

Machine Learning

Outlier Analysis

Jan Platoš November 22, 2023

Department of Computer Science Faculty of Electrical Engineering and Computer Science VŠB - Technical University of Ostrava

Outlier Analysis

Informal definition (Hawkins)

An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism.

Outlier applications

- Data cleaning
 - An outlier represent a noise data.
- \cdot Credit card fraud
 - Credit card activity outside the usual pattern may represent an fraud.
- \cdot Network intrusion detection
 - $\cdot\,$ Unusual records in traffic that do not follow the regular patterns.

- Real-valued outlier score
 - A real value that represents the outlierness of a data point.
 - May be based on probability, distance measurement, etc.
- Binary label
 - Strict assignment of a outlier flag.
 - Contain less information than real-value score.
 - May be based on real-values with threshold.

- Extreme values
- Clustering models
- Distance-based models
- Density based models
- Probabilistic models
- Information-theoretic models

Outlier analysis - Extreme values - Example

Outlier analysis - Extreme values - Multivariate

Outlier analysis - Extreme values - Depth-based

Outlier analysis - Probability values - Likelihood

The distance-based outlier score of an object O is its distance to its *k*-th nearest neighbor.

- The definition is based on the user defined *k*.
- The k > 1 helps to removes a group of outliers.
- Outlier detection methods use finer granularity than clustering methods.
- The ambient noise has lover k-nearest neighbor distance than truly isolated anomaly.
- The better granularity brings higher computational complexity.
- The speed-up techniques are used:
 - Index structures
 - Pruning tricks.

Outlier analysis - Distance-based detection

Outlier analysis - Distance-based detection - Pruning methods

- Sampling methods
 - A sample S of size s is sampled from data.
 - Distances between all pairs from *D* and *S* are computed.
 - The complexity is $O(n \cdot s) \ll O(n^2)$.
 - The top *r* ranked outlier in sample S is determined.
 - The score of the *r*th ranked outlier is the lover bound *L* over the the whole dataset.
 - The upper bound $V^k(X)$ for each point $X \in D S$ is known from distances of pairs.
 - When $V^{k}(X)$ is not larger than the lower bound L the point X may be excluded from the testing.
 - Large number of points is removed due to this condition.
 - The remaining points $R \subseteq D S$ is tested by outlier measure.
 - The proper ordering of R and D S may significantly improve the speed of the algorithm.

Outlier analysis - Distance-based detection - Local distance correction

Outlier analysis - Distance-based detection - Local distance correction

- Local outlier factor (LOF)
 - Adjusting the local variations in cluster density by normalization of distanced with the average point-specific distances in a data locality.
 - This approach solves the varying cluster density situation.
 - For a given point X the $V^k(X)$ is its distance to its k-nearest neighbor.
 - The $L_k(X)$ is the set of points within the *k*-nearest neighbor distance of *X*.
 - The number of points in $L_k(X)$ is k or more.
 - The reachability distance is defined as

$$R_k(X,Y) = \max\{Dist(X,Y), V^k(Y)\}$$

• The average reachability distance of X with respect to $L_k(X)$ is then

$$AR_k(X) = MEAN_{Y \in L_k(X)}R_k(X, Y)$$

• The Local Outlier Factor LOF_k is then

$$LOF_{k}(X) = MEAN_{Y \in L_{k}(X)} \frac{AR_{k}(X)}{AR_{k}(Y)}$$

- Instance-Specific Mahalanobis distance
 - The goal is to deal with the varying cluster shape.
 - A k-local neighborhood $L_k(X)$ with respect to the cluster shape have to be defined.
 - $L_k(X)$ is constructed with the single-linkage agglomerative approach around the point X.
 - A mean $\mu_k(X)$ and the covariance matrix $\Sigma_k(X)$ are computed.
 - The distance $LMaha_k(X)$ then represent the outlier score.

 $LMaha_k(X) = Maha(X, \mu_k(X), \Sigma_k(X))$

Outlier analysis - Density based methods

- The idea is similar to the density-based clustering.
- The main difference is that only the non-dense regions are detected.
- The points in sparse regions are reported as outliers.
- Histogram-based technique
 - Popular method for univariate data.
 - Represents the statistical distribution of points.
 - Difficult to adapt to varying density in different data locality.
 - Difficult to adapt this method to higher dimensions.
- Grid-based techniques
 - The space is partitioned into *p* equi-width ranges.
 - The sparse regions with the density less than au are reported as outliers.
 - It is difficult to select proper *p*.
 - $\cdot\,$ The τ may be defined using univariate extreme value analysis.
 - Outlier groups may not be reported because the cluster shapes are not recognized.

Outlier analysis - Density based methods

- Kernel-based density estimation
 - Similarly to Histogram- or Grid-based methods a local density is detected.
 - The density in each point is computed as smoothed values of a kernel functions associated with each data point.

$$f(X) = \frac{1}{n} \sum_{i=1}^{n} K_h(X - X_i)$$

- The h is a parameter of a function.
- typical choice is the Gausian kernel with the width *h*.

$$K_h(X - X_i) = \left(\frac{1}{\sqrt{2\pi}h}\right)^d \cdot e^{-||X - X_i||^2/(2h^2)}$$

Questions?