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A convolution is defined as the integral of the product of the two functions
after one is reversed and shifted. It is a mathematical way how to analyze
behavior of the functions and the relation between the functions.



Convolution Neural Network Model

A convolution is defined as the integral of the product of the two functions
after one is reversed and shifted. It is a mathematical way how to analyze
behavior of the functions and the relation between the functions.

In image processing, kernel or convolution matrix or mask is a small
matrix. In general the convolution in image processing is defined as:

g(x,y) =w+f(x,y) = ZZ (s, )f (x —s,y — 1)

s=—at=—b

where g(x,y) is filtered image, f(x,y) is original image, w if the filter kernel.



Convolution Neural Network

A kernel (also called a filter) is a smaller-sized matrix in comparison to the
dimensions of the input image, that consists of real valued entries.
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Sample Convolution Kernels
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Basic properties

Size of the kernel defines the dimensions of the kernels.

Number of input channels reflects the number of channels of the image
(grayscale, RGB, etc.)

Number of output channels defines the number of kernels applied on the
Image, and, therefore, the output of the layer.

Stride is the size of the step that kernel is moved on the image.

Padding is system the kernel is placed on the image.



One tricky issue when applying convolution is losing pixels on the edges of
our image. A straightforward solution to this problem is to add extra pixels
around the boundary of our input image, which increases the effective size

of the image.
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Pooling is a way how to decrease the amount of information transfered
from one layer to another. The standard way ho to do it is Average Pooling
and Maximum Pooling.
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Main advantage of the CNN

Weights sharing



Basic architecture of the CNN
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Most important CNN Architectures

- 1998 LeNet-5 [1]: One of the first CNN architectures designed for handwritten
digit recognition.

- 2012 AlexNet [2] won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) with a significant margin. It has eight layers, including five
convolutional layers and three fully connected layers.

- 2014 VGG [3] (Visual Geometry Group) Network has a deeper architectures
than AlexNet, with up to 19 layers. It uses a smaller kernel size (3x3) and the
same padding for all layers.

- 2014 GoogleNet [4] (Inception Network) has a unique architecture of using
multiple Inception modules, which allow it to use both deep and wide
networks while keeping the computation cost low.

1



Most important CNN Architectures

- 2015 ResNet [5] (Residual Network) uses a shortcut connection between the
input and output of a layer, allowing the gradient signal to propagate more
easily through deep networks.

- 2016 DenseNet [6] (Dense Convolutional Network) connects all layers to each
other in a dense block and reuses features from all previous layers, making it
more efficient in parameter usage.

- 2017 MobileNet [7] is designed to run efficiently on mobile and embedded
devices by using depthwise separable convolutions, which separate the
spatial and channel-wise convolutions.

- 2019 EfficientNet [8] uses a compound scaling method to scale up all
dimensions of the CNN architecture (depth, width, resolution) in a balanced
way, leading to better performance and efficiency.
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et - Inception network
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(a) Inception module, naive version (b) Inception module with dimension reductions
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GoogleNet - Inception network
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GoogleNet - Inception network
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- Residual block reformulates the
problem of learning a mapping .
H(x) by learning the residual

mapping F(x) = H(x) — x. [ weightlayer | )
igi [ [ e ¢ RelU identit
- The original function is therefore [ weigtayer | y

F(x) + x.

- This (counter-intuitively) leads into
faster learning and allows more
deeper topology.
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- ResNet introduces skip
connections that solves the
problem of the vanishing gradient.

- ResNet stacks multiple identity Cn &)

mappings (convolutional layers l
that do nothing at first), skips those

layers, and reuses the activations
of the previous layer.

Conv(64, 3x3)

- Skipping speeds up initial training
by compressing the network into RelLU
fewer layers.
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Input

Prediction

Dense Block 1 Dense Block 2 Dense Block 3

Figure 2: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change
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feature-map sizes via convolution and pooling.
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Questions?



	Convolution Neural Network Model

	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


