
Deep Learning
Convolution Neural Network Model

Jan Platoš, Radek Svoboda
March 24, 2024

Department of Computer Science
Faculty of Electrical Engineering and Computer Science
VŠB - Technical University of Ostrava



Convolution Neural Network Model



Convolution Neural Network Model

A convolution is defined as the integral of the product of the two functions
after one is reversed and shifted. It is a mathematical way how to analyze

behavior of the functions and the relation between the functions.

In image processing, kernel or convolution matrix or mask is a small
matrix. In general the convolution in image processing is defined as:

g(x, y) = ω ∗ f (x, y) =
a∑

s=−a

b∑
t=−b

ω(s, t)f (x − s, y − t)

where g(x, y) is filtered image, f (x, y) is original image, ω if the filter kernel.

1



Convolution Neural Network Model

A convolution is defined as the integral of the product of the two functions
after one is reversed and shifted. It is a mathematical way how to analyze

behavior of the functions and the relation between the functions.

In image processing, kernel or convolution matrix or mask is a small
matrix. In general the convolution in image processing is defined as:

g(x, y) = ω ∗ f (x, y) =
a∑

s=−a

b∑
t=−b

ω(s, t)f (x − s, y − t)

where g(x, y) is filtered image, f (x, y) is original image, ω if the filter kernel.

1



Convolution Neural Network

A kernel (also called a filter) is a smaller-sized matrix in comparison to the
dimensions of the input image, that consists of real valued entries.

2



Convolution Neural Network

Data

1 layer Convolution Data


3 layers Convolution Data

1 layer

3



Sample Convolution Kernels

Sobel vertical Sobel horizontal
Identity edge detection edge detection Edge detection0 0 0
0 1 0
0 0 0


+1 0 −1
+2 0 −2
+1 0 −1


+1 +2 +1
0 0 0
−1 −2 −1


−1 −1 −1
−1 8 −1
−1 −1 −1


Sharpen Uniform blur Gaussian blur 3x3 0 −1 0

−1 5 −1
0 −1 0

 1
9

1 1 1
1 1 1
1 1 1

 1
16

1 2 1
2 4 2
1 2 1



4



Basic properties

Size of the kernel defines the dimensions of the kernels.

Number of input channels reflects the number of channels of the image
(grayscale, RGB, etc.)

Number of output channels defines the number of kernels applied on the
image, and, therefore, the output of the layer.

Stride is the size of the step that kernel is moved on the image.

Padding is system the kernel is placed on the image.

5



Padding

One tricky issue when applying convolution is losing pixels on the edges of
our image. A straightforward solution to this problem is to add extra pixels
around the boundary of our input image, which increases the effective size

of the image.

6



Pooling

Pooling is a way how to decrease the amount of information transfered
from one layer to another. The standard way ho to do it is Average Pooling

and Maximum Pooling.

7



Pooling

Data

1 layer Pooling Data


3 layers Pooling Data

3 layers

Data

1 layer

8



Main advantage of the CNN

Weights sharing

9



Basic architecture of the CNN

10



Most important CNN Architectures

• 1998 LeNet-5 [1]: One of the first CNN architectures designed for handwritten
digit recognition.

• 2012 AlexNet [2] won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) with a significant margin. It has eight layers, including five
convolutional layers and three fully connected layers.

• 2014 VGG [3] (Visual Geometry Group) Network has a deeper architectures
than AlexNet, with up to 19 layers. It uses a smaller kernel size (3x3) and the
same padding for all layers.

• 2014 GoogLeNet [4] (Inception Network) has a unique architecture of using
multiple Inception modules, which allow it to use both deep and wide
networks while keeping the computation cost low.

11



Most important CNN Architectures

• 2015 ResNet [5] (Residual Network) uses a shortcut connection between the
input and output of a layer, allowing the gradient signal to propagate more
easily through deep networks.

• 2016 DenseNet [6] (Dense Convolutional Network) connects all layers to each
other in a dense block and reuses features from all previous layers, making it
more efficient in parameter usage.

• 2017 MobileNet [7] is designed to run efficiently on mobile and embedded
devices by using depthwise separable convolutions, which separate the
spatial and channel-wise convolutions.

• 2019 EfficientNet [8] uses a compound scaling method to scale up all
dimensions of the CNN architecture (depth, width, resolution) in a balanced
way, leading to better performance and efficiency.

12



LeNet-5

In
pu

t (
28

x2
8x

1)

C
on

v 
(6

, 5
x5

, p
ad

di
ng

=s
am

e,
 ta

nh
)

Av
gP

oo
l (

2x
2,

 s
tri

de
=2

)

C
on

v 
(1
6,

 5
x5

,
pa

dd
in

g=
va

lid
, t

an
h)

Av
gP

oo
l (

2x
2,

st
rid

e=
2)

Fl
at

te
n

D
en

se
 (1

20
, t

an
h)

D
en

se
 (8

4,
 ta

nh
)

D
en

se
 (1

0,
 s

of
tm

ax
)

28
x2

8x
6

14
x1

4x
6

10
x1

0x
16

5x
5x

16

13



AlexNet
In

pu
t (

22
4x

22
4x

3)

C
on

v 
(9
6,

 1
1x

11
, s

tri
de

=4
, R

eL
U

)

M
ax

Po
ol

 (3
x3

, s
tri

de
=2

)

C
on

v 
(2
56

, 5
x5

,
pa

dd
in

g=
sa
m
e,

 R
eL

U
)

M
ax

Po
ol

 (3
x3

, s
tri

de
=2

)

Fl
at

te
n

D
en

se
 (4

09
6,

 R
eL

U
)

D
en

se
 (4

09
6,

 R
eL

U
)

D
en

se
 (1

00
0,

 s
of

tm
ax

)

54
x5

4x
96

26
x2

6x
96

26
x2

6x
25

6

12
x1

2x
25

6

C
on

v 
(3
84

, 3
x3

,
pa

dd
in

g=
sa
m
e,

 R
eL

U
)

C
on

v 
(3
84

, 3
x3

,
pa

dd
in

g=
sa
m
e,

 R
eL

U
)

C
on

v 
(2
56

, 3
x3

,
pa

dd
in

g=
sa
m
e,

 R
eL

U
)

M
ax

Po
ol

 (3
x3

,
st

rid
e=

2)12
x1

2x
38

4

12
x1

2x
38

4

12
x1

2x
25

6

D
ro

po
ut

 (0
.5

)

D
ro

po
ut

 (0
.5

)

14



VGG-A

In
pu

t (
22

4x
22

4x
3)

C
on

v 
(6
4,

 3
x3

, p
ad

di
ng

=s
am

e,
 R

eL
U

)

M
ax

Po
ol

 (2
x2

, s
tri

de
=2

)

C
on

v 
(1
28

, 3
x3

,
pa

dd
in

g=
sa
m
e,

 R
eL

U
)

M
ax

Po
ol

 (2
x2

, s
tri

de
=2

)

Fl
at

te
n

D
en

se
 (4

09
6,

 R
eL

U
)

D
en

se
 (4

09
6,

 R
eL

U
)

D
en

se
 (1

00
0,

 s
of

tm
ax

)

22
4x

22
4x

64

11
2x

11
2x

25
6

11
2x

11
2x

12
8

56
x5

6x
12

8

C
on

v 
(2
56

, 3
x3

,
pa

dd
in

g=
sa
m
e,

 R
eL

U
)

C
on

v 
(2
56

, 3
x3

,
pa

dd
in

g=
sa
m
e,

 R
eL

U
)

C
on

v 
(5
12

, 3
x3

,
pa

dd
in

g=
sa
m
e,

 R
eL

U
)

M
ax

Po
ol

 (2
x2

,
st

rid
e=

2)56
x5

6x
25

6

56
x5

6x
25

6

28
x2

8x
25

6

C
on

v 
(5
12

, 3
x3

,
pa

dd
in

g=
sa
m
e,

 R
eL

U
)

M
ax

Po
ol

 (2
x2

,
st

rid
e=

2)28
x2

8x
51

2

28
x2

8x
51

2

C
on

v 
(5
12

, 3
x3

,
pa

dd
in

g=
sa
m
e,

 R
eL

U
)

C
on

v 
(5
12

, 3
x3

,
pa

dd
in

g=
sa
m
e,

 R
eL

U
)

M
ax

Po
ol

 (2
x2

,
st

rid
e=

2) 14
x1

4x
51

2

14
x1

4x
51

2 14
x1

4x
51

2

7x
7x

51
2

15



GoogLeNet - Inception network

1x1 convolutions 3x3 convolutions 5x5 convolutions

Filter 
concatenation

Previous layer

3x3 max pooling

(a) Inception module, naı̈ve version

1x1 convolutions

3x3 convolutions 5x5 convolutions

Filter 
concatenation

Previous layer

3x3 max pooling1x1 convolutions 1x1 convolutions

1x1 convolutions

(b) Inception module with dimension reductions

Figure 2: Inception module

increase in the number of outputs from stage to stage. Even while this architecture might cover the
optimal sparse structure, it would do it very inefficiently, leading to a computational blow up within
a few stages.

This leads to the second idea of the proposed architecture: judiciously applying dimension reduc-
tions and projections wherever the computational requirements would increase too much otherwise.
This is based on the success of embeddings: even low dimensional embeddings might contain a lot
of information about a relatively large image patch. However, embeddings represent information in
a dense, compressed form and compressed information is harder to model. We would like to keep
our representation sparse at most places (as required by the conditions of [2]) and compress the
signals only whenever they have to be aggregated en masse. That is, 1×1 convolutions are used to
compute reductions before the expensive 3×3 and 5×5 convolutions. Besides being used as reduc-
tions, they also include the use of rectified linear activation which makes them dual-purpose. The
final result is depicted in Figure 2(b).

In general, an Inception network is a network consisting of modules of the above type stacked upon
each other, with occasional max-pooling layers with stride 2 to halve the resolution of the grid. For
technical reasons (memory efficiency during training), it seemed beneficial to start using Inception
modules only at higher layers while keeping the lower layers in traditional convolutional fashion.
This is not strictly necessary, simply reflecting some infrastructural inefficiencies in our current
implementation.

One of the main beneficial aspects of this architecture is that it allows for increasing the number of
units at each stage significantly without an uncontrolled blow-up in computational complexity. The
ubiquitous use of dimension reduction allows for shielding the large number of input filters of the
last stage to the next layer, first reducing their dimension before convolving over them with a large
patch size. Another practically useful aspect of this design is that it aligns with the intuition that
visual information should be processed at various scales and then aggregated so that the next stage
can abstract features from different scales simultaneously.

The improved use of computational resources allows for increasing both the width of each stage
as well as the number of stages without getting into computational difficulties. Another way to
utilize the inception architecture is to create slightly inferior, but computationally cheaper versions
of it. We have found that all the included the knobs and levers allow for a controlled balancing of
computational resources that can result in networks that are 2− 3× faster than similarly performing
networks with non-Inception architecture, however this requires careful manual design at this point.

5 GoogLeNet

We chose GoogLeNet as our team-name in the ILSVRC14 competition. This name is an homage to
Yann LeCuns pioneering LeNet 5 network [10]. We also use GoogLeNet to refer to the particular
incarnation of the Inception architecture used in our submission for the competition. We have also
used a deeper and wider Inception network, the quality of which was slightly inferior, but adding it
to the ensemble seemed to improve the results marginally. We omit the details of that network, since
our experiments have shown that the influence of the exact architectural parameters is relatively

5

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. (2014). Going Deeper with Convolutions. arXiv.
https://doi.org/10.48550/ARXIV.1409.4842

16



GoogLeNet - Inception network

input

Conv
7x7+2(S)

MaxPool
3x3+2(S)

LocalRespNorm

Conv
1x1+1(V)

Conv
3x3+1(S)

LocalRespNorm

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

AveragePool
7x7+1(V)

FC

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax0

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax1

SoftmaxActivation

softmax2

Figure 3: GoogLeNet network with all the bells and whistles

7

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. (2014). Going Deeper with Convolutions. arXiv.
https://doi.org/10.48550/ARXIV.1409.4842 17



GoogLeNet - Inception network

input

Conv
7x7+2(S)

MaxPool
3x3+2(S)

LocalRespNorm

Conv
1x1+1(V)

Conv
3x3+1(S)

LocalRespNorm

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

AveragePool
7x7+1(V)

FC

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax0

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax1

SoftmaxActivation

softmax2

Figure 3: GoogLeNet network with all the bells and whistles

7

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. (2014). Going Deeper with Convolutions. arXiv.
https://doi.org/10.48550/ARXIV.1409.4842 18



ResNet

• Residual block reformulates the
problem of learning a mapping
H(x) by learning the residual
mapping F(x) = H(x)− x.

• The original function is therefore
F(x) + x.

• This (counter-intuitively) leads into
faster learning and allows more
deeper topology.

weight layer

weight layer

+

ReLU

x

x
identityF(x)

F(x) + x

ReLU

19



ResNet

• ResNet introduces skip
connections that solves the
problem of the vanishing gradient.

• ResNet stacks multiple identity
mappings (convolutional layers
that do nothing at first), skips those
layers, and reuses the activations
of the previous layer.

• Skipping speeds up initial training
by compressing the network into
fewer layers.

Conv(64, 3x3)

Conv(64, 3x3)

+ReLU

20



DenseNet

21



References i

1. LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
”Gradient-based learning applied to document recognition.” Proceedings of
the IEEE 86, no. 11 (1998): 2278-2324.

2. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. ”Imagenet
classification with deep convolutional neural networks.” Communications of
the ACM 60, no. 6 (2017): 84-90.

3. Simonyan, Karen, and Andrew Zisserman. ”Very deep convolutional networks
for large-scale image recognition.” arXiv preprint arXiv:1409.1556 (2014).

22



References ii

4. Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. ”Going deeper with convolutions.” In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1-9. 2015.

5. He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. ”Deep residual
learning for image recognition.” In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770-778. 2016.

6. Huang, G., Z. Liu, L. Maaten, and K. Weinberger. ”Densely Connected
Convolutional Networks. Computer Vision and Pattern Recognition.” arXiv
preprint arXiv:1608.06993 (2016).

23



References iii

7. Howard, Andrew G., Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. ”Mobilenets:
Efficient convolutional neural networks for mobile vision applications.” arXiv
preprint arXiv:1704.04861 (2017).

8. Tan, Mingxing, and Quoc Le. ”Efficientnet: Rethinking model scaling for
convolutional neural networks.” In International conference on machine
learning, pp. 6105-6114. PMLR, 2019.

24



Questions?


	Convolution Neural Network Model

	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


