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Outlier Analysis



Outlier analysis

Informal definition (Hawkins)
An outlier is an observation which deviates so much from the other observations
as to arouse suspicions that it was generated by a different mechanism.

Outlier applications

• Data cleaning
• An outlier represent a noise data.

• Credit card fraud
• Credit card activity outside the usual pattern may represent an fraud.

• Network intrusion detection
• Unusual records in traffic that do not follow the regular patterns.
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Outlier analysis - Classification types

• Real-valued outlier score
• A real value that represents the outlierness of a data point.
• May be based on probability, distance measurement, etc.

• Binary label
• Strict assignment of a outlier flag.
• Contain less information than real-value score.
• May be based on real-values with threshold.
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Outlier analysis - Model types

• Extreme values
• Clustering models
• Distance-based models
• Density based models
• Probabilistic models
• Information-theoretic models
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Outlier analysis - Extreme values - Example
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Figure 8.1: Multivariate extreme values

outlier-detection algorithms where it can be utilized to unify multiple outlier scores into a
single value, and also generate a binary label as the output. For example, consider a meteo-
rological application where outlier scores of spatial regions have been generated on the basis
of analyzing their temperature and pressure variables independently. These evidences need
to be unified into a single outlier score for the spatial region, or a binary label. Multivariate
extreme value analysis is very useful in these scenarios. In the following discussion, methods
for univariate and multivariate extreme value analysis will be discussed.

8.2.1 Univariate Extreme Value Analysis

Univariate extreme value analysis is intimately related to the notion of statistical tail con-
fidence tests. Typically, statistical tail confidence tests assume that the 1-dimensional data
are described by a specific distribution. These methods attempt to determine the fraction
of the objects expected to be more extreme than the data point, based on these distribu-
tion assumptions. This quantification provides a level of confidence about whether or not a
specific data point is an extreme value.

How is the “tail” of a distribution defined? For distributions that are not symmetric, it is
often meaningful to talk about an upper tail and a lower tail, which may not have the same
probability. The upper tail is defined as all extreme values larger than a particular threshold,
and the lower tail is defined as all extreme values lower than a particular threshold. Consider
the density distribution fX(x). In general, the tail may be defined as the two extreme regions
of the distribution for which fX(x) ≤ θ, for some user defined threshold θ. Examples of the
lower tail and the upper tail for symmetric and asymmetric distributions are illustrated in
Fig. 8.2a and b, respectively. As evident from Fig. 8.2b, the area in the upper tail and the
lower tail of an asymmetric distribution may not be the same. Furthermore, some regions in
the interior of the distribution of Fig. 8.2b have density below the density threshold θ, but
are not extreme values because they do not lie in the tail of the distribution. The data points
in this region may be considered outliers, but not extreme values. The areas inside the upper
tail or lower tail in Fig. 8.2a and b represent the cumulative probability of these extreme
regions. In symmetric probability distributions, the tail is defined in terms of this area,
rather than a density threshold. However, the concept of density threshold is the defining
characteristic of the tail, especially in the case of asymmetric univariate or multivariate
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(a) Symmetric distribution (b) Asymmetric distribution

Figure 8.2: Tails of a symmetric and asymmetric distribution

distributions. Some asymmetric distributions, such as an exponential distribution, may not
even have a tail at one end of the distribution.

A model distribution is selected for quantifying the tail probability. The most commonly
used model is the normal distribution. The density function fX(x) of the normal distribution
with mean μ and standard deviation σ is defined as follows:

fX(x) =
1

σ ·
√
2 · π

· e
−(x−μ)2

2·σ2 . (8.1)

A standard normal distribution is one in which the mean is 0, and the standard deviation σ
is 1. In some application scenarios, the mean μ and standard deviation σ of the distribution
may be known through prior domain knowledge. Alternatively, when a large number of data
samples is available, the mean and standard deviation may be estimated very accurately.
These can be used to compute the Z-value for a random variable. The Z-number zi of an
observed value xi can be computed as follows:

zi = (xi − μ)/σ. (8.2)

Large positive values of zi correspond to the upper tail, whereas large negative values
correspond to the lower tail. The normal distribution can be expressed directly in terms
of the Z-number because it corresponds to a scaled and translated random variable with
a mean 0 and standard deviation of 1. The normal distribution of Eq. 8.3 can be written
directly in terms of the Z-number, with the use of a standard normal distribution as follows:

fX(zi) =
1

σ ·
√
2 · π

· e
−z2i
2 . (8.3)

This implies that the cumulative normal distribution may be used to determine the area of
the tail that is larger than zi. As a rule of thumb, if the absolute values of the Z-number
are greater than 3, the corresponding data points are considered extreme values. At this
threshold, the cumulative area inside the tail can be shown to be less than 0.01% for the
normal distribution.

When a smaller number n of data samples is available for estimating the mean μ and
standard deviations σ, the aforementioned methodology can be used with a minor modifi-
cation. The value of zi is computed as before, and the student t-distribution with n degrees
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Figure 8.3: Multivariate extreme values

of freedom is used to quantify the cumulative distribution in the tail instead of the nor-
mal distribution. Note that, when n is large, the t-distribution converges to the normal
distribution.

8.2.2 Multivariate Extreme Values

Strictly speaking, tails are defined for univariate distributions. However, just as the uni-
variate tails are defined as extreme regions with probability density less than a particular
threshold, an analogous concept can also be defined for multivariate distributions. The
concept is more complex than the univariate case and is defined for unimodal probability
distributions with a single peak. As in the previous case, a multivariate Gaussian model
is used, and the corresponding parameters are estimated in a data-driven manner. The
implicit modeling assumption of multivariate extreme value analysis is that all data points
are located in a probability distribution with a single peak (i.e., single Gaussian cluster),
and data points in all directions that are as far away as possible from the center of the
cluster should be considered extreme values.

Let μ be the d-dimensional mean vector of a d-dimensional data set, and Σ be its
d × d covariance matrix. Thus, the (i, j)th entry of the covariance matrix is equal to the
covariance between the dimensions i and j. These represent the estimated parameters of
the multivariate Gaussian distribution. Then, the probability distribution f(X) for a d-
dimensional data point X can be defined as follows:

f(X) =
1√

|Σ| · (2 · π)(d/2)
· e− 1

2 ·(X−μ)Σ−1(X−μ)T . (8.4)

The value of |Σ| denotes the determinant of the covariance matrix. The term in the exponent
is half the square of the Mahalanobis distance between data point X and the mean μ of
the data. In other words, if Maha(X,μ,Σ) represents the Mahalanobis distance between
X and μ, with respect to the covariance matrix Σ, then the probability density function of
the normal distribution is as follows:

f(X) =
1√

|Σ| · (2 · π)(d/2)
· e− 1

2 ·Maha(X,μ,Σ)2 . (8.5)

6



Outlier analysis - Extreme values - Depth-based
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Figure 8.5: Depth-based outlier detection

1. Select a mixture component with prior probability αi, where i ∈ {1 . . . k}. Assume
that the rth one is selected.

2. Generate a data point from Gr.

This generative model will be denoted by M, and it generates each point in the data set D.
The data set D is used to estimate the parameters of the model. Although it is natural to use
Gaussians to represent each component of the mixture, other models may be used if desired.
This flexibility is very useful to apply the approach to different data types. For example, in
a categorical data set, a categorical probability distribution may be used for each mixture
component instead of the Gaussian distribution. After the parameters of the model have
been estimated, outliers are defined as those data points in D that are highly unlikely to be
generated by this model. Note that such an assumption exactly reflects Hawkins’s definition
of outliers, as stated at the beginning of this chapter.

Next, we discuss the estimation of the various parameters of the model such as the
estimation of different values of αi and the parameters of the different distributions Gr.
The objective function of this estimation process is to ensure that the full data D has the
maximum likelihood fit to the generative model. Assume that the density function of Gi is
given by f i(·). The probability (density function) of the data point Xj being generated by
the model is given by the following:

fpoint(Xj |M) =
k∑

i=1

αi · f i(Xj). (8.6)

Note that the density value fpoint(Xj |M) provides an estimate of the outlier score of the
data point. Data points that are outliers will naturally have low fit values. Examples of the
relationship of the fit values to the outlier scores are illustrated in Fig. 8.6. Data points A
and B will typically have very low fit to the mixture model and will be considered outliers
because the data points A and B do not naturally belong to any of the mixture components.
Data point C will have high fit to the mixture model and will, therefore, not be considered
an outlier. The parameters of the model M are estimated using a maximum likelihood
criterion, which is discussed below.

For data set D containing n data points, denoted by X1 . . . Xn, the probability density
of the data set being generated by model M is the product of the various point-specific
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Outlier analysis - Probability values - Likelihood
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Figure 8.6: Likelihood fit values versus outlier scores

probability densities:

fdata(D|M) =
n∏

j=1

fpoint(Xj |M). (8.7)

The log-likelihood fit L(D|M) of the data set D with respect to M is the logarithm of the
aforementioned expression, and can be (more conveniently) represented as a sum of values
over the different data points:

L(D|M) = log(
n∏

j=1

fpoint(Xj |M)) =
n∑

j=1

log(
k∑

i=1

αi · f i(Xj)). (8.8)

This log-likelihood fit needs to be optimized to determine the model parameters. This
objective function maximizes the fit of the data points to the generative model. For this
purpose, the EM algorithm discussed in Sect. 6.5 of Chap. 6 is used.

After the parameters of the model have been determined, the value of fpoint(Xj |M) (or
its logarithm) may be reported as the outlier score. The major advantage of such mixture
models is that the mixture components can also incorporate domain knowledge about the
shape of each individual mixture component. For example, if it is known that the data points
in a particular cluster are correlated in a certain way, then this fact can be incorporated
in the mixture model by fixing the appropriate parameters of the covariance matrix, and
learning the remaining parameters. On the other hand, when the available data is limited,
mixture models may overfit the data. This will cause data points that are truly outliers to
be missed.

8.4 Clustering for Outlier Detection

The probabilistic algorithm of the previous section provides a preview of the relationship
between clustering and outlier detection. Clustering is all about finding “crowds” of data
points, whereas outlier analysis is all about finding data points that are far away from
these crowds. Clustering and outlier detection, therefore, share a well-known complementary
relationship. A simplistic view is that every data point is either a member of a cluster or
an outlier. Clustering algorithms often have an “outlier handling” option that removes data
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Outlier analysis - Distance-based detection

The distance-based outlier score of an object O is its distance to its k-th nearest
neighbor.

• The definition is based on the user defined k.
• The k > 1 helps to removes a group of outliers.
• Outlier detection methods use finer granularity than clustering methods.
• The ambient noise has lover k-nearest neighbor distance than truly isolated
anomaly.

• The better granularity brings higher computational complexity.
• The speed-up techniques are used:

• Index structures
• Pruning tricks.
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Outlier analysis - Distance-based detection
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Figure 8.7: Small isolated groups of anomalies

points outside the clusters. The detection of outliers as a side-product of clustering methods
is, however, not an appropriate approach because clustering algorithms are not optimized for
outlier detection. Data points on the boundary regions of a cluster may also be considered
weak outliers but are rarely useful in most application-specific scenarios.

Clustering models do have some advantages as well. Outliers often tend to occur in small
clusters of their own. This is because the anomaly in the generating process may be repeated
a few times. As a result, a small group of related outliers may be created. An example of a
small set of isolated outliers is illustrated in Fig. 8.7. As will be discussed later, clustering
methods are generally robust to such scenarios because such groups often do not have the
critical mass required to form clusters of their own.

A simple way of defining the outlier score of a data point is to first cluster the data
set and then use the raw distance of the data point to its closest cluster centroid. One
can, however, do better when the clusters are elongated or have varying density over the
data set. As discussed in Chap. 3, the local data distribution often distorts the distances,
and, therefore, it is not optimal to use the raw distance. This broader principle is used in
multivariate extreme value analysis where the global Mahalanobis distance defines outlier
scores. In this case, the local Mahalanobis distance can be used with respect to the centroid
of the closest cluster.

Consider a data set in which k clusters have been discovered with the use of a clus-
tering algorithm. Assume that the rth cluster in d-dimensional space has a corresponding
d-dimensional mean vector μr, and a d× d covariance matrix Σr. The (i, j)th entry of this
matrix is the covariance between the dimensions i and j in that cluster. Then, the Maha-
lanobis distance Maha(X,μr,Σr) between a data point X and cluster centroid μr is defined
as follows:

Maha(X,μr,Σr) =
√
(X − μr)Σ−1

r (X − μr)T . (8.9)

This distance is reported as the outlier score. Larger values of the outlier score indicate a
greater outlier tendency. After the outlier score has been determined, univariate extreme
value analysis may be used to convert the scores to binary labels.

The justification for using the Mahalanobis distance is exactly analogous to the case of
extreme value analysis of multivariate distances, as discussed in Sect. 8.2. The only difference
is that the local cluster-specific Mahalanobis distances are more relevant to determination of
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Outlier analysis - Distance-based detection - Pruning methods

• Sampling methods
• A sample S of size s is sampled from data.
• Distances between all pairs from D and S are computed.
• The complexity is O(n · s) � O(n2).
• The top r ranked outlier in sample S is determined.
• The score of the rth ranked outlier is the lover bound L over the the whole
dataset.

• The upper bound Vk(X) for each point X ∈ D− S is known from distances of
pairs.

• When Vk(X) is not larger than the lower bound L the point X may be excluded
from the testing.

• Large number of points is removed due to this condition.
• The remaining points R ⊆ D− S is tested by outlier measure.
• The proper ordering of R and D− S may significantly improve the speed of the
algorithm. 11



Outlier analysis - Distance-based detection - Local distance correction
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Figure 8.8: Impact of local variations in data distribution on distance-based outlier detection

issue here is the generative principle, that data point A is much less likely to be generated
by its closest (tightly knit) cluster than many slightly isolated data points belonging to the
relatively diffuse cluster are likely to be generated by their cluster. Hawkins’s definition of
outliers, stated at the beginning of this chapter, was formulated on the basis of generative
principles. It should be pointed out that the probabilistic EM algorithm of Sect. 8.3 does a
much better job at recognizing these generative differences. However, the probabilistic EM
method is often not used practically because of overfitting issues with smaller data sets. The
LOF approach is the first method that recognized the importance of incorporating these
generative principles in nonparametric distance-based algorithms.

This point can be emphasized further by examining clusters of different local shape and
orientation in Fig. 8.8b. In this case, a distance-based algorithm will report one of the data
points along the long axis of one of the elongated clusters, as the strongest outlier, if the
1-nearest neighbor distance is used. This data point is far more likely to be generated by its
closest cluster, than the outlier marked by “X.” However, the latter has a smaller 1-nearest
neighbor distance. Therefore, the significant problem with distance-based algorithms is that
they do not account for the local generative behavior of the underlying data. In this section,
two methods will be discussed for addressing this issue. One of them is LOF, and the other
is a direct generalization of the global Mahalanobis method for extreme value analysis. The
first method can adjust for the generative variations illustrated in Fig. 8.8a, and the second
method can adjust for the generative variations illustrated in Fig. 8.8b.

8.5.2.1 Local Outlier Factor (LOF)

The Local Outlier Factor (LOF) approach adjusts for local variations in cluster density
by normalizing distances with the average point-specific distances in a data locality. It
is often understood popularly as a density-based approach, although, in practice, it is a
(normalized) distance-based approach where the normalization factor corresponds to the
average local data density. This normalization is the key to addressing the challenges posed
by the scenario of Fig. 8.8a.

For a given data point X, let V k(X) be the distance to its k-nearest neighbor, and let
Lk(X) be the set of points within the k-nearest neighbor distance of X. The set Lk(X) will
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Outlier analysis - Distance-based detection - Local distance correction

• Local outlier factor (LOF)
• Adjusting the local variations in cluster density by normalization of distanced
with the average point-specific distances in a data locality.

• This approach solves the varying cluster density situation.
• For a given point X the Vk(X) is its distance to its k-nearest neighbor.
• The Lk(X) is the set of points within the k-nearest neighbor distance of X.
• The number of points in Lk(X) is k or more.
• The reachability distance is defined as

Rk(X, Y) = max{Dist(X, Y), Vk(Y)}

• The average reachability distance of X with respect to Lk(X) is then

ARk(X) = MEANY∈Lk(X)Rk(X, Y)

• The Local Outlier Factor LOFk is then

LOFk(X) = MEANY∈Lk(X)
ARk(X)
ARk(Y) 13



Outlier analysis - Distance-based detection - Local distance correction

• Instance-Specific Mahalanobis distance
• The goal is to deal with the varying cluster shape.
• A k-local neighborhood Lk(X) with respect to the cluster shape have to be
defined.

• Lk(X) is constructed with the single-linkage agglomerative approach around the
point X.

• A mean µk(X) and the covariance matrix Σk(X) are computed.
• The distance LMahak(X) then represent the outlier score.

LMahak(X) = Maha(X, µk(X),Σk(X))
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Outlier analysis - Density based methods

• The idea is similar to the density-based clustering.
• The main difference is that only the non-dense regions are detected.
• The points in sparse regions are reported as outliers.
• Histogram-based technique

• Popular method for univariate data.
• Represents the statistical distribution of points.
• Difficult to adapt to varying density in different data locality.
• Difficult to adapt this method to higher dimensions.

• Grid-based techniques
• The space is partitioned into p equi-width ranges.
• The sparse regions with the density less than τ are reported as outliers.
• It is difficult to select proper p.
• The τ may be defined using univariate extreme value analysis.
• Outlier groups may not be reported because the cluster shapes are not
recognized. 15



Outlier analysis - Density based methods

• Kernel-based density estimation
• Similarly to Histogram- or Grid-based methods a local density is detected.
• The density in each point is computed as smoothed values of a kernel
functions associated with each data point.

f (X) = 1
n

n∑
i=1

Kh(X − Xi)

• The h is a parameter of a function.
• typical choice is the Gausian kernel with the width h.

Kh(X − Xi) =
(

1√
2πh

)d

· e−‖X−Xi‖2/
(
2h2

)
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