Lecture

Topological Complexity – II

Piotr Oprocha

AGH University of Science and Technology Faculty of Applied Mathematics Kraków, Poland

VSB, IT4Innovations, Ostrava, Feb 17, 2015

Piotr Oprocha (AGH)

Topological Complexity - II

Ostrava 1 / 11

< □ > < 同 > < 回 > < 回 > < 回 >

Recall: our setting

- (X, d) compact metric space
- **2** $f: X \to X$ continuous
- *f* is (topologically) weakly mixing for any open sets $U_1, U_2, V_1, V_2 \neq \emptyset$ the following condition holds:

$$\exists n > 0 \qquad f^n(U_1) \cap U_2 \neq \emptyset, \quad f^n(V_1) \cap V_2 \neq \emptyset.$$

If is (topologically) mixing if for any open sets U₁, U₂ ≠ Ø the following condition is satisfied:

$$\exists N > 0 \quad \forall n > N \quad f^n(U_1) \cap U_2 \neq \emptyset.$$

Symbolic dynamics and spacing shifts

• full shift- set $\{0,1\}^{\mathbb{N}}$ with

• metric *d*:

$$d(x,y) = \begin{cases} 0 & x = y \\ 2^{-k} & x \neq y, \ k = \min \left\{ i : x_i \neq y_i \right\} \end{cases}$$

• map
$$\sigma$$
 given by $\sigma(x)_i = x_{i+1}$

 \bigcirc P - set of nonnegative integers. Define spacing shift

$$\Sigma_{P} = \{x : x_{i} = x_{j} = 1 \implies |i - j| \in P \cup \{0\}\}$$

3 write $\sigma_P = \sigma|_{\Sigma_P}$ or simply σ

Example

weak mixing ↓ mixing

Theorem

σ is weakly mixing (on Σ_P) iff P is thick
 σ is mixing (on Σ_P) iff P is co-finite

(Sketch of proof)

A D N A B N A B N A B N

Recall: complexity function and scattering

• Let $C = (C_1, \ldots, C_n)$. If k is the minimal number of elements of C covering X (i.e. $X = C_{i_1} \cup \ldots \cup C_{i_k}$ for some $1 \leq i_1, \ldots, i_k \leq n$), then we put r(C) = k.

2
$$c(\mathcal{C}, n) = r(\mathcal{C}_0^{n-1})$$
 – complexity function.

Definition (Blanchard, Host, Mass, 2000)

A dynamical system (X, f) is scattering (resp. 2-scattering) if any nontrivial (resp. standard) open cover \mathcal{U} has unbounded complexity function $c(\mathcal{U}, \cdot)$.

イロト 不得 トイラト イラト 一日

Scattering, weak mixing and transitivity

Theorem

If (X, f) is weakly mixing then it is scattering.

Proof (sketch) For C with r(C) = k denote $I(C) = \left\{ C_{i_1}^c \cap \ldots \cap C_{i_{k-1}}^c : C_{i_j} \in C \right\}$

Lemma

If C, D are covers with r(C) = k, $r(D) = \ell$ and $A \cap B \neq \emptyset$ for every $A \in I(C)$, $B \in I(D)$ then $r(C \lor D) \ge k + \ell - 1$.

Theorem

If for any open cover $\mathcal{U} \in \mathscr{C}_X$ there is n > 0 such that $c(\mathcal{U}, n) > n + 1$ then (X, f) is weakly mixing.

イロト 不得 トイラト イラト 一日

Scattering, weak mixing and transitivity

Theorem

If (X, f) is weakly mixing then it is scattering.

Theorem

If for any open cover $U \in C_X$ there is n > 0 such that c(U, n) > n + 1 then (X, f) is weakly mixing.

Proof (sketch)

Scattering, weak mixing and transitivity

Theorem

If (X, f) is weakly mixing then it is scattering.

Theorem

If for any open cover $U \in C_X$ there is n > 0 such that c(U, n) > n + 1 then (X, f) is weakly mixing.

Theorem

If (X, f) is 2-scattering then (X, f^n) is 2-scattering and transitive for n = 1, 2, 3, ...

weak mixing \Longrightarrow scattering \Longrightarrow 2-scattering \Longrightarrow total transitivity

イロト 不得 トイラト イラト 一日

A characterization of scattering

Theorem

For transitive (X, f) the following conditions are equivalent:

- (X, f) is not scattering,
- there is a minimal (and invertible) (Y,g) such that (X × Y, f × g) is not transitive
- So there exists a minimal (and invertible) (Y,g), N > 0 and a proper invariant closed set J ⊂ X × Y for f × g such that

$$X \times Y = \bigcup_{n=0}^{N} (Id \times g^n)(J).$$

< ロト < 同ト < ヨト < ヨト

A characterization of scattering

Corollary

For transitive (X, f) the following conditions are equivalent:

- (X, f) is scattering,
- If or every minimal (and invertible) (Y, g) the product (X × Y, f × g) is transitive.

Equicontinuous systems

- x is equicontinuous if for every ε > 0 there is δ > 0 such that if d(x, y) < δ then d(fⁿ(x), fⁿ(y)) < ε for every n > 0.
- **2** (X, f) is equicontinuous if every $x \in X$ is equicontinuous.
- (X, f) is almost equicontinuous if every x ∈ Z is equicontinuous for some residual Z ⊂ X.
- if (X, f) is transitive and some x ∈ X is equicontinuous then (X, f) is almost equicontinuous.
- if nontrivial (X, f) is weakly mixing then there is no equicontinuous point in X (i.e. (X, f) cannot be almost equicontinuous).

Theorem

Let (X, f) be a dynamical system. The following conditions are equivalent:

- (X, f) is equicontinuous,
- **2** $c(\mathcal{C}, \cdot)$ is bounded for every finite open cover \mathcal{C} of X.

Example of Akin and Glasner

Example

There exists almost equicontinuous scattering system.

scattering $\not\Longrightarrow$ weak mixing

Theorem

If (X, f) is minimal then the following properties are equivalent:

- 2-scattering
- 2 scattering
- weak mixing

Later in this talk it will be more clear why...

Piotr Oprocha (AGH)

Topological Complexity – II

Ostrava 9 / 11

(4) (日本)

Result of Huang and Ye

Theorem

Let (X, f) be a dynamical system. The following conditions are equivalent:
(X, f) is 2-scattering
(X, f) is scattering

weakly mixing

$$\downarrow \not \gamma$$

 $2 - \text{scattering} \iff \text{scattering}$
 $\downarrow \not \gamma$
totally transitive

Ostrava 10 / 11

< □ > < 同 > < 回 > < 回 > < 回 >

- $x, y \in X$ are proximal if $\liminf_{n \to \infty} d(f^n(x), f^n(y)) = 0$.
- **2** x is distal if x, y are not proximal for every $y \in Orb^+(x, f) \setminus \{x\}$.
- **(**X, f**)** is distal if every $x \in X$ is distal.
- if (X, f) is distal then it is union of minimal systems.

Distality

- $x, y \in X$ are proximal if $\liminf_{n \to \infty} d(f^n(x), f^n(y)) = 0$.
- 2 x is distal if x, y are not proximal for every $y \in Orb^+(x, f) \setminus \{x\}$.
- **(**X, f**)** is distal if every $x \in X$ is distal.
- if (X, f) is distal then it is union of minimal systems.

Theorem (Glasner, Weiss; Akin et. al)

- If f is transitive and almost equicontinuous then:
 - f is a homeomorphism,
 - 2 a point x is transitive iff it is equicontinuous
 - f is uniformly rigid, i.e. for every ε > 0 there is n > 0 such that d(x, fⁿ(x)) < ε for every x ∈ X.

Corollary

Every transitive equicontinuous system is distal.

Piotr Oprocha (AGH)

Distality

- $x, y \in X$ are proximal if $\liminf_{n \to \infty} d(f^n(x), f^n(y)) = 0$.
- **2** x is distal if x, y are not proximal for every $y \in \overline{\operatorname{Orb}^+(x, f)} \setminus \{x\}$.
- **(**X, f**)** is distal if every $x \in X$ is distal.
- if (X, f) is distal then it is union of minimal systems.

Example

Dynamical system T on tori defined by

$$T(x,y) = (x + \alpha \pmod{1}, x + y \pmod{1})$$

is distal but not equicontinuous.

Corollary

Every transitive equicontinuous system is distal.

Piotr Oprocha (AGH)

Ostrava 11 / 11