
Fundamentals of Machine Learning
Regression

Jan Platos
November 15, 2023

Regression

Regression - Linear models

• Class of algorithms that is focused on a numerical data.

• Models allow:
• prediction of the numeric values,
• classification.

• Elementary model behind the neural network.

1

Regression - Linear models

Linear regression:

• The class is expressed using linear coefficient.

x = w0 + w1a1 + w2a2 + · · ·+ wkak

• a1,a2, . . . ,ak are the attribute values,

• w0,w1, . . . ,wk are the weights.

2

Regression - Linear models

Linear regression:

• The weights are calculated from the training data.

• The prediction for the i-th instance is calculated as:

w0a(i)0 + w1a(i)1 + w2a(i)2 + · · ·+ wka(i)k =
k∑
j=0

wja(i)j

• The important is the difference between the true value y and the
predicted one.

3

Regression - Linear models

Linear regression:

• The least-squares linear regression is to choose the weights wj to
minimize the sum of squares of the differences.

n∑
i=0

y(i) − k∑
j=0

wja(i)j

2

4

Regression - Linear models

Linear regression:

• The classification version may be modified from regression using
replacement of the class.

• The first class has assigned 0 and the second has 1.

• The predicted value may be understand as a probability or a
membership.

5

Regression - Linear models

• The goal is to find a linear model that is able to predict the true value
y from the input vector x.

• The expected value y is expressed using linear coefficient.

y = w0x0 + w1x1 + w2x2 + · · ·+ wkxk

• x0 is always 1 and represents the bias.

• x1, x2, . . . , xk are the attribute values,

• w0,w1, . . . ,wk are the weights.

6

Regression - Linear models

• The error function is defined as:

n∑
i=0

y(i) − k∑
j=0

wjx(i)j

2

• The goal is to find the weights to minimize the error.

min
w


n∑
i=0

y(i) − k∑
j=0

wjx(i)j

2
7

Regression - Linear models

min
w


n∑
i=0

y(i) − k∑
j=0

wjx(i)j

2
• The solution may be find using:

• Ordinary Least Squares algorithm.

• Gradient Descent (a learning rate need to be set and iterative approach
is processed).

8

Regression - Linear models - Regularization

• The weights computed by the optimization algorithm may exceeds
some limits and/or may contains many small numbers.

• Such weights means over-fitting - too big specialization to the training
data.

9

Regression - Linear models - Regularization

• Lasso regression
• Minimizes the sum of weights.
• Eliminates small weight in favor to more important ones.

min
w


n∑
i=0

y(i) − k∑
j=0

wjx(i)j

2

+ α
k∑
j=0

|wj|



10

Regression - Linear models - Regularization

• Ridge regression
• Minimizes the sum of squares of the weights (a norm o the weight
vector).

• Suppress large values in favor of smaller and more universal ones.

min
w


n∑
i=0

y(i) − k∑
j=0

wjx(i)j

2

+ β
k∑
j=0

|wj|2


11

Regression - Linear models - Regularization

• Elastic Net
• Combines both regularization to gain benefit from them.

min
w


n∑
i=0

y(i) − k∑
j=0

wjx(i)j

2

+ α
k∑
j=0

|wj| + β
k∑
j=0

|wj|2


12

Regression - Linear models

3 2 1 0 1 2 3 4
60

40

20

0

20

40

60 Linear regressor
Lasso regressor
Ridge regressor
ElasticNet

13

Regression - Linear models

3 2 1 0 1 2 3 4
60

40

20

0

20

40

60 Linear regressor
Lasso regressor
Ridge regressor
ElasticNet

14

Regression - Linear models

3 2 1 0 1 2 3 4
80

60

40

20

0

20

40

60

80 Linear regressor
Lasso regressor
Ridge regressor
ElasticNet

15

Regression - Linear models

3 2 1 0 1 2 3 4
100

50

0

50

100
Linear regressor
Lasso regressor
Ridge regressor
ElasticNet

16

Regression - Single-layer Neural Network (Perceptron)

• The structure has two layers.
• The input layer has one node for each
input attribute.

• The input node only transmit the input
value to the output node.

• The connection between input and output
nodes are weighted.

• The output layer consist of one output
neuron.

• The output neuron computes the output
value.

• The class labels are from the set of
{−1,+1}.

328 CHAPTER 10. DATA CLASSIFICATION

Algorithm Perceptron(Training Data: D)
begin
Initialize weight vector W to random values;
repeat
Receive next training tuple (Xi, yi);
zi = W ·Xi + b;
W = W + η(yi − zi)Xi;

until convergence;
end

Figure 10.9: The perceptron algorithm

INPUT NODES

X 2

Xi
1

INPUT NODES

OUTPUT NODE
w1

Xi
3

Xi OUTPUT NODE

Zi

w2

w3

w4

Xi
4

Xi
5

w5

INPUT LAYER

Xi
2

Xi
1

HIDDEN LAYER

Xi
3

i

Zi

OUTPUT LAYER

Xi
4

Xi
5Xi

reyalitluM)b(nortpecreP)a(

Figure 10.10: Single and multilayer neural networks

A question arises as to how the learning rate η may be chosen. A high value of η will
result in fast learning rates, but may sometimes result in suboptimal solutions. Smaller
values of η will result in a convergence to higher-quality solutions, but the convergence will
be slow. In practice, the value of η is initially chosen to be large and gradually reduced, as
the weights become closer to their optimal values. The idea is that large steps are likely
to be helpful early on, but may result in oscillation between suboptimal solutions at later
stages. For example, the value of η is sometimes selected to be proportional to the inverse
of the number of cycles through the training data (or epochs) so far.

10.7.2 Multilayer Neural Networks

The perceptron model is the most basic form of a neural network, containing only a single
input layer and an output layer. Because the input layers only transmit the attribute values
without actually applying any mathematical function on the inputs, the function learned
by the perceptron model is only a simple linear model based on a single output node. In
practice, more complex models may need to be learned with multilayer neural networks.

Multilayer neural networks have a hidden layer, in addition to the input and output
layers. The nodes in the hidden layer can, in principle, be connected with different types
of topologies. For example, the hidden layer can itself consist of multiple layers, and nodes
in one layer might feed into nodes of the next layer. This is referred to as the multilayer
feed-forward network. The nodes in one layer are also assumed to be fully connected to the

Figure 1: The Perceptron

17

Regression - Single-layer Neural Network (Perceptron)

• The weighted inputs are transformed into
output value.

• The value in drawn from the set {−1,+1}.
• The value may be interpreted as the
perceptron prediction of the class variable.

• The weights W = {w1, . . . ,wd} are modified
when the predicted output does not match
expected value.

328 CHAPTER 10. DATA CLASSIFICATION

Algorithm Perceptron(Training Data: D)
begin
Initialize weight vector W to random values;
repeat
Receive next training tuple (Xi, yi);
zi = W ·Xi + b;
W = W + η(yi − zi)Xi;

until convergence;
end

Figure 10.9: The perceptron algorithm

INPUT NODES

X 2

Xi
1

INPUT NODES

OUTPUT NODE
w1

Xi
3

Xi OUTPUT NODE

Zi

w2

w3

w4

Xi
4

Xi
5

w5

INPUT LAYER

Xi
2

Xi
1

HIDDEN LAYER

Xi
3

i

Zi

OUTPUT LAYER

Xi
4

Xi
5Xi

reyalitluM)b(nortpecreP)a(

Figure 10.10: Single and multilayer neural networks

A question arises as to how the learning rate η may be chosen. A high value of η will
result in fast learning rates, but may sometimes result in suboptimal solutions. Smaller
values of η will result in a convergence to higher-quality solutions, but the convergence will
be slow. In practice, the value of η is initially chosen to be large and gradually reduced, as
the weights become closer to their optimal values. The idea is that large steps are likely
to be helpful early on, but may result in oscillation between suboptimal solutions at later
stages. For example, the value of η is sometimes selected to be proportional to the inverse
of the number of cycles through the training data (or epochs) so far.

10.7.2 Multilayer Neural Networks

The perceptron model is the most basic form of a neural network, containing only a single
input layer and an output layer. Because the input layers only transmit the attribute values
without actually applying any mathematical function on the inputs, the function learned
by the perceptron model is only a simple linear model based on a single output node. In
practice, more complex models may need to be learned with multilayer neural networks.

Multilayer neural networks have a hidden layer, in addition to the input and output
layers. The nodes in the hidden layer can, in principle, be connected with different types
of topologies. For example, the hidden layer can itself consist of multiple layers, and nodes
in one layer might feed into nodes of the next layer. This is referred to as the multilayer
feed-forward network. The nodes in one layer are also assumed to be fully connected to the

Figure 2: The Perceptron

18

Regression - Single-layer Neural Network (Perceptron)

• The function learned by the perceptron is referred as activation
function.

• The function is usually signed linear function (e.g. weighted sum).
• The W = {w1, . . . ,wd} are the weights for the connections of d
different inputs to the output neuron.

• The d is also the dimensionality of the data.
• The b is the bias associated with the activation function.
• The output zi ∈ {−1,+1} is for the data record Xi = (x1i , . . . , xdi)
computed as follows:

zi = sign


d∑
j=1

wjxji + b

 = sign
{
W · Xi + b

}
19

Regression - Single-layer Neural Network (Perceptron)

• The difference between the prediction of the class value zi and the
real class value yi is (yi − zi) ∈ {−2, 0, 2}.

• The result is 0 when the prediction and reality is the same.
• The weight vector W and bias b need to be updated, based on the
error (yi − zi).

• The learning process is iterative.
• The weight update rule for i-th input point Xi in t-th iteration is as
follows:

Wt+1
= Wt

+ η(yi − zi)Xi
• The η is the learning rate that regulate the learning speed.
• Each cycle per input points in the learning phase is referred as an
epoch. 20

Regression - Single-layer Neural Network (Perceptron)

Wt+1
= Wt

+ η(yi − zi)Xi

• The incremental term (yi − zi)Xi is the approximation of the negative
of the gradient of the least=squares prediction error
(yi − zi)2 =

(
yi − sign

(
W · Xi − b

))2
• The update is performed on a tuple-by-tuple basis not a global over
whole dataset.

• The perceptron may be considered a modified version of a gradient
descent method that minimizes the squared error of prediction.

21

Regression - Single-layer Neural Network (Perceptron)

• The size of the η affect the speed of the convergence and the quality
of the solution.

• The higher value of η means faster convergence, but suboptimal
solution may be found.

• Lower values of η results in higher-quality solutions with slow
convergence.

• In practice, η is decreased systematically with increasing number of
epochs performed.

• Higher values at the beginning allows bigger jumps in weight space
and lower values later allows precise setting of the weights.

22

Regression - Multi-layer Neural Network

• The perceptron, with only one
computational neuron produces
only a linear model.

• Multi-layer perceptron adds a
hidden layer beside the input and
output layer.

• The hidden layer itself may consist
of different type of topology (e.g.
several layers).

328 CHAPTER 10. DATA CLASSIFICATION

Algorithm Perceptron(Training Data: D)
begin

Initialize weight vector W to random values;
repeat
Receive next training tuple (Xi, yi);
zi = W ·Xi + b;
W = W + η(yi − zi)Xi;

until convergence;
end

Figure 10.9: The perceptron algorithm

INPUT NODES

X 2

Xi
1

INPUT NODES

OUTPUT NODE
w1

Xi
3

Xi OUTPUT NODE

Zi

w2

w3

w4

Xi
4

Xi
5

w5

INPUT LAYER

Xi
2

Xi
1

HIDDEN LAYER

Xi
3

i

Zi

OUTPUT LAYER

Xi
4

Xi
5Xi

reyalitluM)b(nortpecreP)a(

Figure 10.10: Single and multilayer neural networks

A question arises as to how the learning rate η may be chosen. A high value of η will
result in fast learning rates, but may sometimes result in suboptimal solutions. Smaller
values of η will result in a convergence to higher-quality solutions, but the convergence will
be slow. In practice, the value of η is initially chosen to be large and gradually reduced, as
the weights become closer to their optimal values. The idea is that large steps are likely
to be helpful early on, but may result in oscillation between suboptimal solutions at later
stages. For example, the value of η is sometimes selected to be proportional to the inverse
of the number of cycles through the training data (or epochs) so far.

10.7.2 Multilayer Neural Networks

The perceptron model is the most basic form of a neural network, containing only a single
input layer and an output layer. Because the input layers only transmit the attribute values
without actually applying any mathematical function on the inputs, the function learned
by the perceptron model is only a simple linear model based on a single output node. In
practice, more complex models may need to be learned with multilayer neural networks.

Multilayer neural networks have a hidden layer, in addition to the input and output
layers. The nodes in the hidden layer can, in principle, be connected with different types
of topologies. For example, the hidden layer can itself consist of multiple layers, and nodes
in one layer might feed into nodes of the next layer. This is referred to as the multilayer
feed-forward network. The nodes in one layer are also assumed to be fully connected to the

Figure 3: Multi-layer neural network

23

Regression - Multi-layer Neural Network

• The output of nodes in one layer
feed the inputs of the nodes in the
next layer - this behavior is called
feed-forward network.

• The nodes in one layer are fully
connected to the neurons in the
previous layer.

328 CHAPTER 10. DATA CLASSIFICATION

Algorithm Perceptron(Training Data: D)
begin

Initialize weight vector W to random values;
repeat
Receive next training tuple (Xi, yi);
zi = W ·Xi + b;
W = W + η(yi − zi)Xi;

until convergence;
end

Figure 10.9: The perceptron algorithm

INPUT NODES

X 2

Xi
1

INPUT NODES

OUTPUT NODE
w1

Xi
3

Xi OUTPUT NODE

Zi

w2

w3

w4

Xi
4

Xi
5

w5

INPUT LAYER

Xi
2

Xi
1

HIDDEN LAYER

Xi
3

i

Zi

OUTPUT LAYER

Xi
4

Xi
5Xi

reyalitluM)b(nortpecreP)a(

Figure 10.10: Single and multilayer neural networks

A question arises as to how the learning rate η may be chosen. A high value of η will
result in fast learning rates, but may sometimes result in suboptimal solutions. Smaller
values of η will result in a convergence to higher-quality solutions, but the convergence will
be slow. In practice, the value of η is initially chosen to be large and gradually reduced, as
the weights become closer to their optimal values. The idea is that large steps are likely
to be helpful early on, but may result in oscillation between suboptimal solutions at later
stages. For example, the value of η is sometimes selected to be proportional to the inverse
of the number of cycles through the training data (or epochs) so far.

10.7.2 Multilayer Neural Networks

The perceptron model is the most basic form of a neural network, containing only a single
input layer and an output layer. Because the input layers only transmit the attribute values
without actually applying any mathematical function on the inputs, the function learned
by the perceptron model is only a simple linear model based on a single output node. In
practice, more complex models may need to be learned with multilayer neural networks.

Multilayer neural networks have a hidden layer, in addition to the input and output
layers. The nodes in the hidden layer can, in principle, be connected with different types
of topologies. For example, the hidden layer can itself consist of multiple layers, and nodes
in one layer might feed into nodes of the next layer. This is referred to as the multilayer
feed-forward network. The nodes in one layer are also assumed to be fully connected to the

Figure 4: Multi-layer neural network

24

Regression - Multi-layer Neural Network

• The topology of the multi-layer feed-forward network is determined
automatically.

• The perceptron may be considered as a single-layer feed-forward
neural network.

• The number of layers and the number of nodes in each layer have to
be determined manually.

• Standard multi-layer network uses only one hidden layer, i.e. this is
considered as a two-layer feed forward neural network.

• The activation function is not limited to linear signed weighted sum,
other functions such as logistic, sigmoid or hyperbolic tangents are
allowed.

25

Regression - Multi-layer Neural Network

Sigmoid/Logistic function σ(x) = 1
1+e−x

TanH tanh(x) =
(
ex−e−x)
(ex+e−x)

ReLU (Rectified linear unit) f (x) =
{
0 forx ≤ 0
x forx ≥ 0

Sinc f (x) =
{
1 forx = 0
sin(x)
x forx 6= 0

Gaussian f (x) = ex2

Softmax σ(z)j = ezj∑K
k=1 e

zk

26

Regression - Multi-layer Neural Network

• The learning phase is more complicated than the one in perceptron.
• The biggest problem is the get the error in the hidden layer, because
the direct class label is not defined on this level.

• Some kind of feedback is required from the nodes in the forward layer
to the nodes in earlier layers about the expected outputs and
corresponding errors.

• This principle is realized in the back-propagation algorithm.

27

Regression - Multi-layer Neural Network

Back-propagation algorithm

• Forward phase:
• The input is fed into input neurons.
• The computed values are propagated using the current weights to the
next layers.

• The final predicted output is compared with the class label and the
error is determined.

28

Regression - Multi-layer Neural Network

Back-propagation algorithm

• Backward phase:
• The main goal is to learn weights in the backward direction by providing
the error estimation from later layers to the earlier layers.

• The estimation in the hidden layer is computed as a function of the
error estimate and weight is the layers ahead.

• The error is estimated again using the gradient method.
• The process is complicated by the using of non-linear functions n the
inner nodes.

29

Regression - Multi-layer Neural Network - Back-propagation alg.

• Lets have an example multi-layer neural network with single output
neuron.

• In each iteration do take the i-th input vector.
• Pass it through the networks using the forward pass.
• Compare the i-th output oi to the expected value yi.
• Compute the error and update the weight using the learning rate η.
• The goal is to optimize the weights wi to minimize the error function
of the differences between yi and oi.

30

Regression - Multi-layer Neural Network - Back-propagation alg.

• The error function E over whole dataset of size n may be defined as
follows:

E =
1
2

n∑
i=0

(yi − oi)2

• The weights of the neurons must be adapted according to the error
produced by the neuron weight.

wi+1 = −η
∂E
∂wi

+ µwi

31

Regression - Multi-layer Neural Network - Back-propagation alg.

• The partial derivation may be computed using so called chain rule.

∂E
∂wi

=
∂E
∂y

· ∂y
∂z

· ∂z
∂wi

• where

y = 1
1+ e−λz z =

m∑
i=0

wixi

• therefore
∂z
∂wi

= xi
∂y
∂z

= y · (1− y)λ

32

Regression - Multi-layer Neural Network - Back-propagation alg.

• The first partial derivation
computation differs for neuron
from output and hidden layer.

• The solution for the output layer
and i-th output is as follows:

∂E
∂y

= (yi − oi)

y

n

wi

i1

z

w1 wn

33

Regression - Multi-layer Neural Network - Back-propagation alg.

• The solution for the hidden layer
and i-th output is as follows:

∂E
∂y

=
m∑
j=0

∂E
∂zj

· ∂z
j

∂y
=

m∑
j=0

∂E
∂zj

· wj

wj

y

yk

wi

yiy1

Z

w1 wn

zmziz1

wmw1

y1 yi ym

34

Regression - Multi-layer Neural Network

• It has ability not only to capture decision boundaries of arbitrary
shapes, but also non-contiguous class distribution with different
decision boundaries in different regions.

• With increasing number of nodes and layers, virtually any function
may be approximated.

• The neural networks are universal function approximate.

35

Regression - Multi-layer Neural Network

• This generality brings several challenges that have to be dealt with:
• The design of the topology presents many trade=off challenges for the
analyst.

• Higher number of nodes and layers provides greater generality but also
the risk of over-fitting.

• There is very little guidance provided from the data.
• The neural network has poor interpretability associated with the
classification process.

• The learning process is very slow and sensitive to the noise.
• Larger networks has very slow learning process.

36

Regression - Multi-layer Neural Network

3 2 1 0 1 2 3 4

40

20

0

20

40

60 Ridge regressor
Multi-layer NN

37

Regression - Multi-layer Neural Network

3 2 1 0 1 2 3 4
60

40

20

0

20

40

60 Ridge regressor
Multi-layer NN

38

Regression - Multi-layer Neural Network

3 2 1 0 1 2 3 4
80

60

40

20

0

20

40

60

80 Ridge regressor
Multi-layer NN

39

Regression - Multi-layer Neural Network

3 2 1 0 1 2 3 4
100

50

0

50

100
Ridge regressor
Multi-layer NN

40

Regression - Regression Trees

• In reality, local linear regression may be quite effective even when the
relationships is nonlinear.

• This is used in Regression Trees.

• Each test instance is classified with its locally optimized linear
regression by determining its appropriate partition.

• The partition is determined using split criteria in the internal nodes,
i.e. the same as the Decision trees.

41

Regression - Regression Trees

• The general strategy of tree construction is the same as for Decision
Trees.

• The splits are univariate (single variable/axis parallel).

• The changes are done in splitting criterion determination and in the
pruning.

• The number of points used for training need to be high to avoid
over-fitting

42

Regression - Regression Trees

Splitting criterion

• Due to numeric nature of the class variable, error-based measure
have to be used instead of entropy or Gini index.

• The regression modeling is applied on each child resulting from
potential split.

• The aggregated squared error of prediction of all training points is
computed.

43

Regression - Regression Trees

Splitting criterion

• The split point with the minimum aggregated error is selected.

• The complete regression modeling is computationally very expensive.

• An average variance of the numeric class variable may be used
instead.

• The linear regression models are constructed at the leaf nodes after
the tree is created.

• This results in larger trees but it its computational expensiveness is
much lower.

44

Regression - Regression Trees

Pruning criterion

• A portion of the training data is not used during construction phase.

• This set is used for evaluation of the squared error of the prediction.

• Leaf nodes are iteratively removed if the accuracy not decreases.

45

Regression - Regression Trees

3 2 1 0 1 2 3 4

40

20

0

20

40

60 Ridge regressor
Multi-layer NN
Decision Tree

46

Regression - Regression Trees

3 2 1 0 1 2 3 4
60

40

20

0

20

40

60 Ridge regressor
Multi-layer NN
Decision Tree

47

Regression - Regression Trees

3 2 1 0 1 2 3 4
80

60

40

20

0

20

40

60

80 Ridge regressor
Multi-layer NN
Decision Tree

48

Regression - Regression Trees

3 2 1 0 1 2 3 4
100

50

0

50

100
Ridge regressor
Multi-layer NN
Decision Tree

49

Regression- Assessing Model Effectiveness

• Mean Absolute Error (MAE) - is the average of the absolute difference
between the predicted and actual value. It is highly affected by
outliers.

MAE =
1
n

n∑
i=1

|yi − g(Xi)|

50

Regression- Assessing Model Effectiveness

• Mean Squared Error (MSE) - is the average of the squared difference
between the predicted and actual value. It is differentiable and may
be used for optimization.

MSE =
1
n

n∑
i=1

(
yi − g(Xi)

)2
• Root Mean Squared Error (RMSE) - is the square root of the average of
the squared difference of the predicted and actual value. The root
mean is able penalize large errors.

RMSE =

√√√√ 1
n

n∑
i=1

(
yi − g

(
Xi
))2

51

Regression- Assessing Model Effectiveness

• The effectiveness of the linear regression models can be evaluated
with a measure known as R2-statistics or coefficient of determination.

• The standard Sum of Squared Error is defined for a model g(X) as:

SSE =
n∑
i=1

(
yi − g(Xi)

)2
• The Squared Error of the response variable about its mean is defined
as:

SST =
n∑
i=1

yi − n∑
j=1

yj
n

2

=
n∑
i=1

(yi − y)2

52

Regression- Assessing Model Effectiveness

• The R2-statistics is then defined as:

R2 = 1− SSE
SST

• The value is always between 0 and 1 and higher are more desirable.
• For high dimension data, adjusted version is more accurate:

R2 = 1− (n− d)SSE
(n− 1)SST

• The R2-statistics is not applicable on the nonlinear models.
• The nonlinear regression may be evaluated using pure SSE.

53

Regression- Assessing Model Effectiveness

• Mean Average Percentage Error (MAPE) - is the average percentage
error between the predicted and actual value.

MAPE =
100
n

n∑
i=1

∣∣∣∣yi − g(Xi)
yi

∣∣∣∣
• Symmetric Mean Average Percentage Error (SMAPE) - is the symmetric
average percentage error between the predicted and actual value.

SMAPE =
100
n

n∑
i=1

∣∣yi − g(Xi)
∣∣

|yi|+
∣∣g(Xi)∣∣
2

54

Questions

