Lecture

Topological Complexity – I

Piotr Oprocha

AGH University of Science and Technology Faculty of Applied Mathematics Kraków, Poland

VSB, IT4Innovations, Ostrava, Jan 28, 2015

< □ > < 同 > < 回 > < 回 > < 回 >

Standing assumptions

- **(**X, d) compact metric space
- 2 $f: X \to X$ continuous
- $I f^n = f \circ \ldots \circ f.$
- (X, f) dynamical system
- $p \in X$ is periodic if $f^n(p) = p$ for some n > 0.
- $\omega_f(x) = \{y \in X : \lim_{k \to \infty} f^{n_k}(x) = y\}.$
- Orb⁺(x) = {x, f(x), f²(x), ...}.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hierarchy of mixing (standard)

- *f* is **transitive** if for any open sets $U_1, U_2 \neq \emptyset$ it holds that $\exists n > 0 \qquad f^n(U_1) \cap U_2 \neq \emptyset.$
- **2** f is **totally transitive** if for every integer m the map f^m is transitive.
- f is (topologically) weakly mixing for any open sets
 U₁, U₂, V₁, V₂ ≠ Ø the following condition holds:

$$\exists n > 0 \qquad f^n(U_1) \cap U_2 \neq \emptyset, \quad f^n(V_1) \cap V_2 \neq \emptyset.$$

If is (topologically) mixing if for any open sets U₁, U₂ ≠ Ø the following condition is satisfied:

$$\exists N > 0 \qquad \forall n > N \qquad f^n(U_1) \cap U_2 \neq \emptyset.$$

Remark

If f is transitive then is onto.

Piotr Oprocha (AGH)

Hierarchy of mixing (standard)

- *f* is **transitive** if for any open sets $U_1, U_2 \neq \emptyset$ it holds that $\exists n > 0 \qquad f^n(U_1) \cap U_2 \neq \emptyset.$
- **2** f is **totally transitive** if for every integer m the map f^m is transitive.
- If is (topologically) weakly mixing for any open sets U₁, U₂, V₁, V₂ ≠ Ø the following condition holds:

 $\exists n > 0 \qquad f^n(U_1) \cap U_2 \neq \emptyset, \quad f^n(V_1) \cap V_2 \neq \emptyset.$

If is (topologically) mixing if for any open sets U₁, U₂ ≠ Ø the following condition is satisfied:

$$\exists N > 0 \qquad \forall n > N \qquad f^n(U_1) \cap U_2 \neq \emptyset.$$

Relations between definitions

Theorem (Furstenberg)

A map f is weakly mixing iff its n-times Cartesian product

$$f \times \ldots \times f : X \times \ldots \times X \to X \times \ldots \times X$$

(denoted $f^{(n)}$) is transitive for every $n \ge 2$.

A D N A B N A B N A B N

Relations between definitions

 $\begin{array}{c} \text{mixing} \\ \downarrow & \swarrow \\ \text{weakly mixing} \\ \downarrow & \swarrow \\ \text{totally transitive} \\ \downarrow & \swarrow \\ \text{transitive} \end{array}$

Piotr Oprocha (AGH)

Topological Complexity - I

Ostrava 4 / 9

< □ > < 同 > < 回 > < 回 > < 回 >

Relations between definitions

Piotr Oprocha (AGH)

Topological Complexity - I

Ostrava 4 / 9

- Covers in this talk are not necessarily open, but are finite.
 %_X the set of all finite open covers of X
- C = (C₁,..., C_n) is nontrivial if C_i is not dense for every i.
 a nontrivial cover C is standard if #C = 2.
- **(**) $C \prec D$ if for every $D \in D$ there is $C \in C$ such that $D \subset C$.
- $C \vee D = \{C \cap D : C \in C, D \in D\}$ • $C_n^m = \bigvee_{i=n}^m f^{-i}(C) \text{ where}$ • $f^{-i}(C) = \{f^{-i}(C) : C \in C\}.$

- Covers in this talk are not necessarily open, but are finite.
 Covers of X = the set of all finite open covers of X
- \$\mathcal{C} = (C_1, \ldots, C_n)\$ is nontrivial if \$C_i\$ is not dense for every \$i\$.
 a nontrivial cover \$\mathcal{C}\$ is standard if \$\#\mathcal{C}\$ = 2.
- **⑤** $C \prec D$ if for every $D \in D$ there is $C \in C$ such that $D \subset C$.
- $C \lor D = \{C \cap D : C \in C, D \in D\}$ • $C_n^m = \bigvee_{i=n}^m f^{-i}(C) \text{ where}$ • $f^{-i}(C) = \{f^{-i}(C) : C \in C\}.$

- Covers in this talk are not necessarily open, but are finite.
 Covers of X = the set of all finite open covers of X
- \$\mathcal{C} = (C_1, \ldots, C_n)\$ is nontrivial if \$C_i\$ is not dense for every \$i\$.
 a nontrivial cover \$\mathcal{C}\$ is standard if \$\#\mathcal{C} = 2\$.
- **5** $\mathcal{C} \prec \mathcal{D}$ if for every $D \in \mathcal{D}$ there is $C \in \mathcal{C}$ such that $D \subset C$.
- $\mathcal{C} \vee \mathcal{D} = \{\mathcal{C} \cap D : \mathcal{C} \in \mathcal{C}, D \in \mathcal{D}\}$ • $\mathcal{C}_n^m = \bigvee_{i=n}^m f^{-i}(\mathcal{C}) \text{ where}$ • $f^{-i}(\mathcal{C}) = \{f^{-i}(\mathcal{C}) : \mathcal{C} \in \mathcal{C}\}.$

- Covers in this talk are not necessarily open, but are finite.
 Covers of X = the set of all finite open covers of X
- \$\mathcal{C} = (C_1, \ldots, C_n)\$ is nontrivial if \$C_i\$ is not dense for every \$i\$.
 a nontrivial cover \$\mathcal{C}\$ is standard if \$\#\mathcal{C} = 2\$.
- **5** $C \prec D$ if for every $D \in D$ there is $C \in C$ such that $D \subset C$.

•
$$\mathcal{C} \vee \mathcal{D} = \{C \cap D : C \in \mathcal{C}, D \in \mathcal{D} \\$$

• $\mathcal{C}_n^m = \bigvee_{i=n}^m f^{-i}(\mathcal{C}) \text{ where} \\$
• $f^{-i}(\mathcal{C}) = \{f^{-i}(\mathcal{C}) : \mathcal{C} \in \mathcal{C}\}.$

ł

Complexity function

• Let $C = (C_1, \ldots, C_n)$. If k is the minimal number of elements of C covering X (i.e. $X = C_{i_1} \cup \ldots \cup C_{i_k}$ for some $1 \leq i_1, \ldots, i_k \leq n$), then we put r(C) = k.

2
$$c(\mathcal{C}, n) = r(\mathcal{C}_0^{n-1}) - \text{complexity function}.$$

- **③** if $C \prec D$ then $r(C) \leq r(D)$
- r(C ∨ D) ≤ r(C) · r(D), in particular c(C, ·) is nondecreasing.
 r(f⁻ⁱ(C)) ≤ r(C)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Topological entropy

Every subadditive sequence of non-negative real numbers, i.e.

$$0 \leqslant a_{n+m} \leqslant a_n + a_m \quad \forall \ m, n$$

satisfies $\inf_{n \in \mathbb{N}} \frac{a_n}{n} = \lim_{n \to \infty} \frac{a_n}{n}$.

2 For any open cover $\mathcal{U} \in \mathscr{C}_X$ we define its (topological) entropy by

$$h_{top}(\mathcal{U}, f) = \limsup_{n \to \infty} \frac{1}{n} \log r(\mathcal{U}_0^{n-1})$$
$$= \lim_{n \to \infty} \frac{1}{n} \log r(\mathcal{U}_0^{n-1})$$

Topological entropy

$$h_{top}(f) = \sup_{\mathcal{U} \in \mathscr{C}_X} h_{top}(\mathcal{U}, f)$$

Piotr Oprocha (AGH)

Topological Complexity - I

イロト 不得 トイラト イラト 一日

Complexity function and dynamics

Definition (Blanchard, Host, Mass, 2000)

A dynamical system (X, f) is scattering (resp. 2-scattering) if any nontrivial (resp. standard) open cover \mathcal{U} has unbounded complexity function $c(\mathcal{U}, \cdot)$.

Definition (Blanchard, 1993)

A dynamical system (X, f) has uniformly positive entropy (u.p.e. for short) if any standard open cover \mathcal{U} has positive entropy.

Remark

Similarly, we can define u.p.e. of order *n* and of all orders (called also topological K) (nontrivial cover by at most *n* open sets, and all covers $U \in \mathscr{C}_X$, respectively)

A D N A B N A B N A B N

Scattering, weak mixing and transitivity

Theorem

If (X, f) is weakly mixing then it is scattering.

Theorem

If for any open cover $U \in C_X$ there is n > 0 such that c(U, n) > n + 1 then (X, f) is weakly mixing.

Scattering, weak mixing and transitivity

Theorem

If (X, f) is weakly mixing then it is scattering.

Theorem

If for any open cover $U \in C_X$ there is n > 0 such that c(U, n) > n + 1 then (X, f) is weakly mixing.

Scattering, weak mixing and transitivity

Theorem

If (X, f) is weakly mixing then it is scattering.

Theorem

If for any open cover $U \in C_X$ there is n > 0 such that c(U, n) > n + 1 then (X, f) is weakly mixing.

Theorem

If (X, f) is 2-scattering then (X, f^n) is 2-scattering and transitive for n = 1, 2, 3, ...

weak mixing \Longrightarrow scattering \Longrightarrow 2-scattering \Longrightarrow total transitivity

イロト イボト イヨト イヨト