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Classification

• Classification process is a process where objects are assigned to
different class by their properties using a model.

• The process is divided in two or three phases - training, validation
and testing.

• The training phase uses a predefined class assignment to create a
model that is able to fit on the training set of objects.

• The validation phase uses a validation set of object to evaluate the
quality of the model.

• The testing phase evaluates the model on a testing set of objects and
evaluates the precision. 1



Classification

• The quality of the model depends on the principle of the algorithm
and the quality of the training data.

• A no-free-lunch theorem1 applies here.

• Each algorithm makes different types of errors.

• The goal is to train as good model as possible for a specific data.

• Auto-ML tries to solve the problem with brute force.

1https://en.wikipedia.org/wiki/No_free_lunch_theorem
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Classification - Nearest Neighbors Classification

• Simple algorithm that utilizes a distance function for classification.

• The predicted class is the majority class of the nearest neighbors.

• Finding the nearest neighbors is the crucial part.

• Efficient data structure for space division are used.

• The main algorithms are quadrant and octrees, and kD-tree or other
data structures.
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Classification - Simple Probabilistic Modeling

• Simple probabilistic modeling express the resulting probability based
on all attributes together.

• The probability is computed separately according to the class/label.

• Prediction is computed as a multiplication of the particular
probabilities.
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Classification - Simple Probabilistic Modeling

Outlook Temperature Humidity Windy Play
Sunny Hot High False No
Sunny Hot High True No
Overcast Hot High False Yes
Rainy Mild High False Yes
Rainy Cool Normal False Yes
Rainy Cool Normal True No
Overcast Cool Normal True Yes
Sunny Mild High False No
Sunny Cool Normal False Yes
Rainy Mild Normal False Yes
Sunny Mild Normal True Yes
Overcast Mild High True Yes
Overcast Hot Normal False Yes
Rainy Mild High True No 5



Classification - Simple Probabilistic Modeling

Outlook Temperature Humidity Windy Play
Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 Hot 2 2 High 3 4 False 6 2 9 5
Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3
Rainy 3 2 Cool 3 1
Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14
Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5 True 3/9 3/5
Rainy 3/9 2/5 Cool 3/9 1/5
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Classification - Simple Probabilistic Modeling

Outlook Temperature Humidity Windy Play
Sunny Cool High True ?

Likelihood(yes) = 2/9× 3/9× 3/9× 3/9× 9/14 = 0.0053

Likelihood(no) = 3/5× 1/5× 4/5× 3/5× 5/14 = 0.0206

Probability(yes) = 0.0053
0.0053+ 0.0206

= 20.5%

Probability(no) = 0.0206
0.0053+ 0.0206

= 79.5%
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Classification - Simple Probabilistic Modeling

• The described process works only when the attributes are equally
important and independent - in theory.

• The equation is defined according to the Bayes’ rule of conditional
probability.

P(A|B) = P(B|A) P(A)
P(B)

• The Naive assumptions allows the decomposition of the P(B|A) into a
multiplication of the particular probabilities.
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Classification - Simple Probabilistic Modeling

• Bayes rule and Naive Bayes classifier may be used also on text data.

• One of the basic Anti Spam Filter.

• Each word is taken as a single attribute.

• The probability is processed as previously.
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Classification - Inferring Rudimentary Rules

• Extract very simple classification rules from a set of instances.

• They are called 1R (1-rule).

• The rule is base don a single attribute.

• Extracted rules well characterize the structure of the data.

• The defined rules usually achieve a high precision.

• The procedure is straight-forward.

• The best rule set is selected as a result.

10



Classification - Inferring Rudimentary Rules

Outlook Temperature Humidity Windy Play
Sunny Hot High False No
Sunny Hot High True No
Overcast Hot High False Yes
Rainy Mild High False Yes
Rainy Cool Normal False Yes
Rainy Cool Normal True No
Overcast Cool Normal True Yes
Sunny Mild High False No
Sunny Cool Normal False Yes
Rainy Mild Normal False Yes
Sunny Mild Normal True Yes
Overcast Mild High True Yes
Overcast Hot Normal False Yes
Rainy Mild High True No 11



Classification - Inferring Rudimentary Rules

Attribute Rules Errors Total error
Outlook Sunny→ no 2/5

Overcast→ yes 0/4 4/14
Rainy→ yes 2/5

Temperature Hot→ no 2/4
Mild→ yes 2/6 5/14
Cool→ yes 1/4

Humidity High→ no 3/7 4/14
Normal→ yes 1/7

Windy False→ yes 2/8 5/14
True→ no 3/6
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Classification - Inferring Rudimentary Rules

• For each attribute,
• For each value of that attribute, make a rule as follows:

• count how often each class appears

• find the most frequent class

• make the rule assign that class to this attribute-value.

• Calculate the error rate of the rules.

• Choose the rules with the smallest error rate.

13



Classification - Inferring Rudimentary Rules

• The algorithm works on categorical data.

• Numeric attributes must be categorized.

• Not precise enough for a complex dataset.

• Good baseline model.

14



Classification - Decision Trees

• Decision Tree is a special type of n-ary tree with attributes in internal
nodes and set of instances in a leaves.

• The tree is built using recursive approach.

• An attribute is selected and placed into a root node.

• The set of instances splits into subsets according to the values of the
attribute.

• Each subset is processed similarly to the whole dataset.

• The process ends when a subset has the same label.
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Classification - Decision Trees

• The question is which attribute have to be chosen for a set of
instances.

• Each split generates a new level of a tree.

• Lets say that the small trees are better than large trees.

• Small trees are generated when a subset contains only single class -
not necessary to split this node again.

• The non-diversity of a subset is called purity.
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Classification - Decision Trees
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Classification - Decision Trees

• How to measure the purity of the tree?

• Information (Entropy) is one of the popular option.

• Measurement of the change before and after the split is used, it is
called Information Gain.

• The split that maximizes Gain is the most suitable.
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Classification - Decision Trees

• Information of a set of instances with two possible labels - Info([X, Y].

• X and Y represents the number of first, resp. second label.

Info([X, Y]) = −pX log px − py log py

px =
X

x + Y
, py =

Y
X + Y

19



Classification - Decision Trees

• Information of a multiple subsets is computed using weighted sum of
individual information.

• Information Gain is then computed for each possible split.

• The split with the largest gain is selected and the set is done.

• Each subset is then processed with the same algorithm.

• Other attributes are used.
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Classification - Decision Trees - Split Criteria

Definitions:

• S is a set of points in a branch of a tree.
• |S| is size of the set (number of points in a set).
• r-way split has r subsets S1, . . . , Sr of set S.
• k is the number of classes.
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Classification - Decision Trees - Split Criteria

Error rate:

• On a set:
Err (S) = 1− p

• where the p is a fraction of points that belongs to the dominant class
from S.

• On r-way split:

Err (S⇒ S1, . . . , Sr) =
r∑
i=1

|Si|
|S|

(1− p)
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Classification - Decision Trees - Split Criteria

Gini index:

• On a set:

G (S) = 1−
k∑
j=1

p2j

• where the pj is a fraction of points that belongs to the class j from S.

• On r-way split:

G (S⇒ S1, . . . , Sr) =
r∑
i=1

|Si|
|S|
G (Si)
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Classification - Decision Trees - Split Criteria

Entropy:

• On a set:

E (S) = −
k∑
j=1

pj log2 (pj)

• where the pj is a fraction of points that belongs to the class j from S.

• On r-way split:

E (S⇒ S1, . . . , Sr) =
r∑
i=1

|Si|
|S|
E (Si)

24



- Decision Trees - Numeric Attributes

• Dealing with numeric attributes brings a new problem.

• Where to split the attribute and how to maintain the best possible
tree.

• The validation criteria is the same - the purity of the subsets
according to the class label.

• The optimal point is always between two successive values of the
attribute.
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- Decision Trees - Iris Example

Iris Setosa Iris Versicolor Iris Virginica
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- Decision Trees - Iris Example

Features:
• sepal length in cm
• sepal width in cm
• petal length in cm
• petal width in cm
• class:

• Iris Setosa
• Iris Versicolour
• Iris Virginica
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- Decision Trees - Iris Example
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- Decision Trees - Iris Example
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- Decision Trees - Iris Example
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- Decision Trees - Iris Example
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- Decision Trees - Iris Example

• index = 0, Sepal Length < 5.45, Gini = 0.44
• index = 1, Sepal Width < 3.35, Gini = 0.54
• index = 2, Petal Length < 2.45, Gini = 0.33
• index = 3, Petal Width < 0.80, Gini = 0.33
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- Decision Trees - Iris Example

• index = 0, Sepal Length < 5.45, Gini = 0.44
• index = 1, Sepal Width < 3.35, Gini = 0.54
• index = 2, Petal Length < 2.45, Gini = 0.33
• index = 3, Petal Width < 0.80, Gini = 0.33
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- Decision Trees - Iris Example

gini = 0.0
samples = 2

value = [0, 2, 0]

gini = 0.0
samples = 1

value = [0, 0, 1]

gini = 0.0
samples = 47

value = [0, 47, 0]

gini = 0.0
samples = 1

value = [0, 0, 1]

gini = 0.0
samples = 3

value = [0, 0, 3]

X[2] <= 5.45
gini = 0.444
samples = 3

value = [0, 2, 1]

gini = 0.0
samples = 1

value = [0, 1, 0]

gini = 0.0
samples = 2

value = [0, 0, 2]

X[3] <= 1.65
gini = 0.041

samples = 48
value = [0, 47, 1]

X[3] <= 1.55
gini = 0.444
samples = 6

value = [0, 2, 4]

X[0] <= 5.95
gini = 0.444
samples = 3

value = [0, 1, 2]

gini = 0.0
samples = 43

value = [0, 0, 43]

X[2] <= 4.95
gini = 0.168

samples = 54
value = [0, 49, 5]

X[2] <= 4.85
gini = 0.043

samples = 46
value = [0, 1, 45]

gini = 0.0
samples = 50

value = [50, 0, 0]

X[3] <= 1.75
gini = 0.5

samples = 100
value = [0, 50, 50]

X[2] <= 2.45
gini = 0.667

samples = 150
value = [50, 50, 50]
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- Decision Trees - Iris Example
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- Decision Trees - Iris Example
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- Decision Trees - Pruning

• Fully trained decision tree is a 100% classifier.

• Fully grown decision tree contains many unnecessary nodes.

• Pruning removes the unnecessary nodes to improve efficiency on the
testing dataset.

• Two variants: Prepruning and Postpruning.
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- Decision Trees - Pruning

• Pre-pruning:
• Applied during constructing the tree.

• Stops split when some condition are satisfied.

• Post-pruning:
• More frequent variant

• Two operation: Subtree replacement and subtree raising.

37



- Decision Trees - Pruning

• Each node is processed and evaluated.

• Sub-tree replacement operation replaces the sub-tree by the leaf
node.

• Sub-tree raising operation moves upward a node with its children and
replaces the parent nodes. Sibling nodes need to be reclassified.
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- Decision Trees - Pruning

• Evaluation of the pruning operation is a major question.

• Simplest possibility if the hold-out set of training objects.

• Hold-out set is set of objects removed from the training data and
used strictly in pruning process.

• Other option is to estimate the error produced by the tree and making
the changes.
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Classification - Covering rules

• Decision Trees works in a divide-and-conquer principle.

• Bottom-up approach may focus on specific classes.

• And covering all instances belonging to the specified class.

• The covering is done using set of rules belonging to a specified class.

40



Classification - Covering rules

• Covering algorithm add a test to the rule under construction which
maximizes the accuracy.

• Searching for the optimal test is similar to the decision trees.

• Suppose the new rule will cover a total of t instances, of which p are
positive examples of the class and t − p are in other classes.

• The error rate of the new rule is then p/t.

• The test which maximizes the ration p/t is chosen as best test.

41



Classification - Covering rules

Outlook Temperature Humidity Windy Play
Sunny Hot High False No
Sunny Hot High True No
Overcast Hot High False Yes
Rainy Mild High False Yes
Rainy Cool Normal False Yes
Rainy Cool Normal True No
Overcast Cool Normal True Yes
Sunny Mild High False No
Sunny Cool Normal False Yes
Rainy Mild Normal False Yes
Sunny Mild Normal True Yes
Overcast Mild High True Yes
Overcast Hot Normal False Yes
Rainy Mild High True No 42



Classification - Covering rules

if ? then Play = Yes
Outlook = Sunny 2/5
Outlook = Overcast 4/4
Outlook = Rainy 3/5
Temperature = Hot 2/4
Temperature = Mild 4/6
Temperature = Cool 3/4
Humidity = High 3/7
Humidity = Normal 6/7
Windy = True 3/6
Windy = False 6/8
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Classification - Covering rules

if ? then Play = Yes
Outlook = Sunny 2/5
Outlook = Overcast 4/4
Outlook = Rainy 3/5
Temperature = Hot 2/4
Temperature = Mild 4/6
Temperature = Cool 3/4
Humidity = High 3/7
Humidity = Normal 6/7
Windy = True 3/6
Windy = False 6/8
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Classification - Covering rules

Outlook Temperature Humidity Windy Play
Sunny Hot High False No
Sunny Hot High True No
Overcast Hot High False Yes
Rainy Mild High False Yes
Rainy Cool Normal False Yes
Rainy Cool Normal True No
Overcast Cool Normal True Yes
Sunny Mild High False No
Sunny Cool Normal False Yes
Rainy Mild Normal False Yes
Sunny Mild Normal True Yes
Overcast Mild High True Yes
Overcast Hot Normal False Yes
Rainy Mild High True No 45



Classification - Covering rules

Outlook Temperature Humidity Windy Play
Sunny Hot High False No
Sunny Hot High True No
Rainy Mild High False Yes
Rainy Cool Normal False Yes
Rainy Cool Normal True No
Sunny Mild High False No
Sunny Cool Normal False Yes
Rainy Mild Normal False Yes
Sunny Mild Normal True Yes
Rainy Mild High True No
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Classification - Covering rules

if ? then Play = Yes
Outlook = Sunny 2/5
Outlook = Rainy 3/5
Temperature = Hot 0/2
Temperature = Mild 3/5
Temperature = Cool 2/3
Humidity = High 1/5
Humidity = Normal 4/5
Windy = True 1/4
Windy = False 4/6
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Classification - Covering rules

if Humidity = Normal AND ? then Play = Yes

Outlook Temperature Humidity Windy Play
Rainy Cool Normal False Yes
Rainy Cool Normal True No
Sunny Cool Normal False Yes
Rainy Mild Normal False Yes
Sunny Mild Normal True Yes

if Humidity = Normal AND Outlook = Rainy AND Temperature =

Cool AND Windy = True then Play = Yes
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Classification - Covering rules

if Humidity = Normal AND ? then Play = Yes

Outlook Temperature Humidity Windy Play
Rainy Cool Normal False Yes
Rainy Cool Normal True No
Sunny Cool Normal False Yes
Rainy Mild Normal False Yes
Sunny Mild Normal True Yes

if Humidity = Normal AND Outlook = Rainy AND Temperature =

Cool AND Windy = True then Play = Yes
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Classification - Covering rules

• The previous principle is called a PRISM.

• Only 100% accuracy rules are generated.

• The classification works well for non-ambiguous instances.

• All classes are processed separately.

• The rules are evaluated in a ordered manner.
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Classification - Credibility and Algorithm evaluation

• Dataset composition:
• Training data

• Testing data

• Validation data

• Not all sets are required.

• Evaluation may be done on the Training data only.
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Classification - Credibility and Algorithm evaluation

• The using of the same data for training and testing is not possible due
to over-fitting and overestimation.

• The validation part is used for parameter tuning or model solution.

• When the parameter tuning is done, the model is reconstructed on
the whole dataset.

• The knowledge from the testing dataset should not be used in
parameter tuning.
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Classification - Credibility and Algorithm evaluation

• Accuracy - the fraction of test instances in which the predicted value
matched the ground-truth value.

Accuracy = 1
N

N∑
i=0

1 if (yipred == yitruth) else 0
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Classification - Credibility and Algorithm evaluation

• Cost-sensitive accuracy
• Not all cases are equally important in all scenarios while comparing the
accuracy, e.g. Imbalanced data, ill vs. healthy patients, etc.

• This is frequently quantified by imposing different costs c1, . . . , ck on
the misclassification on the different classes.

• Let n1, . . . ,nk be the number of test instances belonging to each class.
• Let a1, . . . ,ak be the accuracy (expressed as a fraction) on the subset of
test instances belonging to each class.

• The overall accuracy A can be computed as a weighted combination of
the accuracy over the individual labels:

A =

∑k
i=1 ciniai∑k
i=1 cini

53



Classification - Credibility and Algorithm evaluation

• Confusion matrix
Ground truth

Predicted True False
True TP FP
False FN TN
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Classification - Credibility and Algorithm evaluation

Holdout

• The labeled data is randomly divided into two disjoint sets (training
and testing).

• Typically 60% to 75% is used for training set.

• This partition may be repeated several times to get he final
estimation.

• The over-presented samples in the training set are under-presented
in the testing sets.

• Due to not using of the whole data set for training the estimation are
pessimistic. 55



Classification - Credibility and Algorithm evaluation

Holdout

• By repeating the process over b different holdout samples the mean
and the variance of the error estimates may be determined.

• These information may be used for building the confidence intervals
on the error.

• In case of imbalanced data, an independent sampling (for each class
separately) have to be used to ensure the similarity between whole
dataset and the testing dataset.
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Classification - Credibility and Algorithm evaluation

Cross-Validation

• The data is divided into m disjoint subsets of equal size n/m.

• A typical choice for m is around 10.

• One segment is used as a testing set the the remaining m− 1 as a
training set.

• This process is repeated by selection each of the m subsets as a
testing sets.

• The average accuracy over the m different test sets is reported.

• The size of the training set is (m− 1) ∗ n/m.
57



Classification - Credibility and Algorithm evaluation

Cross-Validation

• When m is chosen large, the training set size is close to the whole
dataset and the reported prediction is very close to the whole data
set.

• The estimate of the accuracy tends to be highly representative but
pessimistic.

• A special case is when m = n, this is called a leave-one-out
cross-validation.

• Stratified cross-validation uses proportional representation of each
class in the different folds and usually provides less pessimistic
results.
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Classification - Credibility and Algorithm evaluation

Bootstrap

• The labeled data are sampled uniformly with replacement to create a
training set that may contain a duplicates.

• The labeled data of size n is sampled n times with replacement.

• The probability that a particular data point is not included in a
sample is given by (1− 1/n)

• The probability that the point is not included in n samples is then
(1− 1/n)n.
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Classification - Credibility and Algorithm evaluation

Bootstrap

• For large values of n the expression is approximately 1/e.

• The fraction of labeled points included included at least once in the
dataset is 1− 1/e = 0.632.

• The training model is constructed on the bootstrapped sample with
duplicates.

• The overall accuracy is computed using the whole dataset.

• The estimate is highly optimistic due to large overlap between
training and testing set.
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Ensemble methods

• The main idea is that different classifiers may make different
predictions on test instances with the same train data.

• This is caused by the specific characteristics of the classifiers, their
sensitivity to the random artifacts in the data, etc.

• The basic approach is to apply basic ensemble learners multiple
times by using different models or the same model on different
subsets of data.

• Two basic approaches exists:
• Data-centered ensembles
• Model-centered ensembles

61



Ensemble methods

• Data-centered ensembles
• Single classification model is used.
• The dataset is derived into set of subsets.
• The method of dataset derivation differs - sampling, incorrectly
classified data from previous set, manipulation with features,
manipulation with class labels, etc.

• Model-centered ensembles
• Many different algorithms are used in each ensemble iteration.
• The dataset used by each model is the same as the original dataset.
• The motivation is that different classifiers works better on particular
part of data.

• This approach is valid as long as the specific errors are not reflected by
the majority of the ensembles. 62



Ensemble methods - Bias

• Every classifier makes its own modeling
assumptions about the nature of the
decision boundary between classes:

• The classifier may incorrectly classify
data even with large training dataset.

• The modeled decision boundary does
not match the real boundary.

• Therefore, the classifier has an
inherent error - inherent bias.

• When a classifier has high bias, it will
make consistently incorrect predictions
over particular choices of test instances
near the incorrectly modeled
decision-boundary.

11.8. ENSEMBLE METHODS 375
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Figure 11.5: Impact of bias and variance on classification accuracy

2. Model-centered ensembles: Different algorithmsQj are used in each ensemble iteration.
In these cases, the data set fj(D) for each ensemble component is the same as the
original data set D. The rationale for these methods is that different models may work
better in different regions of the data, and therefore the combination of the models
may be more effective for any given test instance, as long as the specific errors of a
classification algorithm are not reflected by the majority of the ensemble components
on any particular test instance.

The following discussion introduces the rationale for ensemble analysis before presenting
specific instantiations.

11.8.1 Why Does Ensemble Analysis Work?

The rationale for ensemble analysis can be best understood by examining the different
components of the error of a classifier, as discussed in statistical learning theory. There are
three primary components to the error of a classifier:

1. Bias: Every classifier makes its own modeling assumptions about the nature of the
decision boundary between classes. For example, a linear SVM classifier assumes that
the two classes may be separated by a linear decision boundary. This is, of course, not
true in practice. For example, in Fig. 11.5a, the decision boundary between the differ-
ent classes is clearly not linear. The correct decision boundary is shown by the solid
line. Therefore, no (linear) SVM classifier can classify all the possible test instances
correctly even if the best possible SVM model is constructed with a very large train-
ing data set. Although the SVM classifier in Fig. 11.5a seems to be the best possible
approximation, it obviously cannot match the correct decision boundary and there-
fore has an inherent error. In other words, any given linear SVM model will have
an inherent bias. When a classifier has high bias, it will make consistently incor-
rect predictions over particular choices of test instances near the incorrectly modeled
decision-boundary, even when different samples of the training data are used for the
learning process.

2. Variance: Random variations in the choices of the training data will lead to different
models. Consider the example illustrated in Fig. 11.5b. In this case, the true decision

Figure 1: Bias on Linear SVM
example
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Ensemble methods - Variance

• Random variations in the choices of the
training data will lead to different
models.

• Test instances such as X are
inconsistently classified by decision
trees which were created by different
choices of training data sets.

• This is a manifestation of model
variance.

• Model variance is closely related to
over-fitting.

• When a classifier has an over-fitting
tendency, it will make inconsistent
predictions for the same test instance
over different training data sets.
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Figure 11.5: Impact of bias and variance on classification accuracy

2. Model-centered ensembles: Different algorithmsQj are used in each ensemble iteration.
In these cases, the data set fj(D) for each ensemble component is the same as the
original data set D. The rationale for these methods is that different models may work
better in different regions of the data, and therefore the combination of the models
may be more effective for any given test instance, as long as the specific errors of a
classification algorithm are not reflected by the majority of the ensemble components
on any particular test instance.

The following discussion introduces the rationale for ensemble analysis before presenting
specific instantiations.

11.8.1 Why Does Ensemble Analysis Work?

The rationale for ensemble analysis can be best understood by examining the different
components of the error of a classifier, as discussed in statistical learning theory. There are
three primary components to the error of a classifier:

1. Bias: Every classifier makes its own modeling assumptions about the nature of the
decision boundary between classes. For example, a linear SVM classifier assumes that
the two classes may be separated by a linear decision boundary. This is, of course, not
true in practice. For example, in Fig. 11.5a, the decision boundary between the differ-
ent classes is clearly not linear. The correct decision boundary is shown by the solid
line. Therefore, no (linear) SVM classifier can classify all the possible test instances
correctly even if the best possible SVM model is constructed with a very large train-
ing data set. Although the SVM classifier in Fig. 11.5a seems to be the best possible
approximation, it obviously cannot match the correct decision boundary and there-
fore has an inherent error. In other words, any given linear SVM model will have
an inherent bias. When a classifier has high bias, it will make consistently incor-
rect predictions over particular choices of test instances near the incorrectly modeled
decision-boundary, even when different samples of the training data are used for the
learning process.

2. Variance: Random variations in the choices of the training data will lead to different
models. Consider the example illustrated in Fig. 11.5b. In this case, the true decision

Figure 2: Variance on Decision
Tree example 64



Classification- Bagging

• Also known as bootstrapped aggregation.

• It is focused on variance reduction of the prediction.

• With the variance of the prediction equals to σ2, the variance of the
average of k independent and identically distributed (i.i.d.) prediction
is reduced to σ2

k .

• The i.i.d. predictors are approximated with bootstrapping (sampling
with replacement).
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Classification- Bagging

• The k different sets are constructed from the original dataset.

• Each set is used for model training.

• The predicted class is the dominant class over all classifiers.

• This approach decreases the variance, but may increase the bias.

• More detailed models need to be used to reduce bias as well,
otherwise, slightly degradation in accuracy may be achieved.

• The i.i.d. is usually not fully satisfied.

• The performance limit of the bagging is done by the pairwise
correlation between models ρ

ρ · σ2 + (1− ρ) · σ2

k
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Classification - Bagging - Random Forrest

• Random forests can be viewed as a generalization of the basic
bagging method, as applied to decision trees.

• The main drawback of using decision-trees directly with bagging is
that the split choices at the top levels of the tree are statistically
likely to remain approximately invariant to bootstrapped sampling.

• Therefore, the trees are more correlated, which limits the amount of
error reduction obtained from bagging.

• The idea is to use a randomized decision tree model with less
correlation between the different ensemble components.

• The final results are often more accurate than a direct application of
bagging on decision trees.
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Classification - Bagging - Random Forrest

• The random-split-selection introduces randomness into split criterion.

• The coefficient q ≤ d is used to regulate the randomness.

• The split-point selection is preceded by the random selection of q
features.

• Smaller number of q reduces the correlation between different trees
but decreases the accuracy.

• Moreover, this improves the construction process because only subset
of features need to be investigated.
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Classification - Bagging - Random Forrest

• The good trade-off between correlation reduction and accuracy was
investigated as

q = log2(d) + 1

• Low-dimension data does not benefit from this approach due to large
q with respect to the d.

• The trees are grown without pruning to reduce bias of the prediction.

• Random trees are resistant to noise and outliers and usually better
than pure bagging.
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Classification - Bagging - Extra Trees

• Slightly different approach is used by the Extra Trees - Extremely
Randomized Trees.

• The main changes are focused to increase the variance.

• The data are not sampled using bootstrapping - all data are used for
each tree.

• First, the subset of randomly selected features of size q is randomly
selected.

• The split of each feature is chosen randomly.

• The best split is selected from the sampled ones.

• Due to two random sampling, trees are really random and less
computationally expensive.
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Classification - Boosting

• In boosting, a weight is associated with each input instance.

• Different classifiers are trained with these weights.

• The weights are modified iteratively based on classification
performance.

• Each classifier is constructed using the same algorithm.

• The relative weights are increased on incorrectly classified instances,
according to the hypothesis that the misclassification is caused by
classifier bias.

• The overall bias is then decreased.

71



Classification - Boosting

• The predicted class is determined by the weighted aggregation of the
particular prediction of each model.

• The primary purpose is to reduce bias of the classification.

• This approach is more sensitive to the noised datasets.

• A typical example is AdaBoost algorithm.
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Ensemble methods - Boosting - AdaBoost (Adaptive Boosting)

• In binary classification, where labels are from {−1; 1}.

• The weights are initialized to 1
n for each of the n instances.

• The weights are in each iteration updated according the correctness
of the prediction.

• Wt+1(i) = Wt(i)eαt for incorrect classification.
• Wt+1(i) = Wt(i)e−αt for correct classification.

• The αt is defined as a function:
1
2
ln

(
1− εt
εt

)
• where εt is the fraction of incorrectly classified instances at t-th
iterations. 73



Ensemble methods - Boosting - AdaBoost (Adaptive Boosting)

• The termination criterion are defined as:
• εt = 0 - all instances are correctly classified.
• εt > 0.5 - the classification is worse than random.
• User-defined number of iterations is reached.

• The classification of test instance is done using aggregation over all
models:

ypred =
∑
t

ptαt

• where pt ∈ {−1; 1} is the prediction in the t-th iteration

• and the αt is defined as a function:
1
2
ln

(
1− εt
εt

)
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Classification - Boosting - Gradient Boosted Decision Trees

• Uses a Decision Trees as a weak learners.

• A loss function is used to detect the residuals, e.g. mean squared
error (MSE) for a regression task and logarithmic loss (log loss) for a
classification tasks.

• The existing trees are left unchanged when a new tree is added.

• The new tree is trained on the previous model residual.
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Classification - Boosting - Gradient Boosted Decision Trees

• The increasing number of trees may lead in overfitting (this is a
difference against the random forest).

• The learning rate affect the speed of learning (small value more
robust model).

• Small learning rate requires more trees, more tree leads to
overfitting....

• May lead to more precise models than the random forests.

• It is highly sensitive to learning rate and number of learners
parameters.

• It is also very sensitive to outliers and noise. 76



Classification - Boosting - Light Gradient Boosting Machine

• Another gradient boosting algorithm that utilizes decision trees.

• The trees used grows leaf-wise - the leaf with maximal error is grown
to achieve better results.

• The features are selected according the it nature - sparse features are
combined.

• Designed to process large dataset with many features.

• Contains more than 100 parameters that may be tuned.
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Ensemble methods - Bucket of models

• An method that combines several different algorithms together and
removes the necessity of a priori selection of the particular
classification algorithm.

• The dataset is divided into two subsets A and B (a hold-out principle).
• Each algorithm is trained on the A set and evaluated on B set.
• The best algorithm is selected as a winner and then it is retrained on
the complete dataset.

• A cross-validation may be used instead of hold-out principle.
• Different algorithm may be represented by the same algorithm with
different parameters.

• Due to winner-take-all principle, the best found classifier is selected.
• This approach reduces both bias and variance but it is limited by the
parameters on the winner.
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Ensemble methods - Stacking

• Stacking is a two-level classification approach.

• Several algorithm are used for classification.

• The dataset is divided into two subsets A and B (a hold-out principle).

• First level:
• Training of the k different classifier (ensemble components) on the set
A.

• These components are generated using:
• bagging,
• k-rounds boosting,
• k different decision tress,
• k heterogeneous classifiers.
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Ensemble methods - Stacking

• Second level:
• Determine the k outputs of each trained classifier on a set B.

• Create a new set of k features from these outputs.

• The class label is known from the ground-truth data.

• Train a classifier on this new representation of the set B.
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Ensemble methods - Stacking

• Sometimes, the original features of B are combined with k generated
features from the first level.

• The class predictions may be replaced with class probabilities.

• A m-way cross-validation may be used on the first level, where only
(m− 1) folds are used for training and the second level classifier is
trained on whole dataset.

• This approach is very flexible and reduces both bias and variance.

• Other ensemble approaches may be viewed as special cases of
Stacking (i.e. majority voting in second level, etc.).
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Questions
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