
Deep Learning
Gradient Descent

Jan Platoš, Radek Svoboda
March 24, 2024

Department of Computer Science
Faculty of Electrical Engineering and Computer Science
VŠB - Technical University of Ostrava



Gradient Descent



Gradient Descent - Introduction

• Gradient Descent is an optimization algorithm used to minimize the cost
function of a machine learning model.

• It’s important in machine learning because the cost function measures the
difference between the predicted output of the model and the actual output.

• Gradient Descent is widely used in machine learning to optimize models such
as linear regression, logistic regression, and neural networks.

• It is an important tool for achieving high accuracy in machine learning
applications.

1



Gradient Descent - How it Works

• Initialize the model’s parameters with some random values.

• Compute the cost function for the current parameters.

• Compute the gradient of the cost function with respect to each parameter.

• Update each parameter by subtracting the product of the gradient and the
learning rate.

• Repeat until the cost function reaches a minimum.

2



Gradient Descent - Simple example

• Let the cost/loss function as y = x2.

• The gradient of the function is then y′ = 2x.

• Let start with x = 10, the gradient is then −20.

• The new x depends on the learning rate λ.

• Repeat until the cost function reaches a minimum.

3



Gradient Descent - Simple example

• Let the cost/loss function as y = x4 − 5x2 − 3x.

• The gradient of the function is then y′ = 4x3 − 10x − 3.

4



Gradient Descent - Back-propagation alg.

• Forward phase:
• The input is fed into input neurons.

• The computed values are propagated using the current weights to the next
layers.

• The final predicted output is compared with the class label and the error is
determined.

5



Gradient Descent - Back-propagation alg.

• Backward phase:
• The main goal is to learn weights in the backward direction by providing the
error estimation from later layers to the earlier layers.

• The estimation in the hidden layer is computed as a function of the error
estimate and weight is the layers ahead.

• The error is estimated again using the gradient method.

• The process is complicated by the using of non-linear functions n the inner
nodes.

6



Gradient Descent - Back-propagation alg.

• Lets have an example multi-layer neural network with single output neuron.
• In each iteration do take the i-th input vector.
• Pass it through the networks using the forward pass.
• Compare the i-th output oi to the expected value yi.
• Compute the error and update the weight using the learning rate η.
• The goal is to optimize the weights wi to minimize the error function of the
differences between yi and oi.

7



Gradient Descent - Back-propagation alg.

• The error function E over whole dataset of size n may be defined as follows:

E =
1
2

n∑
i=0

(yi − oi)2

• The weights of the neurons must be adapted according to the error produced
by the neuron weight.

wi+1 = −η
∂E
∂wi

+ µwi

8



Gradient Descent - Back-propagation alg.

• The partial derivation may be computed using so called chain rule.

∂E
∂wi

=
∂E
∂y

· ∂y
∂z

· ∂z
∂wi

• where

y = 1
1+ e−λz z =

m∑
i=0

wixi

• therefore
∂z
∂wi

= xi
∂y
∂z

= y · (1− y)λ

9



Gradient Descent - Back-propagation alg.

• The first partial derivation
computation differs for neuron from
output and hidden layer.

• The solution for the output layer
and i-th output is as follows:

∂E
∂y

= (yi − oi)

y

n

wi

i1

z

w1 wn

10



Gradient Descent - Back-propagation alg.

• The solution for the hidden layer
and i-th output is as follows:

∂E
∂y

=
m∑
j=0

∂E
∂zj

· ∂z
j

∂y
=

m∑
j=0

∂E
∂zj

· wj

wj

y

yk

wi

yiy1

Z

w1 wn

zmziz1

wmw1

y1 yi ym

11



Gradient Descent - General Definition

• Let use a regression with the loss function defined as RMSE.

L(y, ŷ) = 1
n

n∑
i=1

(yi − ŷi)
2

• The gradient is then defined as:

∇L = ∂L
∂w =

(
∂L
∂w1

,
∂L
∂w2

, . . . ,
∂L
∂wm

)
• Weights can be calculated using the following:

w = w− η∇L

12



Gradient Descent - General Definition

• Computation of true gradient is usually difficult to compute.

• It may be easily approximate using a the following formula:

∂f
∂ai

=
f (a1,a2, . . . ,ai + ε, . . . ,am)− f (a1,a2, . . . ,ai, . . . ,am)

ε

• This approximation is simple to implement but expensive for computation.

13



Gradient Descent - Stochastic Gradient Descent

• Gradient Descent is computationally very expensive (consider 1M of samples
and 100k weights).

• It leads to almost perfect approximation of the loss function.

• Stochastic gradient descent decreases the complexity by replacing the whole
computation using only a single data point.

w = w− η∇Li

Li(yi, ŷi) =
1
n
(yi − ŷi)

2

• How it works? May it works?

14



Gradient Descent - Stochastic Gradient Descent

https://github.com/Kulbear/deep-learning-coursera/blob/master/Improving%20Deep%20Neural%20Networks%
20Hyperparameter%20tuning%2C%20Regularization%20and%20Optimization/Optimization%20methods.ipynb

15

https://github.com/Kulbear/deep-learning-coursera/blob/master/Improving%20Deep%20Neural%20Networks%20Hyperparameter%20tuning%2C%20Regularization%20and%20Optimization/Optimization%20methods.ipynb
https://github.com/Kulbear/deep-learning-coursera/blob/master/Improving%20Deep%20Neural%20Networks%20Hyperparameter%20tuning%2C%20Regularization%20and%20Optimization/Optimization%20methods.ipynb


Gradient Descent - Mini-batch Stochastic Gradient Descent

• SGD may lead to a really chaotic behaviour.

• Increasing the number of samples used for gradient computation may
improve the stability of the optimization.

• The amount is called batch that are usually very small in comparison to the
whole dataset.

• Stochastic gradient descent randomly divides the set of observations into
minibatches.

• For each minibatch, the gradient is computed and the vector is moved.

• Once all minibatches are used, you say that the iteration, or epoch, is
finished and start the next one.

16



Gradient Descent - Mini-batch Stochastic Gradient Descent

https://github.com/Kulbear/deep-learning-coursera/blob/master/Improving%20Deep%20Neural%20Networks%
20Hyperparameter%20tuning%2C%20Regularization%20and%20Optimization/Optimization%20methods.ipynb

17

https://github.com/Kulbear/deep-learning-coursera/blob/master/Improving%20Deep%20Neural%20Networks%20Hyperparameter%20tuning%2C%20Regularization%20and%20Optimization/Optimization%20methods.ipynb
https://github.com/Kulbear/deep-learning-coursera/blob/master/Improving%20Deep%20Neural%20Networks%20Hyperparameter%20tuning%2C%20Regularization%20and%20Optimization/Optimization%20methods.ipynb


Gradient Descent - Momentum

• The nature of SGD with or without mini-batches is rather chaotic.

• The information gained from previous steps and previous batch is forget.

• The momentum introduce some kind of memory into the computation by
preserving the past behaviour.

• It may be understand as a kind of moving average on our intermediate
computation.

• The more precise will be exponential weighted moving average.

18



Gradient Descent - Momentum

https://towardsdatascience.com/stochastic-gradient-descent-with-momentum-a84097641a5d

19

https://towardsdatascience.com/stochastic-gradient-descent-with-momentum-a84097641a5d


Gradient Descent - Momentum

• The computation of the true value corresponds to the following formula:

vt = βvt−i + (1− β)xi, β ∈ [0, 1]

• SGD with momentum if then defined as:

vt = βvt−1 + (1− β)∇L
w = w− vt

20



Gradient Descent - Momentum

https://towardsdatascience.com/stochastic-gradient-descent-with-momentum-a84097641a5d

21

https://towardsdatascience.com/stochastic-gradient-descent-with-momentum-a84097641a5d


Gradient Descent - Summary

• Gradient Descent is a powerful optimization algorithm that is widely used in
machine learning for minimizing cost functions.

• It’s important to understand the types of Gradient Descent, the learning rate,
and the advantages and disadvantages of the algorithm.

• Advantages: simplicity, effectiveness, scalability.
• Disadvantages: risk of getting stuck in local minima, sensitivity to the initial
parameters, and the need for a large amount of data.

22



Gradient Descent - References

1. https://realpython.com/gradient-descent-algorithm-python/
2. https://towardsdatascience.com/
how-do-we-train-neural-networks-edd985562b73

3. https://www.tomasbeuzen.com/deep-learning-with-pytorch/
chapters/chapter1_gradient-descent.html

4. https://github.com/Kulbear/deep-learning-coursera/blob/
master/Improving%20Deep%20Neural%20Networks%
20Hyperparameter%20tuning%2C%20Regularization%20and%
20Optimization/Optimization%20methods.ipynb

23

https://realpython.com/gradient-descent-algorithm-python/
https://towardsdatascience.com/how-do-we-train-neural-networks-edd985562b73
https://towardsdatascience.com/how-do-we-train-neural-networks-edd985562b73
https://www.tomasbeuzen.com/deep-learning-with-pytorch/chapters/chapter1_gradient-descent.html
https://www.tomasbeuzen.com/deep-learning-with-pytorch/chapters/chapter1_gradient-descent.html
https://github.com/Kulbear/deep-learning-coursera/blob/master/Improving%20Deep%20Neural%20Networks%20Hyperparameter%20tuning%2C%20Regularization%20and%20Optimization/Optimization%20methods.ipynb
https://github.com/Kulbear/deep-learning-coursera/blob/master/Improving%20Deep%20Neural%20Networks%20Hyperparameter%20tuning%2C%20Regularization%20and%20Optimization/Optimization%20methods.ipynb
https://github.com/Kulbear/deep-learning-coursera/blob/master/Improving%20Deep%20Neural%20Networks%20Hyperparameter%20tuning%2C%20Regularization%20and%20Optimization/Optimization%20methods.ipynb
https://github.com/Kulbear/deep-learning-coursera/blob/master/Improving%20Deep%20Neural%20Networks%20Hyperparameter%20tuning%2C%20Regularization%20and%20Optimization/Optimization%20methods.ipynb


Questions?


	Gradient Descent
	Introduction
	How it Works
	Simple example
	Back-propagation alg.
	General Definition
	Stochastic Gradient Descent
	Mini-batch Stochastic Gradient Descent
	Momentum
	Summary
	References


