
Lecture

Topological Complexity III

Piotr Oprocha

AGH University of Science and Technology
Faculty of Applied Mathematics

Kraków, Poland

VSB, IT4Innovations, Ostrava, Mar 17, 2015

Piotr Oprocha (AGH) Topological Complexity III Ostrava 1 / 17



Disjointness and weak disjointness

1 (X , f ), (Y , g) are weakly disjoint if (X × Y , f × g) is transitive
2 (X , f ), (Y , g) are disjoint if the only joining,

i.e. J ⊂ X × Y invariant for f × g
with projections X and Y on respective coordinates

is J = X × Y .

3 (X , f ) can be weakly disjoint with itself (e.g. weak mixing) but not
disjoint (∆ is a joining).

4 if (X , f ) and (Y , g) are disjoint then one of them is minimal.
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Disjointness, distality and minimality

Theorem (Furstenberg, 1967)

If (X , f ) is weakly mixing and (Y , g) is minimal and distal then they are
disjoint.

Theorem (Petersen, 1970)

If (X , f ) disjoint with all distal systems if and only if it is minimal and
weakly mixing.

Theorem (Blanchard, Host, Mass, 2000)

If (X , f ) is scattering and (Y , g) is minimal and distal then they are
disjoint.

Question
Can the above be proved without Furstenberg’s structure theorem of distal
systems?
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Related question

Theorem
If transitive (X , f ) disjoint with all minimal systems then it is weakly
mixing.

Theorem
If (X , f ) is weakly mixing and has dense distal points then it is disjoint
with all minimal systems.

Question (Furstenberg, 1967)

What is exactly the class of (transitive) systems disjoint with all minimal
systems?
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Local aspects of complexity

1 a standard cover C = {C ,D} separates points x , y ∈ X if x ∈ IntC c

and y ∈ IntDc , where Ac = X \ A.
2 points x 6= y are a complexity pair if c(C, ·) is unbounded for any

standard cover C separating x , y .
3 Com(X , f ) – set of complexity pairs

4 Com(X , f ) ∪∆ is closed and f × f invariant.
5 if U = {U,V } is a standard cover with unbounded complexity, then

(Uc × V c) ∩ Com(X , f ) 6= ∅

6 if π : (X , f )→ (Y , g) is a factor map then:
1 if x , y ∈ Com(X , f ) with π(x) 6= π(y) then (π(x), π(y)) ∈ Com(Y , g),
2 if x , y ∈ Com(Y , g) then π−1({x})× π−1({y}) ∩ Com(X , f ) 6= ∅.
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Complexity pairs and maximal equicontinuous factor

1 Every dynamical system (X , f ) posses an equicontinuous factor
(Y , g) (and factor map π : (X , f )→ (Y , g)) (called maximal
equicontinous factor), such that

for any equicontinuous (Z , h) and factor map φ : (X , f )→ (Z , h)
there is factor ψ : (Y , g)→ (Z , h) such that φ = ψ ◦ π.

2 maximal equicontinuous factor is unique up to conjugacy.

Theorem
Let R be the smallest ICER (invariant, closed equivalence relation) such
that Com(X , f ) ⊂ R. Then π : (X , f )→ (X/R, f /R) is maximal
equicontinuous factor.
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Regionally proximal relation

1 x , y ∈ RP(X , f ) if for every
open neighborhoods U 3 x , V 3 y
ε > 0

there are n > 0 and u ∈ U, v ∈ V such that d(f n(u), f n(v)) < ε.
2 RP(X , f ) is closed and invariant. If (X , f ) is minimal then RP(X , f ) is

an equivalence relation.

Theorem
If (X , f ) is invertible then Com(X , f ) ∪∆ ⊂ RP(X , f ) and if it is
additionally minimal then Com(X , f ) ∪∆ = RP(X , f ).
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Complexity along sequences

1 For an infinite set A = {a1 < a2 < . . .} and cover C define

CA(C) = lim
n→∞

r(
n∨

j=1

f −ai (C)).

2 A is thick if for every n there is i such that {i , i + 1, . . . , i + n} ⊂ A.
3 A is syndetic is N \ A is not thick
4 A is piecewise syndetic is A = S ∩ T for some syndetic S and thick T

Theorem
Let (X , f ) be a dynamical system. The following conditions are equivalent:
1 (X , f ) is scattering
2 CA(U) =∞ for any standard open cover U of X and any syndetic (or

piecewise syndetic) set A.
3 CA(U) =∞ for any nontrivial open cover U of X and any syndetic

(or piecewise syndetic) set A.
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Mild mixing

1 (X , f ) is mild mixing if (X ×Y , f × g) is transitive for every transitive
(Y , g) (i.e. mild mixing ≡ weakly disjoint from all transitive systems).

2 mild mixing =⇒ weak mixing

3 A ⊂ N is IP-set if A = {pi1 + . . .+ pik : i1 < i2 < . . . < ik} for some
sequence p1, p2, . . . ⊂ N.

Theorem
Let (X , f ) be a dynamical system. The following conditions are equivalent:
1 (X , f ) is mild mixing
2 CA(U) =∞ for any standard open cover U of X and any IP-set A.
3 CA(U) =∞ for any nontrivial open cover U of X and any IP-set A.
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Uniform rigidity

1 (X , f ) is uniformly rigid if for every ε > 0 there is n > 0 such that
d(x , f n(x)) < ε for every x ∈ X .

Theorem
If a nontrivial (X , f ) is mild mixing then

it is not uniformly rigid,

it is disjoint with minimal uniformly rigid systems.

Example (Glasner & Maon)

There exists minimal, weakly mixing and uniformly rigid dynamical system.

mild mixing =⇒ weak mixing =⇒ scattering =⇒ total transitivity
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Entropy pairs (Blanchard, 1993)

1 points x 6= y are a entropy pair if htop(f ,U) > 0 for any standard
open cover U = {U,V } separating x , y (i.e. x ∈ IntUc , y ∈ IntV c).

2 E2(X , f ) – set of entropy pairs.

3 E2(X , f ) ∪∆ is closed and f × f invariant.
4 E2(X , f ) 6= ∅ if and only if htop(f ) > 0.

5 if π : (X , f )→ (Y , g) is a factor map then:
1 if x , y ∈ E2(X , f ) with π(x) 6= π(y) then (π(x), π(y)) ∈ E2(Y , g),
2 if x , y ∈ E2(Y , g) then π−1({x})× π−1({y}) ∩ E2(X , f ) 6= ∅.

In other words E2(Y , g) ⊂ (π × π)(E2(X , f )) ⊂ E2(Y , g) ∪∆Y .

Remark
A dynamical system (X , f ) has uniformly positive entropy iff
E2(X , f ) ∪∆ = X × X .
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u.p.e. and disjointness

Theorem
If (X , f ) has u.p.e then it is disjoint with all minimal systems with zero
entropy.
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Entropy pairs and topological Pinsker factor (Blanchard &
Lacroix, 1993)

1 Every dynamical system (X , f ) posses a factor (Y , g) with zero
entropy (and factor map π : (X , f )→ (Y , g)) (called topological
Pinsker factor), such that

for any zero entropy system (Z , h), i.e. htop(h) = 0, and factor map
φ : (X , f )→ (Z , h)
there is factor ψ : (Y , g)→ (Z , h) such that φ = ψ ◦ π.

2 the topological Pinsker factor (or maximal zero entropy factor) is
unique up to conjugacy.

Theorem
Let R be the smallest ICER (invariant, closed equivalence relation) such
that E2(X , f ) ⊂ R. Then π : (X , f )→ (X/R, f /R) is topological Pinsker
factor.
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u.p.e. and mixing

1 if htop(U , f ) > 0 then c(U , ·) grows exponentially for every standard
cover, hence there is a chance for

u.p.e. =⇒ weak mixing

But in fact, more can be proved.

Theorem (Huang, Shao, Ye, 2005)

If (X , f ) is transitive and {(x , f (x)) : x ∈ X} ⊂ E2(X , f ) (so-called
diagonal flow) then it is mild mixing. In particular u.p.e. implies mild
mixing.

Theorem (Huang, Shao, Ye, 2005)

If (X , f ) is a minimal topological K system then it is mixing.

Question
Is every minimal u.p.e. system mixing?
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Asymtpotic pairs

points x , y are asymptotic if limn→∞ d(f n(x), f n(y)) = 0

the set of asymptotic pairs is denoted Asy(X , f ).

Theorem (Blanchard, Host and Ruette, 2004)

For every dynamical system Asy(X , f ) ⊃ E2(X , f ).

Corollary
If π : (X , f )→ (Y , g) is such that x , y ∈ Asy(X , f ) implies π(x) = π(y)
then htop(g) = 0.

Theorem (Huang, Li, Ye, 2013)

For every dynamical system Asy(X , f ) ∩ E2(X , f ) is dense in E2(X , f ).
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Completely recurrent systems

1 x ∈ Rec(X , f ) if lim infk→∞ d(f k(x), x) = 0.

Remark
If Rec(X × X , f × f ) = X × X then Asy(X , f ) = ∆, in particular
E2(X , f ) = 0 and hence htop(X , f ) = 0.

1 in particular, uniformly rigid systems have entropy 0.

Question
Let (X , f ) be invertible and suppose that for every (x , y) ∈ X × X there is
a sequence limk→∞ |nk | =∞ such that limk→∞ d(f nk (x), f nk (y)) = (x , y).

Is it true that htop(f ) = 0?
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