product similarity matrix DDT . While it is generally
computationally expensive to extract the eigenvectors of an n × n similarity matrix, such
an approach also generalizes to nonlinear dimensionality reduction methods where notions
of linear basis vectors do not exist in the original space. In such cases, the dot-product
similarity matrix is replaced with a more complex similarity matrix in order to extract a
nonlinear embedding (cf. Table 2.3).

SVD is more general than PCA and can be used to simultaneously determine a subset
of k basis vectors for the data matrix and its transpose with the maximum energy. The
latter can be useful in understanding complementary transformation properties of DT .

3The squared error is the sum of squares of the entries in the error matrix D −QkΣkP
T
k .
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Non-negative Matrix Factorization (NMF or NNMF)

• A factorization methods which works and produces only non-negative
elements.

D = WH

• W contains weights and H contains basis vectors.
• Due to non-negativity the basis vectors as well as weights may be easily
interpreted.

• The NMF inherits clustering property, where close vectors are clustered
together.

• The cost function is defined usually as a Frobenius norm:

E = ‖D−WH‖F

‖A‖F =
√∑

i

∑
j

∣∣aij∣∣2
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Dimension Reduction - Example
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Dimension Reduction - Example

Cluster 0 Afghanistan, Albania, Algeria, Angola, Antigua and Barbuda, Ar-
gentina, Armenia, Azerbaijan, Bangladesh, Barbados, Belarus, Be-
lize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana,
Brazil, Bulgaria, Burkina Faso, Burundi, Cambodia, Cameroon,
Cape Verde, Central African Republic, Chad, Chile, China, Colom-
bia, Comoros, Congo, Dem. Rep., Congo, Rep., …

Cluster 1 Brunei, Kuwait, Luxembourg, Norway, Qatar, Singapore, Switzer-
land

Cluster 2 Australia, Austria, Bahamas, Bahrain, Belgium, Canada, Cyprus,
Czech Republic, Denmark, Equatorial Guinea, Finland, France, Ger-
many, Greece, Iceland, Ireland, Israel, Italy, Japan, Malta, Nether-
lands, New Zealand, Oman, Portugal, Saudi Arabia, Slovenia,
South Korea, Spain, Sweden, United Arab Emirates, United King-
dom, United States
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Dimension Reduction - Example - PCA
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Dimension Reduction - Example - NMF
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Dimension Reduction - Example - SVD
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Dimension Reduction - Example - NMF - Bars

Original

Base
W[0] 3,0,0,0,4,3,0,0,0,0,0,3,0,0,0,0
H[0] 0,1,0,0,0,0,1,0,…,88,88,87,87,87,87,87,87,0,0,0,0,0,0,0,1

Reconstruct
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Dimension Reduction - Example - NMF - Bars

Original

Base

Reconstruct

13



Dimension Reduction - Example - NMF - Bars

Original

Base

Reconstruct
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Dimension Reduction - Example - SVD - Mnist
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Dimension Reduction - Example - SVD - Mnist
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Questions?
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